1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"
#include "otbOGRDataSourceToLabelImageFilter.h"
#include "itkImageRegionConstIterator.h"
#include "otbRAMDrivenAdaptativeStreamingManager.h"
#include "otbConfusionMatrixMeasurements.h"
#include "otbContingencyTableCalculator.h"
#include "otbContingencyTable.h"
#include "otbMacro.h"
namespace otb
{
namespace Wrapper
{
class ComputeConfusionMatrix : public Application
{
public:
/** Standard class typedefs. */
typedef ComputeConfusionMatrix Self;
typedef Application Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Standard macro */
itkNewMacro(Self);
itkTypeMacro(ComputeConfusionMatrix, otb::Application);
typedef itk::ImageRegionConstIterator<Int32ImageType> ImageIteratorType;
typedef otb::OGRDataSourceToLabelImageFilter<Int32ImageType> RasterizeFilterType;
typedef RAMDrivenAdaptativeStreamingManager<Int32ImageType> RAMDrivenAdaptativeStreamingManagerType;
typedef Int32ImageType::RegionType RegionType;
typedef int ClassLabelType;
typedef unsigned long ConfusionMatrixEltType;
typedef itk::VariableSizeMatrix<ConfusionMatrixEltType> ConfusionMatrixType;
typedef std::map<ClassLabelType, std::map<ClassLabelType, ConfusionMatrixEltType>> OutputConfusionMatrixType;
// filter type
typedef otb::ConfusionMatrixMeasurements<ConfusionMatrixType, ClassLabelType> ConfusionMatrixMeasurementsType;
typedef ConfusionMatrixMeasurementsType::MapOfClassesType MapOfClassesType;
typedef ConfusionMatrixMeasurementsType::MeasurementType MeasurementType;
typedef ContingencyTable<ClassLabelType> ContingencyTableType;
typedef ContingencyTableType::Pointer ContingencyTablePointerType;
protected:
ComputeConfusionMatrix()
{
m_Input = nullptr;
}
private:
struct StreamingInitializationData
{
bool refhasnodata;
bool prodhasnodata;
int prodnodata;
int refnodata;
unsigned long numberOfStreamDivisions;
};
void DoInit() override
{
SetName("ComputeConfusionMatrix");
SetDescription("Computes the confusion matrix of a classification");
// Documentation
SetDocLongDescription(
"This application computes the confusion matrix of a classification map relative to a ground truth dataset. "
"The ground truth can be provided as either a raster or a vector data. Only reference and produced pixels with values different "
"from NoData are handled in the calculation of the confusion matrix. The confusion matrix is organized the following way: "
"rows = reference labels, columns = produced labels. In the header of the output file, the reference and produced class labels "
"are ordered according to the rows/columns of the confusion matrix.");
SetDocLimitations("None");
SetDocAuthors("OTB-Team");
SetDocSeeAlso(" ");
AddDocTag(Tags::Learning);
AddParameter(ParameterType_InputImage, "in", "Input Image");
SetParameterDescription("in", "The input classification image.");
AddParameter(ParameterType_OutputFilename, "out", "Matrix output");
SetParameterDescription("out", "Filename to store the output matrix (csv format)");
AddParameter(ParameterType_Choice, "format", "set the output format to contingency table or confusion matrix");
SetParameterDescription("format",
"Choice of the output format as a contingency table for unsupervised algorithms"
"or confusion matrix for supervised ones.");
AddChoice("format.confusionmatrix", "Choice of a confusion matrix as output.");
AddChoice("format.contingencytable", "Choice of a contingency table as output.");
AddParameter(ParameterType_Choice, "ref", "Ground truth");
SetParameterDescription("ref", "Choice of ground truth format");
AddChoice("ref.raster", "Ground truth as a raster image");
AddChoice("ref.vector", "Ground truth as a vector data file");
AddParameter(ParameterType_InputImage, "ref.raster.in", "Input reference image");
SetParameterDescription("ref.raster.in", "Input image containing the ground truth labels");
AddParameter(ParameterType_InputVectorData, "ref.vector.in", "Input reference vector data");
SetParameterDescription("ref.vector.in", "Input vector data of the ground truth");
