File: SIFTFastExample.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (215 lines) | stat: -rw-r--r-- 8,403 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

/* Example usage:
./SIFTFastExample Input/ROISpot5.png Output/ROISpot5SIFTFast.png 3
*/


// This example illustrates the use of the \doxygen{otb}{SiftFastImageFilter}.
// The Scale-Invariant Feature Transform (or SIFT) is an algorithm in
// computer vision to detect and describe local features in
// images. The algorithm was published by David Lowe
// \cite{LoweSIFT}. The detection and description of local image
// features can help in object recognition and image registration. The
// SIFT features are local and based on the appearance of the object
// at particular interest points, and are invariant to image scale and
// rotation. They are also robust to changes in illumination, noise,
// occlusion and minor changes in viewpoint.
//
// The first step required to use this filter is to include its header file.

#include "otbSiftFastImageFilter.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "itkPointSet.h"
#include "itkVariableLengthVector.h"
#include "itkRGBPixel.h"
#include "itkImageRegionIterator.h"

#include <iostream>
#include <fstream>

int main(int argc, char* argv[])
{
  if (argc != 4)
  {
    std::cerr << "Usage: " << argv[0];
    std::cerr << " InputImage OutputImage scales" << std::endl;
    return 1;
  }
  const char* infname             = argv[1];
  const char* outputImageFilename = argv[2];

  const unsigned int scales = atoi(argv[3]);

  const unsigned int Dimension = 2;

  // We will start by defining the required types. We will work with a
  // scalar image of float pixels. We also define the corresponding
  // image reader.

  using RealType   = float;
  using ImageType  = otb::Image<RealType, Dimension>;
  using ReaderType = otb::ImageFileReader<ImageType>;
  // The SIFT descriptors will be stored in a point set containing the
  // vector of features.

  using RealVectorType = itk::VariableLengthVector<RealType>;
  using PointSetType   = itk::PointSet<RealVectorType, Dimension>;
  // The SIFT filter itself is templated over the input image and the
  // generated point set.

  using ImageToFastSIFTKeyPointSetFilterType = otb::SiftFastImageFilter<ImageType, PointSetType>;
  // We instantiate the reader.

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(infname);
  // We instantiate the filter.

  ImageToFastSIFTKeyPointSetFilterType::Pointer filter = ImageToFastSIFTKeyPointSetFilterType::New();
  // We plug the filter and set the number of scales for the SIFT
  // computation. We can afterwards run the processing with the
  // \code{Update()} method.

  filter->SetInput(reader->GetOutput());
  filter->SetScalesNumber(scales);
  filter->Update();
  // Once the SIFT are computed, we may want to draw them on top of the
  // input image. In order to do this, we will create the following RGB
  // image and the corresponding writer:

  using PixelType       = unsigned char;
  using RGBPixelType    = itk::RGBPixel<PixelType>;
  using OutputImageType = otb::Image<RGBPixelType, 2>;
  using WriterType      = otb::ImageFileWriter<OutputImageType>;

  OutputImageType::Pointer outputImage = OutputImageType::New();
  // We set the regions of the image by copying the information from the
  // input image and we allocate the memory for the output image.

  outputImage->SetRegions(reader->GetOutput()->GetLargestPossibleRegion());
  outputImage->Allocate();
  // We can now proceed to copy the input image into the output one
  // using region iterators. The input image is a grey level one. The
  // output image will be made of color crosses for each SIFT on top of
  // the grey level input image. So we start by copying the grey level
  // values on each of the 3 channels of the color image.

  itk::ImageRegionIterator<OutputImageType> iterOutput(outputImage, outputImage->GetLargestPossibleRegion());
  itk::ImageRegionIterator<ImageType>       iterInput(reader->GetOutput(), reader->GetOutput()->GetLargestPossibleRegion());

  for (iterOutput.GoToBegin(), iterInput.GoToBegin(); !iterOutput.IsAtEnd(); ++iterOutput, ++iterInput)
  {
    OutputImageType::PixelType rgbPixel;
    rgbPixel.SetRed(static_cast<PixelType>(iterInput.Get()));
    rgbPixel.SetGreen(static_cast<PixelType>(iterInput.Get()));
    rgbPixel.SetBlue(static_cast<PixelType>(iterInput.Get()));

    iterOutput.Set(rgbPixel);
  }
  // We are now going to plot color crosses on the output image. We will
  // need to define offsets (top, bottom, left and right) with respect
  // to the SIFT position in order to draw the cross segments.

