1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/* Example usage:
./SIFTExample Input/ROISpot5.png Output/ROISpot5SIFT0.png Output/SIFT0.txt 2 3 0 0
*/
/* Example usage:
./SIFTExample Input/ROISpot5.png Output/ROISpot5SIFT1.png Output/SIFT1.txt 2 3 1 0
*/
/* Example usage:
./SIFTExample Input/ROISpot5.png Output/ROISpot5SIFT2.png Output/SIFT2.txt 2 3 2 0
*/
/* Example usage:
./SIFTExample Input/QB_Suburb.png Output/QB_SuburbSIFT5.png Output/SIFT2.txt 2 3 5 0
*/
/* Example usage:
./SIFTExample Input/QB_SuburbRotated10.png Output/QB_SuburbSIFT5Rotated10.png Output/SIFT2.txt 2 3 5 0
*/
// This example illustrates the use of the \doxygen{otb}{ImageToSIFTKeyPointSetFilter}.
// The Scale-Invariant Feature Transform (or SIFT) is an algorithm in
// computer vision to detect and describe local features in
// images. The algorithm was published by David Lowe
// \cite{LoweSIFT}. The detection and description of local image
// features can help in object recognition and image registration. The
// SIFT features are local and based on the appearance of the object
// at particular interest points, and are invariant to image scale and
// rotation. They are also robust to changes in illumination, noise,
// occlusion and minor changes in viewpoint.
//
// The first step required to use this filter is to include its header file.
#include "otbImageToSIFTKeyPointSetFilter.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkPointSet.h"
#include "itkVariableLengthVector.h"
#include "itkRGBPixel.h"
#include "itkImageRegionIterator.h"
#include <iostream>
#include <fstream>
int main(int argc, char* argv[])
{
if (argc != 8)
{
std::cerr << "Usage: " << argv[0];
std::cerr << " InputImage OutputImage OutputSIFTFile octaves scales threshold ratio" << std::endl;
return 1;
}
const char* infname = argv[1];
const char* outfname = argv[3];
const char* outputImageFilename = argv[2];
const unsigned int octaves = atoi(argv[4]);
const unsigned int scales = atoi(argv[5]);
float threshold = atof(argv[6]);
float ratio = atof(argv[7]);
using RealType = float;
const unsigned int Dimension = 2;
// The \doxygen{otb}{ImageToSIFTKeyPointSetFilter} is templated over
// its input image type and the output point set type. Therefore, we
// start by defining the needed types.
using ImageType = otb::Image<RealType, Dimension>;
using RealVectorType = itk::VariableLengthVector<RealType>;
using ReaderType = otb::ImageFileReader<ImageType>;
using PointSetType = itk::PointSet<RealVectorType, Dimension>;
using ImageToSIFTKeyPointSetFilterType = otb::ImageToSIFTKeyPointSetFilter<ImageType, PointSetType>;
// Since the SIFT detector produces a point set, we will need
// iterators for the coordinates of the points and the data associated
// with them.
using PointsContainerType = PointSetType::PointsContainer;
using PointsIteratorType = PointsContainerType::Iterator;
// We can now instantiate the reader and the SIFT filter and plug the pipeline.
ReaderType::Pointer reader = ReaderType::New();
ImageToSIFTKeyPointSetFilterType::Pointer filter = ImageToSIFTKeyPointSetFilterType::New();
reader->SetFileName(infname);
filter->SetInput(reader->GetOutput());
// The SIFT filter needs the following parameters:
// \begin{itemize}
// \item the number of octaves, that is, the number of levels of undersampling,
// \item the number of scales (blurring) per octave,
// \item the low contrast threshold to be applied to each point for the detection
// on the difference of Gaussians image,
// \item the threshold on the responses to consider a point as an edge.
// \end{itemize}
filter->SetOctavesNumber(octaves);
filter->SetScalesNumber(scales);
filter->SetDoGThreshold(threshold);
filter->SetEdgeThreshold(ratio);
filter->Update();
// Figure~\ref{fig:SIFT} shows the result of applying the SIFT
// point detector to a small patch extracted from a Spot 5 image
// using different threshold values.