AddParameter(ParameterType_Field, "ref.vector.field", "Field name");
SetParameterDescription("ref.vector.field", "Field name containing the label values");
SetVectorData("ref.vector.field", "ref.vector.in");
SetTypeFilter("ref.vector.field", { OFTString, OFTInteger, OFTInteger64 });
SetListViewSingleSelectionMode("ref.vector.field", true);
AddParameter(ParameterType_Int, "ref.raster.nodata", "Value for nodata pixels in the reference raster");
SetDefaultParameterInt("ref.raster.nodata", 0);
SetParameterDescription("ref.raster.nodata", "Label to be treated as nodata in the reference raster.");
MandatoryOff("ref.raster.nodata");
DisableParameter("ref.raster.nodata");
AddParameter(ParameterType_Int, "ref.vector.nodata", "Value for nodata pixels in the reference vector");
SetDefaultParameterInt("ref.vector.nodata", 0);
SetParameterDescription("ref.vector.nodata",
"Label to be treated as nodata in the reference vector. Please note that this value is always used in vector mode, to generate "
"default values. Please set it to a value that does not correspond to a class label.");
MandatoryOff("ref.vector.nodata");
DisableParameter("ref.vector.nodata");
AddParameter(ParameterType_Int, "nodatalabel", "Value for nodata pixels in the input image");
SetParameterDescription("nodatalabel", "Label to be treated as nodata in the input image");
SetDefaultParameterInt("nodatalabel", 0);
MandatoryOff("nodatalabel");
DisableParameter("nodatalabel");
AddRAMParameter();
// Doc example parameter settings
SetDocExampleParameterValue("in", "clLabeledImageQB1.tif");
SetDocExampleParameterValue("out", "ConfusionMatrix.csv");
SetDocExampleParameterValue("ref", "vector");
SetDocExampleParameterValue("ref.vector.in", "VectorData_QB1_bis.shp");
SetDocExampleParameterValue("ref.vector.field", "Class");
SetDocExampleParameterValue("ref.vector.nodata", "255");
SetOfficialDocLink();
}
void DoUpdateParameters() override
{
if (HasValue("ref.vector.in"))
{
std::string vectorFile = GetParameterString("ref.vector.in");
ogr::DataSource::Pointer ogrDS = ogr::DataSource::New(vectorFile, ogr::DataSource::Modes::Read);
ogr::Layer layer = ogrDS->GetLayer(0);
ogr::Feature feature = layer.ogr().GetNextFeature();
ClearChoices("ref.vector.field");
FieldParameter::TypeFilterType typeFilter = GetTypeFilter("ref.vector.field");
for (int iField = 0; iField < feature.ogr().GetFieldCount(); iField++)
{
std::string key, item = feature.ogr().GetFieldDefnRef(iField)->GetNameRef();
key = item;
std::string::iterator end = std::remove_if(key.begin(), key.end(), [](char c) { return !std::isalnum(c); });
std::transform(key.begin(), end, key.begin(), tolower);
OGRFieldType fieldType = feature.ogr().GetFieldDefnRef(iField)->GetType();
if (typeFilter.empty() || std::find(typeFilter.begin(), typeFilter.end(), fieldType) != std::end(typeFilter))
{
std::string tmpKey = "ref.vector.field." + key.substr(0, end - key.begin());
AddChoice(tmpKey, item);
}
}
}
}
void LogContingencyTable(const ContingencyTablePointerType& contingencyTable)
{
otbAppLogINFO("Contingency table: reference labels (rows) vs. produced labels (cols)\n" << (*contingencyTable.GetPointer()));
}
void m_WriteContingencyTable(const ContingencyTablePointerType& contingencyTable)
{
std::ofstream outFile;
outFile.open(this->GetParameterString("out"));
outFile << contingencyTable->ToCSV();
outFile.close();
}
std::string LogConfusionMatrix(MapOfClassesType* mapOfClasses, ConfusionMatrixType* matrix)
{
// Compute minimal width
size_t minwidth = 0;
for (unsigned int i = 0; i < matrix->Rows(); i++)
{
for (unsigned int j = 0; j < matrix->Cols(); j++)
{
std::ostringstream os;
os << (*matrix)(i, j);
size_t size = os.str().size();
if (size > minwidth)
{
minwidth = size;
}
}
}
MapOfClassesType::const_iterator it = mapOfClasses->begin();
MapOfClassesType::const_iterator end = mapOfClasses->end();
for (; it != end; ++it)
{
std::ostringstream os;
os << "[" << it->first << "]";
size_t size = os.str().size();
