1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "itkPointSet.h"
#include "itkVariableLengthVector.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkUnaryFunctorImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
/* Example usage:
./SIFTDensityExample Input/suburb2.jpeg Output/SIFTDensityOutput.tif Output/PrettySIFTDensityOutput.png 3 3 7
*/
// This example illustrates the use of the
// \doxygen{otb}{KeyPointDensityImageFilter}.
// This filter computes a local density of keypoints (SIFT or SURF,
// for instance) on an image and can
// be useful to detect man made objects or urban areas, for
// instance. The filter has been implemented in a generic way, so that
// the way the keypoints are detected can be chosen by the user.
//
// The first step required to use this filter is to include its header file.
#include "otbKeyPointDensityImageFilter.h"
#include "otbImageToSIFTKeyPointSetFilter.h"
int main(int itkNotUsed(argc), char* argv[])
{
const char* infname = argv[1];
const char* outfname = argv[2];
const char* prettyfname = argv[3];
const unsigned int scales = atoi(argv[4]);
const unsigned int octaves = atoi(argv[5]);
const unsigned int radius = atoi(argv[6]);
const unsigned int Dimension = 2;
using PixelType = float;
// As usual, we start by defining the types for the images, the reader
// and the writer.
using ImageType = otb::Image<PixelType, Dimension>;
using ReaderType = otb::ImageFileReader<ImageType>;
using WriterType = otb::ImageFileWriter<ImageType>;
// We define now the type for the keypoint detection. The keypoints
// will be stored in vector form (they may contain many descriptors)
// into a point set. The filter for detecting the SIFT is templated
// over the input image type and the output pointset type.
using RealVectorType = itk::VariableLengthVector<PixelType>;
using PointSetType = itk::PointSet<RealVectorType, Dimension>;
using DetectorType = otb::ImageToSIFTKeyPointSetFilter<ImageType, PointSetType>;
// We can now define the filter which will compute the SIFT
// density. It will be templated over the input and output image
// types and the SIFT detector.
using FilterType = otb::KeyPointDensityImageFilter<ImageType, ImageType, DetectorType>;
// We can instantiate the reader and the writer as wella s the
// filter and the detector. The detector needs to be instantiated in
// order to set its parameters.
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
FilterType::Pointer filter = FilterType::New();
DetectorType::Pointer detector = DetectorType::New();
// We set the file names for the input and the output images.
reader->SetFileName(infname);
writer->SetFileName(outfname);
// We set the parameters for the SIFT detector (the number of
// octaves and the number of scales per octave).
detector->SetOctavesNumber(octaves);
detector->SetScalesNumber(scales);
// And we pass the detector to the filter and we set the radius for
// the density estimation.
filter->SetDetector(detector);
filter->SetNeighborhoodRadius(radius);
// We plug the pipeline.
filter->SetInput(reader->GetOutput());
writer->SetInput(filter->GetOutput());
// We trigger the execution by calling th \code{Update()} method on
// the writer, but before that we run the
// \code{GenerateOutputInformation()} on the reader so the filter
// gets the information about the image size (needed for the SIFT
// computation).
reader->GenerateOutputInformation();
writer->Update();
// Figure~\ref{fig:SIFTDENSITY_FILTER} shows the result of applying
// the key point density filter to an image using the SIFT
// detector. The main difference with respect to figure
// \ref{fig:EDGEDENSITY_FILTER} is that for SIFTS, individual trees
// contribute to the density.
// \begin{figure}
// \center
// \includegraphics[width=0.25\textwidth]{suburb2.eps}
// \includegraphics[width=0.25\textwidth]{PrettySIFTDensityOutput.eps}
// \itkcaption[SIFT Density Filter]{Result of applying the
// \doxygen{otb}{KeypointDensityImageFilter} to an image. From left
// to right :
// original image, SIF density.}
// \label{fig:SIFTDENSITY_FILTER}
// \end{figure}
/************* Image for printing **************/
using OutputImageType = otb::Image<unsigned char, 2>;
using RescalerType = itk::RescaleIntensityImageFilter<ImageType, OutputImageType>;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetOutputMinimum(0);
rescaler->SetOutputMaximum(255);
rescaler->SetInput(filter->GetOutput());
using OutputWriterType = otb::ImageFileWriter<OutputImageType>;
OutputWriterType::Pointer outwriter = OutputWriterType::New();
outwriter->SetFileName(prettyfname);
outwriter->SetInput(rescaler->GetOutput());
outwriter->Update();
return EXIT_SUCCESS;
}
|