File: SIFTDensityExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (151 lines) | stat: -rw-r--r-- 5,712 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include "itkPointSet.h"
#include "itkVariableLengthVector.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

/* Example usage:
./SIFTDensityExample Input/suburb2.jpeg Output/SIFTDensityOutput.tif Output/PrettySIFTDensityOutput.png 3 3 7
*/


// This example illustrates the use of the
// \doxygen{otb}{KeyPointDensityImageFilter}.
// This filter computes a local density of keypoints (SIFT or SURF,
// for instance) on an image and can
// be useful to detect man made objects or urban areas, for
// instance. The filter has been implemented in a generic way, so that
// the way the keypoints are detected can be chosen by the user.
//
// The first step required to use this filter is to include its header file.

#include "otbKeyPointDensityImageFilter.h"
#include "otbImageToSIFTKeyPointSetFilter.h"

int main(int itkNotUsed(argc), char* argv[])
{
  const char*        infname     = argv[1];
  const char*        outfname    = argv[2];
  const char*        prettyfname = argv[3];
  const unsigned int scales      = atoi(argv[4]);
  const unsigned int octaves     = atoi(argv[5]);
  const unsigned int radius      = atoi(argv[6]);

  const unsigned int Dimension = 2;
  using PixelType              = float;

  // As usual, we start by defining the types for the images, the reader
  // and the writer.

  using ImageType  = otb::Image<PixelType, Dimension>;
  using ReaderType = otb::ImageFileReader<ImageType>;
  using WriterType = otb::ImageFileWriter<ImageType>;
  // We define now the type for the keypoint detection. The keypoints
  // will be stored in vector form (they may contain many descriptors)
  // into a point set. The filter for detecting the SIFT is templated
  // over the input image type and the output pointset type.

  using RealVectorType = itk::VariableLengthVector<PixelType>;
  using PointSetType   = itk::PointSet<RealVectorType, Dimension>;
  using DetectorType   = otb::ImageToSIFTKeyPointSetFilter<ImageType, PointSetType>;
  // We can now define the filter which will compute the SIFT
  // density. It will be templated over the input and output image
  // types and the SIFT detector.

  using FilterType = otb::KeyPointDensityImageFilter<ImageType, ImageType, DetectorType>;
  // We can instantiate the reader and the writer as wella s the
  // filter and the detector. The detector needs to be instantiated in
  // order to set its parameters.

  ReaderType::Pointer   reader   = ReaderType::New();
  WriterType::Pointer   writer   = WriterType::New();
  FilterType::Pointer   filter   = FilterType::New();
  DetectorType::Pointer detector = DetectorType::New();
  // We set the file names for the input and the output images.

  reader->SetFileName(infname);
  writer->SetFileName(outfname);
  // We set the parameters for the SIFT detector (the number of
  // octaves and the number of scales per octave).

  detector->SetOctavesNumber(octaves);
  detector->SetScalesNumber(scales);
  // And we pass the detector to the filter and we set the radius for
  // the density estimation.

  filter->SetDetector(detector);
  filter->SetNeighborhoodRadius(radius);
  // We plug the pipeline.

  filter->SetInput(reader->GetOutput());
  writer->SetInput(filter->GetOutput());
  // We trigger the execution by calling th \code{Update()} method on
  // the writer, but before that we run the
  // \code{GenerateOutputInformation()} on the reader so the filter
  // gets the information about the image size (needed for the SIFT
  // computation).

  reader->GenerateOutputInformation();
  writer->Update();

  // Figure~\ref{fig:SIFTDENSITY_FILTER} shows the result of applying
  // the key point density filter to an image using the SIFT
  // detector. The main difference with respect to figure
  // \ref{fig:EDGEDENSITY_FILTER} is that for SIFTS, individual trees
  // contribute to the density.
  // \begin{figure}
  // \center
  // \includegraphics[width=0.25\textwidth]{suburb2.eps}
  // \includegraphics[width=0.25\textwidth]{PrettySIFTDensityOutput.eps}
  // \itkcaption[SIFT Density Filter]{Result of applying the
  // \doxygen{otb}{KeypointDensityImageFilter} to an image. From left
  // to right :
  // original image, SIF density.}
  // \label{fig:SIFTDENSITY_FILTER}
  // \end{figure}

  /************* Image for printing **************/

  using OutputImageType = otb::Image<unsigned char, 2>;

  using RescalerType = itk::RescaleIntensityImageFilter<ImageType, OutputImageType>;

  RescalerType::Pointer rescaler = RescalerType::New();

  rescaler->SetOutputMinimum(0);
  rescaler->SetOutputMaximum(255);

  rescaler->SetInput(filter->GetOutput());

  using OutputWriterType              = otb::ImageFileWriter<OutputImageType>;
  OutputWriterType::Pointer outwriter = OutputWriterType::New();

  outwriter->SetFileName(prettyfname);
  outwriter->SetInput(rescaler->GetOutput());
  outwriter->Update();

  return EXIT_SUCCESS;
}