if (size > minwidth)
{
minwidth = size;
}
}
// Generate matrix string, with 'minwidth' as size specifier
std::ostringstream os;
// Header line
for (size_t i = 0; i < minwidth; ++i)
os << " ";
os << " ";
it = mapOfClasses->begin();
end = mapOfClasses->end();
for (; it != end; ++it)
{
// os << "[" << it->first << "]" << " ";
os << "[" << std::setw(minwidth - 2) << it->first << "]"
<< " ";
}
os << std::endl;
// Each line of confusion matrix
it = mapOfClasses->begin();
for (unsigned int i = 0; i < matrix->Rows(); i++)
{
ClassLabelType label = it->first;
os << "[" << std::setw(minwidth - 2) << label << "]"
<< " ";
for (unsigned int j = 0; j < matrix->Cols(); j++)
{
os << std::setw(minwidth) << (*matrix)(i, j) << " ";
}
os << std::endl;
++it;
}
otbAppLogINFO("Confusion matrix (rows = reference labels, columns = produced labels):\n" << os.str());
return os.str();
}
StreamingInitializationData InitStreamingData()
{
StreamingInitializationData sid;
m_Input = this->GetParameterInt32Image("in");
std::string field;
sid.prodnodata = this->GetParameterInt("nodatalabel");
sid.prodhasnodata = this->IsParameterEnabled("nodatalabel");
if (GetParameterString("ref") == "raster")
{
sid.refnodata = this->GetParameterInt("ref.raster.nodata");
sid.refhasnodata = this->IsParameterEnabled("ref.raster.nodata");
m_Reference = this->GetParameterInt32Image("ref.raster.in");
}
else
{
// Force nodata to true since it will be generated during rasterization
sid.refhasnodata = true;
sid.refnodata = this->GetParameterInt("ref.vector.nodata");
otb::ogr::DataSource::Pointer ogrRef = otb::ogr::DataSource::New(GetParameterString("ref.vector.in"), otb::ogr::DataSource::Modes::Read);
// Get field name
std::vector<int> selectedCFieldIdx = GetSelectedItems("ref.vector.field");
if (selectedCFieldIdx.empty())
{
otbAppLogFATAL(<< "No field has been selected for data labelling!");
}
std::vector<std::string> cFieldNames = GetChoiceNames("ref.vector.field");
field = cFieldNames[selectedCFieldIdx.front()];
m_RasterizeReference = RasterizeFilterType::New();
m_RasterizeReference->AddOGRDataSource(ogrRef);
m_RasterizeReference->SetOutputParametersFromImage(m_Input);
m_RasterizeReference->SetBackgroundValue(sid.refnodata);
m_RasterizeReference->SetBurnAttribute(field.c_str());
m_Reference = m_RasterizeReference->GetOutput();
m_Reference->UpdateOutputInformation();
}
// Prepare local streaming
m_StreamingManager = RAMDrivenAdaptativeStreamingManagerType::New();
int availableRAM = GetParameterInt("ram");
m_StreamingManager->SetAvailableRAMInMB(static_cast<unsigned int>(availableRAM));
float bias = 2.0; // empiric value;
m_StreamingManager->SetBias(bias);
m_StreamingManager->PrepareStreaming(m_Input, m_Input->GetLargestPossibleRegion());
sid.numberOfStreamDivisions = m_StreamingManager->GetNumberOfSplits();
otbAppLogINFO("Number of stream divisions : " << sid.numberOfStreamDivisions);
return sid;
}
void DoExecute() override
{
StreamingInitializationData sid = InitStreamingData();
if (GetParameterString("format") == "contingencytable")
{
DoExecuteContingencyTable(sid);
}
else
{
DoExecuteConfusionMatrix(sid);
}
}
void DoExecuteContingencyTable(const StreamingInitializationData& sid)
{
typedef ContingencyTableCalculator<ClassLabelType> ContingencyTableCalculatorType;
ContingencyTableCalculatorType::Pointer calculator = ContingencyTableCalculatorType::New();
for (unsigned int index = 0; index < sid.numberOfStreamDivisions; index++)
{
RegionType streamRegion = m_StreamingManager->GetSplit(index);
m_Input->SetRequestedRegion(streamRegion);
m_Input->PropagateRequestedRegion();
m_Input->UpdateOutputData();
m_Reference->SetRequestedRegion(streamRegion);
m_Reference->PropagateRequestedRegion();
m_Reference->UpdateOutputData();
ImageIteratorType itInput(m_Input, streamRegion);
itInput.GoToBegin();
ImageIteratorType itRef(m_Reference, streamRegion);
itRef.GoToBegin();
calculator->Compute(itRef, itInput, sid.refhasnodata, sid.refnodata, sid.prodhasnodata, sid.prodnodata);