  ImageType::OffsetType t = {{0, 1}};
  ImageType::OffsetType b = {{0, -1}};
  ImageType::OffsetType l = {{1, 0}};
  ImageType::OffsetType r = {{-1, 0}};
  // Now, we are going to access the point set generated by the SIFT
  // filter. The points are stored into a points container that we are
  // going to walk through using an iterator. These are the types needed
  // for this task:

  using PointsContainerType = PointSetType::PointsContainer;
  using PointsIteratorType  = PointsContainerType::Iterator;
  // We set the iterator to the beginning of the point set.

  PointsIteratorType pIt = filter->GetOutput()->GetPoints()->Begin();
  // We get the information about image size and spacing before drawing
  // the crosses.

  ImageType::SpacingType spacing = reader->GetOutput()->GetSignedSpacing();
  ImageType::PointType   origin  = reader->GetOutput()->GetOrigin();

  // And we iterate through the SIFT set:

  while (pIt != filter->GetOutput()->GetPoints()->End())
  {
    // We get the pixel coordinates for each SIFT by using the
    // \code{Value()} method on the point set iterator. We use the
    // information about size and spacing in order to convert the physical
    // coordinates of the point into pixel coordinates.

    ImageType::IndexType index;

    index[0] = static_cast<unsigned int>(std::floor(static_cast<double>((pIt.Value()[0] - origin[0]) / spacing[0] + 0.5)));

    index[1] = static_cast<unsigned int>(std::floor(static_cast<double>((pIt.Value()[1] - origin[1]) / spacing[1] + 0.5)));
    // We create a green pixel.

    OutputImageType::PixelType keyPixel;
    keyPixel.SetRed(0);
    keyPixel.SetGreen(255);
    keyPixel.SetBlue(0);
    // We draw the crosses using the offsets and checking that we are
    // inside the image, since SIFTs on the image borders would cause an
    // out of bounds pixel access.

    if (outputImage->GetLargestPossibleRegion().IsInside(index))
    {
      outputImage->SetPixel(index, keyPixel);

      if (outputImage->GetLargestPossibleRegion().IsInside(index + t))
        outputImage->SetPixel(index + t, keyPixel);

      if (outputImage->GetLargestPossibleRegion().IsInside(index + b))
        outputImage->SetPixel(index + b, keyPixel);

      if (outputImage->GetLargestPossibleRegion().IsInside(index + l))
        outputImage->SetPixel(index + l, keyPixel);

      if (outputImage->GetLargestPossibleRegion().IsInside(index + r))
        outputImage->SetPixel(index + r, keyPixel);
    }
    ++pIt;
  }

  // Finally, we write the image.

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName(outputImageFilename);
  writer->SetInput(outputImage);
  writer->Update();

  // Figure~\ref{fig:SIFTFast} shows the result of applying the SIFT
  // point detector to a small patch extracted from a Spot 5 image.
  // \begin{figure}
  // \center
  // \includegraphics[width=0.40\textwidth]{ROISpot5.eps}
  // \includegraphics[width=0.40\textwidth]{ROISpot5SIFTFast.eps}
  // \itkcaption[SIFT Application]{Result of applying the
  // \doxygen{otb}{SiftFastImageFilter} to a Spot 5
  // image.}
  // \label{fig:SIFTFast}
  // \end{figure}

  return EXIT_SUCCESS;
}