1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"
#include "otbChangeLabelImageFilter.h"
#include "otbStandardWriterWatcher.h"
#include "otbStatisticsXMLFileReader.h"
#include "otbShiftScaleVectorImageFilter.h"
#include "otbImageClassificationFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageToVectorImageCastFilter.h"
#include "otbMachineLearningModelFactory.h"
namespace otb
{
namespace Wrapper
{
class ImageClassifier : public Application
{
public:
/** Standard class typedefs. */
typedef ImageClassifier Self;
typedef Application Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Standard macro */
itkNewMacro(Self);
itkTypeMacro(ImageClassifier, otb::Application);
/** Filters typedef */
// typedef UInt16ImageType OutputImageType;
typedef Int32ImageType OutputImageType;
typedef UInt8ImageType MaskImageType;
typedef itk::VariableLengthVector<FloatVectorImageType::InternalPixelType> MeasurementType;
typedef otb::StatisticsXMLFileReader<MeasurementType> StatisticsReader;
typedef otb::ShiftScaleVectorImageFilter<FloatVectorImageType, FloatVectorImageType> RescalerType;
typedef otb::ImageClassificationFilter<FloatVectorImageType, OutputImageType, MaskImageType> ClassificationFilterType;
typedef ClassificationFilterType::Pointer ClassificationFilterPointerType;
typedef ClassificationFilterType::ModelType ModelType;
typedef ModelType::Pointer ModelPointerType;
typedef ClassificationFilterType::ValueType ValueType;
typedef ClassificationFilterType::LabelType LabelType;
typedef otb::MachineLearningModelFactory<ValueType, LabelType> MachineLearningModelFactoryType;
typedef ClassificationFilterType::ConfidenceImageType ConfidenceImageType;
typedef ClassificationFilterType::ProbaImageType ProbaImageType;
protected:
~ImageClassifier() override
{
MachineLearningModelFactoryType::CleanFactories();
}
private:
void DoInit() override
{
SetName("ImageClassifier");
SetDescription("Performs a classification of the input image according to a model file.");
// Documentation
SetDocLongDescription(
"This application performs an image classification based on a model file produced by the TrainImagesClassifier application. Pixels of the output image "
"will contain the class labels decided by the classifier (maximal class label = 65535). The input pixels can be optionally centered and reduced "
"according to the statistics file produced by the ComputeImagesStatistics application. An optional input mask can be provided, in which case only "
"input image pixels whose corresponding mask value is greater than 0 will be classified. By default, the remaining pixels will be given the label 0 in "
"the output image.");
SetDocLimitations(
"The input image must have the same type, order and number of bands as the images used to produce the statistics file and the SVM model file. If a "
"statistics file was used during training by the TrainImagesClassifier, it is mandatory to use the same statistics file for classification. If an "
"input mask is used, its size must match the input image size.");
SetDocAuthors("OTB-Team");
SetDocSeeAlso("TrainImagesClassifier, ComputeImagesStatistics");
AddDocTag(Tags::Learning);
AddParameter(ParameterType_InputImage, "in", "Input Image");
SetParameterDescription("in", "The input image to classify.");
AddParameter(ParameterType_InputImage, "mask", "Input Mask");
SetParameterDescription("mask", "The mask restricts the classification of the input image to the area where mask pixel values are greater than 0.");
MandatoryOff("mask");
AddParameter(ParameterType_InputFilename, "model", "Model file");
SetParameterDescription("model", "A model file (produced by TrainImagesClassifier application, maximal class label = 65535).");
AddParameter(ParameterType_InputFilename, "imstat", "Statistics file");
SetParameterDescription("imstat",
"An XML file containing mean and standard deviation to center and reduce samples before classification (produced by "
"ComputeImagesStatistics application).");
MandatoryOff("imstat");
AddParameter(ParameterType_Int, "nodatalabel", "Label mask value");
SetParameterDescription("nodatalabel",
"By default, "
"hidden pixels will have the assigned label 0 in the output image. "
"It is possible to define the label mask by another value, "
"but be careful not to use a label from another class (max. 65535).");
SetDefaultParameterInt("nodatalabel", 0);
MandatoryOff("nodatalabel");
AddParameter(ParameterType_OutputImage, "out", "Output Image");
SetParameterDescription("out", "Output image containing class labels");
SetDefaultOutputPixelType("out", ImagePixelType_uint8);
AddParameter(ParameterType_OutputImage, "confmap", "Confidence map");
SetParameterDescription("confmap",
"Confidence map of the produced classification. The confidence index depends on the model: \n\n"
"* LibSVM: difference between the two highest probabilities (needs a model with probability estimates, so that classes "