}
ContingencyTablePointerType contingencyTable = calculator->BuildContingencyTable();
LogContingencyTable(contingencyTable);
m_WriteContingencyTable(contingencyTable);
}
void DoExecuteConfusionMatrix(const StreamingInitializationData& sid)
{
// Extraction of the Class Labels from the Reference image/rasterized vector data + filling of m_Matrix
MapOfClassesType mapOfClassesRef, mapOfClassesProd;
MapOfClassesType::iterator itMapOfClassesRef, itMapOfClassesProd;
ClassLabelType labelRef = 0, labelProd = 0;
int itLabelRef = 0, itLabelProd = 0;
for (unsigned int index = 0; index < sid.numberOfStreamDivisions; index++)
{
RegionType streamRegion = m_StreamingManager->GetSplit(index);
m_Input->SetRequestedRegion(streamRegion);
m_Input->PropagateRequestedRegion();
m_Input->UpdateOutputData();
m_Reference->SetRequestedRegion(streamRegion);
m_Reference->PropagateRequestedRegion();
m_Reference->UpdateOutputData();
ImageIteratorType itInput(m_Input, streamRegion);
itInput.GoToBegin();
ImageIteratorType itRef(m_Reference, streamRegion);
itRef.GoToBegin();
while (!itRef.IsAtEnd())
{
labelRef = static_cast<ClassLabelType>(itRef.Get());
labelProd = static_cast<ClassLabelType>(itInput.Get());
// Extraction of the reference/produced class labels
if ((!sid.refhasnodata || labelRef != sid.refnodata) && (!sid.prodhasnodata || labelProd != sid.prodnodata))
{
// If the current labels have not been added to their respective mapOfClasses yet
if (mapOfClassesRef.insert(MapOfClassesType::value_type(labelRef, itLabelRef)).second)
{
++itLabelRef;
}
if (mapOfClassesProd.insert(MapOfClassesType::value_type(labelProd, itLabelProd)).second)
{
++itLabelProd;
}
// Filling of m_Matrix
m_Matrix[labelRef][labelProd]++;
} // END if ((labelRef != nodata) && (labelProd != nodata))
++itRef;
++itInput;
}
} // END of for (unsigned int index = 0; index < numberOfStreamDivisions; index++)
/////////////////////////////////////////////
// Filling the 2 headers for the output file
const std::string commentRefStr = "#Reference labels (rows):";
const std::string commentProdStr = "#Produced labels (columns):";
const char separatorChar = ',';
std::ostringstream ossHeaderRefLabels, ossHeaderProdLabels;
// Filling ossHeaderRefLabels for the output file
ossHeaderRefLabels << commentRefStr;
MapOfClassesType::iterator itMapOfClassesRefEnd = mapOfClassesRef.end();
itMapOfClassesRef = mapOfClassesRef.begin();
int indexLabelRef = 0;
while (itMapOfClassesRef != itMapOfClassesRefEnd)
{
// labels labelRef of mapOfClassesRef are already sorted
labelRef = itMapOfClassesRef->first;
// SORTING the itMapOfClassesRef->second items of mapOfClassesRef
mapOfClassesRef[labelRef] = indexLabelRef;
otbAppLogINFO("mapOfClassesRef[" << labelRef << "] = " << mapOfClassesRef[labelRef]);
ossHeaderRefLabels << labelRef;
++itMapOfClassesRef;
if (itMapOfClassesRef != itMapOfClassesRefEnd)
{
ossHeaderRefLabels << separatorChar;
}
else
{
ossHeaderRefLabels << std::endl;
}
++indexLabelRef;
}
// Filling ossHeaderProdLabels for the output file
ossHeaderProdLabels << commentProdStr;
MapOfClassesType::iterator itMapOfClassesProdEnd = mapOfClassesProd.end();
itMapOfClassesProd = mapOfClassesProd.begin();
int indexLabelProd = 0;
while (itMapOfClassesProd != itMapOfClassesProdEnd)
{
// labels labelProd of mapOfClassesProd are already sorted
labelProd = itMapOfClassesProd->first;
// SORTING the itMapOfClassesProd->second items of mapOfClassesProd
mapOfClassesProd[labelProd] = indexLabelProd;
otbAppLogINFO("mapOfClassesProd[" << labelProd << "] = " << mapOfClassesProd[labelProd]);
ossHeaderProdLabels << labelProd;
++itMapOfClassesProd;
if (itMapOfClassesProd != itMapOfClassesProdEnd)
{
ossHeaderProdLabels << separatorChar;
}
else
{
ossHeaderProdLabels << std::endl;
}
++indexLabelProd;
}
std::ofstream outFile;
outFile.open(this->GetParameterString("out"));
outFile << std::fixed;
outFile.precision(10);
/////////////////////////////////////
// Writing the 2 headers