// \begin{figure}
// \center
// \includegraphics[width=0.22\textwidth]{ROISpot5.eps}
// \includegraphics[width=0.22\textwidth]{ROISpot5SIFT0.eps}
// \includegraphics[width=0.22\textwidth]{ROISpot5SIFT1.eps}
// \includegraphics[width=0.22\textwidth]{ROISpot5SIFT2.eps}
// \itkcaption[SIFT Application]{Result of applying the
// \doxygen{otb}{ImageToSIFTKeyPointSetFilter} to a Spot 5
// image. Left to right: original image and SIFT with thresholds 0,
// 1 and 2 respectively.}
// \label{fig:SIFT}
// \end{figure}
// Figure~\ref{fig:SIFT2} shows the result of applying the SIFT
// point detector to a small patch extracted from a Spot 5 image
// using different threshold values.
// \begin{figure}
// \center
// \includegraphics[width=0.30\textwidth]{QB_Suburb.eps}
// \includegraphics[width=0.30\textwidth]{QB_SuburbSIFT5.eps}
// \includegraphics[width=0.30\textwidth]{QB_SuburbSIFT5Rotated10.eps}
// \itkcaption[SIFT Application]{Result of applying the
// \doxygen{otb}{ImageToSIFTKeyPointSetFilter} to a high resolution image
// image. Left to right: original image and SIFT on the original
// and a rotated image respectively.}
// \label{fig:SIFT2}
// \end{figure}
//
// Building the output image for visualization
ImageType::OffsetType t = {{0, 1}};
ImageType::OffsetType b = {{0, -1}};
ImageType::OffsetType r = {{1, 0}};
ImageType::OffsetType l = {{-1, 0}};
using RGBPixelType = itk::RGBPixel<unsigned char>;
using OutputImageType = otb::Image<RGBPixelType, 2>;
using WriterType = otb::ImageFileWriter<OutputImageType>;
OutputImageType::Pointer outputImage = OutputImageType::New();
OutputImageType::RegionType region;
OutputImageType::SizeType outputSize;
outputSize = reader->GetOutput()->GetLargestPossibleRegion().GetSize();
region.SetSize(outputSize);
OutputImageType::IndexType indexStart;
indexStart[0] = 0;
indexStart[1] = 0;
region.SetIndex(indexStart);
outputImage->SetRegions(region);
outputImage->Allocate();
itk::ImageRegionIterator<OutputImageType> iterOutput(outputImage, reader->GetOutput()->GetLargestPossibleRegion());
for (iterOutput.GoToBegin(); !iterOutput.IsAtEnd(); ++iterOutput)
{
ImageType::IndexType index = iterOutput.GetIndex();
ImageType::PixelType grayPix = reader->GetOutput()->GetPixel(index);
OutputImageType::PixelType rgbPixel;
rgbPixel.SetRed(static_cast<unsigned char>(grayPix));
rgbPixel.SetGreen(static_cast<unsigned char>(grayPix));
rgbPixel.SetBlue(static_cast<unsigned char>(grayPix));
iterOutput.Set(rgbPixel);
}
PointsIteratorType pIt = filter->GetOutput()->GetPoints()->Begin();
ImageType::SpacingType spacing = reader->GetOutput()->GetSignedSpacing();
ImageType::PointType origin = reader->GetOutput()->GetOrigin();
OutputImageType::SizeType size = outputImage->GetLargestPossibleRegion().GetSize();
while (pIt != filter->GetOutput()->GetPoints()->End())
{
ImageType::IndexType index;
index[0] = (unsigned int)(std::floor((double)((pIt.Value()[0] - origin[0]) / spacing[0] + 0.5)));
index[1] = (unsigned int)(std::floor((double)((pIt.Value()[1] - origin[1]) / spacing[1] + 0.5)));
OutputImageType::PixelType keyPixel;
keyPixel.SetRed(0);
keyPixel.SetGreen(255);
keyPixel.SetBlue(0);
if (static_cast<unsigned int>(index[1]) < static_cast<unsigned int>(size[1]) && static_cast<unsigned int>(index[0]) < static_cast<unsigned int>(size[0]))
{
outputImage->SetPixel(index, keyPixel);
if (static_cast<unsigned int>(index[1]) < static_cast<unsigned int>(size[1] - 1))
outputImage->SetPixel(index + t, keyPixel);
if (index[1] > 0)
outputImage->SetPixel(index + b, keyPixel);
if (static_cast<unsigned int>(index[0]) < static_cast<unsigned int>(size[0] - 1))
outputImage->SetPixel(index + r, keyPixel);
if (index[0] > 0)
outputImage->SetPixel(index + l, keyPixel);
}
++pIt;
}
std::ofstream outfile(outfname);
outfile << filter;
outfile.close();
WriterType::Pointer writer = WriterType::New();
writer->SetInput(outputImage);
writer->SetFileName(outputImageFilename);
writer->Update();
return EXIT_SUCCESS;
}
|