File: otbComputeImagesStatistics.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (298 lines) | stat: -rw-r--r-- 11,508 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbStatisticsXMLFileWriter.h"
#include "otbStreamingStatisticsVectorImageFilter.h"
#include <sstream>

namespace otb
{
namespace Wrapper
{

class ComputeImagesStatistics : public Application
{
public:
  /** Standard class typedefs. */
  typedef ComputeImagesStatistics       Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(ComputeImagesStatistics, otb::Application);

private:
  void DoInit() override
  {
    SetName("ComputeImagesStatistics");
    SetDescription(
        "Computes global mean and standard deviation for each band "
        "from a set of images and optionally saves the results in an XML file.");
    SetDocLongDescription(
        "This application computes a global mean and standard deviation "
        "for each band of a set of images and optionally saves the results in an XML file."
        " The output XML is intended to be used as an input "
        "for the TrainImagesClassifier application to normalize samples before learning. "
        "You can also normalize the image with the XML file in the ImageClassifier application.");

    SetDocLimitations(
        "Each image of the set must contain the same bands as the others"
        " (i.e. same types, in the same order).");
    SetDocAuthors("OTB-Team");
    SetDocSeeAlso("Documentation of the TrainImagesClassifier and ImageClassifier application.");

    AddDocTag(Tags::Learning);
    AddDocTag(Tags::Analysis);

    AddParameter(ParameterType_InputImageList, "il", "Input images");
    SetParameterDescription("il", "List of input image filenames.");

    AddParameter(ParameterType_Float, "bv", "Background Value");
    SetParameterDescription("bv", "Background value to ignore in computation of statistics.");
    MandatoryOff("bv");

    AddParameter(ParameterType_Group, "out", "Optional outputs");

    AddParameter(ParameterType_OutputFilename, "out.xml", "Output XML file");
    SetParameterDescription("out.xml", "XML filename where the statistics are saved for future reuse.");
    MandatoryOff("out.xml");

    AddParameter(ParameterType_String, "out.mean", "Mean pixel Value");
    SetParameterDescription("out.mean", "Mean pixel value.");
    SetParameterRole("out.mean", Role_Output);
    MandatoryOff("out.mean");

    AddParameter(ParameterType_String, "out.min", "Min pixel Value");
    SetParameterDescription("out.min", "Minimum pixel value.");
    SetParameterRole("out.min", Role_Output);
    MandatoryOff("out.min");

    AddParameter(ParameterType_String, "out.max", "Max pixel Value");
    SetParameterDescription("out.max", "Maximum pixel value.");
    SetParameterRole("out.max", Role_Output);
    MandatoryOff("out.max");

    AddParameter(ParameterType_String, "out.std", "Standard deviation of pixel Value");
    SetParameterDescription("out.std", "Standard deviation of pixel value.");
    SetParameterRole("out.std", Role_Output);
    MandatoryOff("out.std");

    AddRAMParameter();

    // Doc example parameter settings
    SetDocExampleParameterValue("il", "QB_1_ortho.tif");
    SetDocExampleParameterValue("out.xml", "EstimateImageStatisticsQB1.xml");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
    // Nothing to do here : all parameters are independent
  }

  void DoExecute() override
  {
    // Statistics estimator
    typedef otb::StreamingStatisticsVectorImageFilter<FloatVectorImageType> StreamingStatisticsVImageFilterType;

    // Samples
    typedef double                               ValueType;
    typedef itk::VariableLengthVector<ValueType> MeasurementType;
    typedef itk::VariableSizeMatrix<ValueType>   MatrixValueType;

    unsigned int nbBands = 0;

    FloatVectorImageListType*                           imageList = GetParameterImageList("il");
    FloatVectorImageListType::InternalContainerSizeType nbImages  = imageList->Size();

    // Initialization, all image have same size and number of band/component
    FloatVectorImageType* firstImage = imageList->GetNthElement(0);
    nbBands                          = firstImage->GetNumberOfComponentsPerPixel();

    // Build a Measurement Vector of mean
    MatrixValueType mean(nbBands, static_cast<unsigned int>(nbImages));
    mean.Fill(itk::NumericTraits<MatrixValueType::ValueType>::Zero);

    // Build a Measurement Vector of min
    MatrixValueType min(nbBands, static_cast<unsigned int>(nbImages));
    min.Fill(itk::NumericTraits<MatrixValueType::ValueType>::max());

    // Build a Measurement Vector of max
    MatrixValueType max(nbBands, static_cast<unsigned int>(nbImages));
    max.Fill(itk::NumericTraits<MatrixValueType::ValueType>::min());

    // Build a Measurement Matrix of variance
    MatrixValueType variance(nbBands, static_cast<unsigned int>(nbImages));
    variance.Fill(itk::NumericTraits<MatrixValueType::ValueType>::Zero);

    // Build a Measurement Matrix of nbSamples
    MatrixValueType nbSamples(nbBands, static_cast<unsigned int>(nbImages));
    nbSamples.Fill(itk::NumericTraits<MatrixValueType::ValueType>::Zero);

    // Iterate over all input images
    for (unsigned int imageId = 0; imageId < nbImages; ++imageId)
    {
      FloatVectorImageType* image = imageList->GetNthElement(imageId);
      if (nbBands != image->GetNumberOfComponentsPerPixel())
      {
        itkExceptionMacro(<< "The image #" << imageId + 1 << " has " << image->GetNumberOfComponentsPerPixel() << " bands, while the image #1 has " << nbBands);
      }