outFile << ossHeaderRefLabels.str();
outFile << ossHeaderProdLabels.str();
/////////////////////////////////////
// Initialization of the Confusion Matrix for the application LOG and for measurements
int nbClassesRef = static_cast<int>(mapOfClassesRef.size());
int nbClassesProd = static_cast<int>(mapOfClassesProd.size());
// Formatting m_MatrixLOG from m_Matrix in order to make m_MatrixLOG a square matrix
// from the reference labels in mapOfClassesRef
indexLabelRef = 0;
int indexLabelProdInRef = 0;
// Initialization of m_MatrixLOG
m_MatrixLOG.SetSize(nbClassesRef, nbClassesRef);
m_MatrixLOG.Fill(0);
for (itMapOfClassesRef = mapOfClassesRef.begin(); itMapOfClassesRef != itMapOfClassesRefEnd; ++itMapOfClassesRef)
{
// labels labelRef of mapOfClassesRef are already sorted
labelRef = itMapOfClassesRef->first;
indexLabelProd = 0;
for (itMapOfClassesProd = mapOfClassesProd.begin(); itMapOfClassesProd != itMapOfClassesProdEnd; ++itMapOfClassesProd)
{
// labels labelProd of mapOfClassesProd are already sorted
labelProd = itMapOfClassesProd->first;
// If labelProd is present in mapOfClassesRef
if (mapOfClassesRef.count(labelProd) != 0)
{
// Index of labelProd in mapOfClassesRef; itMapOfClassesRef->second elements are now SORTED
indexLabelProdInRef = mapOfClassesRef[labelProd];
m_MatrixLOG(indexLabelRef, indexLabelProdInRef) = m_Matrix[labelRef][labelProd];
}
///////////////////////////////////////////////////////////
// Writing the ordered confusion matrix in the output file
outFile << m_Matrix[labelRef][labelProd];
if (indexLabelProd < (nbClassesProd - 1))
{
outFile << separatorChar;
}
else
{
outFile << std::endl;
}
///////////////////////////////////////////////////////////
++indexLabelProd;
}
m_Matrix[labelRef].clear();
++indexLabelRef;
}
// m_Matrix is cleared in order to remove old results in case of successive runs of the GUI application
m_Matrix.clear();
outFile.close();
otbAppLogINFO("Reference class labels ordered according to the rows of the output confusion matrix: " << ossHeaderRefLabels.str());
otbAppLogINFO("Produced class labels ordered according to the columns of the output confusion matrix: " << ossHeaderProdLabels.str());
// otbAppLogINFO("Output confusion matrix (rows = reference labels, columns = produced labels):\n" << m_MatrixLOG);
LogConfusionMatrix(&mapOfClassesRef, &m_MatrixLOG);
// Measurements of the Confusion Matrix parameters
ConfusionMatrixMeasurementsType::Pointer confMatMeasurements = ConfusionMatrixMeasurementsType::New();
confMatMeasurements->SetMapOfClasses(mapOfClassesRef);
confMatMeasurements->SetConfusionMatrix(m_MatrixLOG);
confMatMeasurements->Compute();
for (itMapOfClassesRef = mapOfClassesRef.begin(); itMapOfClassesRef != itMapOfClassesRefEnd; ++itMapOfClassesRef)
{
labelRef = itMapOfClassesRef->first;
indexLabelRef = itMapOfClassesRef->second;
otbAppLogINFO("Precision of class [" << labelRef << "] vs all: " << confMatMeasurements->GetPrecisions()[indexLabelRef]);
otbAppLogINFO("Recall of class [" << labelRef << "] vs all: " << confMatMeasurements->GetRecalls()[indexLabelRef]);
otbAppLogINFO("F-score of class [" << labelRef << "] vs all: " << confMatMeasurements->GetFScores()[indexLabelRef] << std::endl);
}
otbAppLogINFO("Precision of the different classes: " << confMatMeasurements->GetPrecisions());
otbAppLogINFO("Recall of the different classes: " << confMatMeasurements->GetRecalls());
otbAppLogINFO("F-score of the different classes: " << confMatMeasurements->GetFScores() << std::endl);
otbAppLogINFO("Kappa index: " << confMatMeasurements->GetKappaIndex());
otbAppLogINFO("Overall accuracy index: " << confMatMeasurements->GetOverallAccuracy());
} // END Execute()
ConfusionMatrixType m_MatrixLOG;
OutputConfusionMatrixType m_Matrix;
Int32ImageType* m_Input;
Int32ImageType::Pointer m_Reference;
RAMDrivenAdaptativeStreamingManagerType::Pointer m_StreamingManager;
RasterizeFilterType::Pointer m_RasterizeReference;
};
}
}
OTB_APPLICATION_EXPORT(otb::Wrapper::ComputeConfusionMatrix)
|