"probabilities can be computed for each sample)\n"
"* Boost: sum of votes\n"
"* DecisionTree: (not supported)\n"
"* KNearestNeighbors: number of neighbors with the same label\n"
"* NeuralNetwork: difference between the two highest responses\n"
"* NormalBayes: (not supported)\n"
"* RandomForest: Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 "
"majority classes) is not available for now.\n"
"* SVM: distance to margin (only works for 2-class models)\n");
SetDefaultOutputPixelType("confmap", ImagePixelType_double);
MandatoryOff("confmap");
AddParameter(ParameterType_OutputImage, "probamap", "Probability map");
SetParameterDescription("probamap",
"Probability of each class for each pixel. This is an image having a number of bands equal to the number of classes in the model. "
"This is only implemented for the Shark Random Forest classifier at this point.");
SetDefaultOutputPixelType("probamap", ImagePixelType_uint16);
MandatoryOff("probamap");
AddRAMParameter();
SetMultiWriting(true);
AddParameter(ParameterType_Int, "nbclasses", "Number of classes in the model");
SetDefaultParameterInt("nbclasses", 20);
SetParameterDescription("nbclasses", "The number of classes is required by the output of the probability map in order to set the number of output bands.");
// Doc example parameter settings
SetDocExampleParameterValue("in", "QB_1_ortho.tif");
SetDocExampleParameterValue("imstat", "EstimateImageStatisticsQB1.xml");
SetDocExampleParameterValue("model", "clsvmModelQB1.svm");
SetDocExampleParameterValue("out", "clLabeledImageQB1.tif");
SetOfficialDocLink();
}
void DoUpdateParameters() override
{
// Nothing to do here : all parameters are independent
}
void DoExecute() override
{
// Load input image
FloatVectorImageType::Pointer inImage = GetParameterImage("in");
inImage->UpdateOutputInformation();
// Load svm model
otbAppLogINFO("Loading model");
m_Model = MachineLearningModelFactoryType::CreateMachineLearningModel(GetParameterString("model"), MachineLearningModelFactoryType::ReadMode);
if (m_Model.IsNull())
{
otbAppLogFATAL(<< "Error when loading model " << GetParameterString("model") << " : unsupported model type");
}
m_Model->Load(GetParameterString("model"));
otbAppLogINFO("Model loaded");
// Normalize input image (optional)
StatisticsReader::Pointer statisticsReader = StatisticsReader::New();
MeasurementType meanMeasurementVector;
MeasurementType stddevMeasurementVector;
m_Rescaler = RescalerType::New();
// Classify
m_ClassificationFilter = ClassificationFilterType::New();
m_ClassificationFilter->SetModel(m_Model);
m_ClassificationFilter->SetDefaultLabel(GetParameterInt("nodatalabel"));
// Normalize input image if asked
if (IsParameterEnabled("imstat"))
{
otbAppLogINFO("Input image normalization activated.");
// Load input image statistics
statisticsReader->SetFileName(GetParameterString("imstat"));
meanMeasurementVector = statisticsReader->GetStatisticVectorByName("mean");
stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
otbAppLogINFO("mean used: " << meanMeasurementVector);
otbAppLogINFO("standard deviation used: " << stddevMeasurementVector);
// Rescale vector image
m_Rescaler->SetScale(stddevMeasurementVector);
m_Rescaler->SetShift(meanMeasurementVector);
m_Rescaler->SetInput(inImage);
m_ClassificationFilter->SetInput(m_Rescaler->GetOutput());
}
else
{
otbAppLogINFO("Input image normalization deactivated.");
m_ClassificationFilter->SetInput(inImage);
}
if (IsParameterEnabled("mask"))
{
otbAppLogINFO("Using input mask");
// Load mask image and cast into LabeledImageType
MaskImageType::Pointer inMask = GetParameterUInt8Image("mask");
m_ClassificationFilter->SetInputMask(inMask);
}
SetParameterOutputImage<OutputImageType>("out", m_ClassificationFilter->GetOutput());
// output confidence map
if (IsParameterEnabled("confmap") && HasValue("confmap"))
{
m_ClassificationFilter->SetUseConfidenceMap(true);
if (m_Model->HasConfidenceIndex())
{
SetParameterOutputImage<ConfidenceImageType>("confmap", m_ClassificationFilter->GetOutputConfidence());
}
else
{
otbAppLogWARNING("Confidence map requested but the classifier doesn't support it!");
this->DisableParameter("confmap");
}
}
if (IsParameterEnabled("probamap") && HasValue("probamap"))
{
m_ClassificationFilter->SetUseProbaMap(true);
if (m_Model->HasProbaIndex())
{
m_ClassificationFilter->SetNumberOfClasses(GetParameterInt("nbclasses"));
SetParameterOutputImage<ProbaImageType>("probamap", m_ClassificationFilter->GetOutputProba());
}
else
{
otbAppLogWARNING("Probability map requested but the classifier doesn't support it!");
this->DisableParameter("probamap");
}
}
}
ClassificationFilterType::Pointer m_ClassificationFilter;
ModelPointerType m_Model;
RescalerType::Pointer m_Rescaler;
};
}
}
OTB_APPLICATION_EXPORT(otb::Wrapper::ImageClassifier)
|