      // Compute Statistics of each VectorImage
      StreamingStatisticsVImageFilterType::Pointer statsEstimator = StreamingStatisticsVImageFilterType::New();
      std::ostringstream                           processName;
      processName << "Processing Image (" << imageId + 1 << "/" << imageList->Size() << ")";
      AddProcess(statsEstimator->GetStreamer(), processName.str());
      statsEstimator->SetInput(image);
      statsEstimator->GetStreamer()->SetAutomaticAdaptativeStreaming(GetParameterInt("ram"));

      if (HasValue("bv"))
      {
        statsEstimator->SetIgnoreUserDefinedValue(true);
        statsEstimator->SetUserIgnoredValue(GetParameterFloat("bv"));
      }
      statsEstimator->Update();

      MeasurementType nbRelevantPixels = statsEstimator->GetNbRelevantPixels();
      MeasurementType meanPerBand      = statsEstimator->GetMean();
      MeasurementType minPerBand       = statsEstimator->GetMinimum();
      MeasurementType maxPerBand       = statsEstimator->GetMaximum();

      for (unsigned int itBand = 0; itBand < nbBands; itBand++)
      {
        mean(itBand, imageId)      = meanPerBand[itBand];
        min(itBand, imageId)       = minPerBand[itBand];
        max(itBand, imageId)       = maxPerBand[itBand];
        variance(itBand, imageId)  = (statsEstimator->GetCovariance())(itBand, itBand);
        nbSamples(itBand, imageId) = nbRelevantPixels[itBand];
      }
    }

    // Compute total mean and pooled variation for each band of the image list
    MeasurementType totalSamplesPerBand;
    totalSamplesPerBand.SetSize(nbBands);
    totalSamplesPerBand.Fill(itk::NumericTraits<MeasurementType::ValueType>::Zero);

    MeasurementType totalMeanPerBand;
    totalMeanPerBand.SetSize(nbBands);
    totalMeanPerBand.Fill(itk::NumericTraits<MeasurementType::ValueType>::Zero);

    MeasurementType totalMinPerBand;
    totalMinPerBand.SetSize(nbBands);
    totalMinPerBand.Fill(itk::NumericTraits<MeasurementType::ValueType>::max());

    MeasurementType totalMaxPerBand;
    totalMaxPerBand.SetSize(nbBands);
    totalMaxPerBand.Fill(itk::NumericTraits<MeasurementType::ValueType>::min());

    MeasurementType totalVariancePerBand;
    totalVariancePerBand.SetSize(nbBands);
    totalVariancePerBand.Fill(itk::NumericTraits<MeasurementType::ValueType>::Zero);

    for (unsigned int imageId = 0; imageId < nbImages; ++imageId)
    {
      for (unsigned int itBand = 0; itBand < nbBands; itBand++)
      {
        MeasurementType::ValueType nbSample = nbSamples(itBand, imageId);
        totalSamplesPerBand[itBand] += nbSample;
        totalMeanPerBand[itBand] += mean(itBand, imageId) * nbSample;
        totalMinPerBand[itBand] = std::min(totalMinPerBand[itBand], min(itBand, imageId));
        totalMaxPerBand[itBand] = std::max(totalMaxPerBand[itBand], max(itBand, imageId));
        totalVariancePerBand[itBand] += variance(itBand, imageId) * (nbSample - 1);
      }
    }

    // Check 0 division
    for (unsigned int itBand = 0; itBand < nbBands; itBand++)
    {
      MeasurementType::ValueType nbSample = totalSamplesPerBand[itBand];

      if (nbSample > nbImages)
      {
        totalVariancePerBand[itBand] /= (nbSample - nbImages);
      }
      else
      {
        totalVariancePerBand[itBand] = itk::NumericTraits<ValueType>::Zero;
      }

      if (nbSample != 0)
      {
        totalMeanPerBand[itBand] /= nbSample;
      }
      else
      {
        totalMeanPerBand[itBand] = itk::NumericTraits<ValueType>::Zero;
        totalMinPerBand[itBand] = itk::NumericTraits<ValueType>::Zero;
        totalMaxPerBand[itBand] = itk::NumericTraits<ValueType>::Zero;
      }
    }

    MeasurementType stddev;
    stddev.SetSize(nbBands);
    stddev.Fill(itk::NumericTraits<MeasurementType::ValueType>::Zero);
    for (unsigned int i = 0; i < totalVariancePerBand.GetSize(); ++i)
    {
      stddev[i] = std::sqrt(totalVariancePerBand[i]);
    }

    // Display the pixel value
    std::ostringstream oss_mean, oss_min, oss_max, oss_std;
    oss_mean << totalMeanPerBand;
    oss_min << totalMinPerBand;
    oss_max << totalMaxPerBand;
    oss_std << stddev;
    SetParameterString("out.mean", oss_mean.str());
    SetParameterString("out.min", oss_min.str());
    SetParameterString("out.max", oss_max.str());
    SetParameterString("out.std", oss_std.str());

    if (HasValue("out.xml"))
    {
      // Write the Statistics via the statistic writer
      typedef otb::StatisticsXMLFileWriter<MeasurementType> StatisticsWriter;
      StatisticsWriter::Pointer                             writer = StatisticsWriter::New();
      writer->SetFileName(GetParameterString("out.xml"));
      writer->AddInput("mean", totalMeanPerBand);
      writer->AddInput("min", totalMinPerBand);
      writer->AddInput("max", totalMaxPerBand);
      writer->AddInput("stddev", stddev);
      writer->Update();
    }
    else
    {
      otbAppLogINFO("Mean: " << mean << std::endl);
      otbAppLogINFO("Standard Deviation: " << stddev << std::endl);
    }
  }

  itk::LightObject::Pointer m_FilterRef;
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::ComputeImagesStatistics)