File: otbImageClassifier.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (276 lines) | stat: -rw-r--r-- 12,177 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbChangeLabelImageFilter.h"
#include "otbStandardWriterWatcher.h"
#include "otbStatisticsXMLFileReader.h"
#include "otbShiftScaleVectorImageFilter.h"
#include "otbImageClassificationFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageToVectorImageCastFilter.h"
#include "otbMachineLearningModelFactory.h"

namespace otb
{
namespace Wrapper
{

class ImageClassifier : public Application
{
public:
  /** Standard class typedefs. */
  typedef ImageClassifier               Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(ImageClassifier, otb::Application);

  /** Filters typedef */
  // typedef UInt16ImageType                                                                    OutputImageType;
  typedef Int32ImageType                                                     OutputImageType;
  typedef UInt8ImageType                                                     MaskImageType;
  typedef itk::VariableLengthVector<FloatVectorImageType::InternalPixelType> MeasurementType;
  typedef otb::StatisticsXMLFileReader<MeasurementType>                      StatisticsReader;
  typedef otb::ShiftScaleVectorImageFilter<FloatVectorImageType, FloatVectorImageType> RescalerType;
  typedef otb::ImageClassificationFilter<FloatVectorImageType, OutputImageType, MaskImageType> ClassificationFilterType;
  typedef ClassificationFilterType::Pointer   ClassificationFilterPointerType;
  typedef ClassificationFilterType::ModelType ModelType;
  typedef ModelType::Pointer                  ModelPointerType;
  typedef ClassificationFilterType::ValueType ValueType;
  typedef ClassificationFilterType::LabelType LabelType;
  typedef otb::MachineLearningModelFactory<ValueType, LabelType> MachineLearningModelFactoryType;
  typedef ClassificationFilterType::ConfidenceImageType ConfidenceImageType;
  typedef ClassificationFilterType::ProbaImageType      ProbaImageType;

protected:
  ~ImageClassifier() override
  {
    MachineLearningModelFactoryType::CleanFactories();
  }

private:
  void DoInit() override
  {
    SetName("ImageClassifier");
    SetDescription("Performs a classification of the input image according to a model file.");

    // Documentation
    SetDocLongDescription(
        "This application performs an image classification based on a model file produced by the TrainImagesClassifier application. Pixels of the output image "
        "will contain the class labels decided by the classifier (maximal class label = 65535). The input pixels can be optionally centered and reduced "
        "according to the statistics file produced by the ComputeImagesStatistics application. An optional input mask can be provided, in which case only "
        "input image pixels whose corresponding mask value is greater than 0 will be classified. By default, the remaining pixels will be given the label 0 in "
        "the output image.");

    SetDocLimitations(
        "The input image must have the same type, order and number of bands as the images used to produce the statistics file and the SVM model file. If a "
        "statistics file was used during training by the TrainImagesClassifier, it is mandatory to use the same statistics file for classification. If an "
        "input mask is used, its size must match the input image size.");
    SetDocAuthors("OTB-Team");
    SetDocSeeAlso("TrainImagesClassifier, ComputeImagesStatistics");

    AddDocTag(Tags::Learning);

    AddParameter(ParameterType_InputImage, "in", "Input Image");
    SetParameterDescription("in", "The input image to classify.");

    AddParameter(ParameterType_InputImage, "mask", "Input Mask");
    SetParameterDescription("mask", "The mask restricts the classification of the input image to the area where mask pixel values are greater than 0.");
    MandatoryOff("mask");

    AddParameter(ParameterType_InputFilename, "model", "Model file");
    SetParameterDescription("model", "A model file (produced by TrainImagesClassifier application, maximal class label = 65535).");

    AddParameter(ParameterType_InputFilename, "imstat", "Statistics file");
    SetParameterDescription("imstat",
                            "An XML file containing mean and standard deviation to center and reduce samples before classification (produced by "
                            "ComputeImagesStatistics application).");
    MandatoryOff("imstat");

    AddParameter(ParameterType_Int, "nodatalabel", "Label mask value");
    SetParameterDescription("nodatalabel",
                            "By default, "
                            "hidden pixels will have the assigned label 0 in the output image. "
                            "It is possible to define the label mask by another value, "
                            "but be careful not to use a label from another class (max. 65535).");

    SetDefaultParameterInt("nodatalabel", 0);
    MandatoryOff("nodatalabel");


    AddParameter(ParameterType_OutputImage, "out", "Output Image");
    SetParameterDescription("out", "Output image containing class labels");
    SetDefaultOutputPixelType("out", ImagePixelType_uint8);

    AddParameter(ParameterType_OutputImage, "confmap", "Confidence map");
    SetParameterDescription("confmap",
                            "Confidence map of the produced classification. The confidence index depends on the model: \n\n"
                            "* LibSVM: difference between the two highest probabilities (needs a model with probability estimates, so that classes "
                            "probabilities can be computed for each sample)\n"
                            "* Boost: sum of votes\n"
                            "* DecisionTree: (not supported)\n"
                            "* KNearestNeighbors: number of neighbors with the same label\n"
                            "* NeuralNetwork: difference between the two highest responses\n"
                            "* NormalBayes: (not supported)\n"
                            "* RandomForest: Confidence (proportion of votes for the majority class). Margin (normalized difference of the votes of the 2 "
                            "majority classes) is not available for now.\n"
                            "* SVM: distance to margin (only works for 2-class models)\n");
    SetDefaultOutputPixelType("confmap", ImagePixelType_double);
    MandatoryOff("confmap");

    AddParameter(ParameterType_OutputImage, "probamap", "Probability map");
    SetParameterDescription("probamap",
                            "Probability of each class for each pixel. This is an image having a number of bands equal to the number of classes in the model. "
                            "This is only implemented for the Shark Random Forest classifier at this point.");
    SetDefaultOutputPixelType("probamap", ImagePixelType_uint16);
    MandatoryOff("probamap");

    AddRAMParameter();

    SetMultiWriting(true);

    AddParameter(ParameterType_Int, "nbclasses", "Number of classes in the model");
    SetDefaultParameterInt("nbclasses", 20);
    SetParameterDescription("nbclasses", "The number of classes is required by the output of the probability map in order to set the number of output bands.");

    // Doc example parameter settings
    SetDocExampleParameterValue("in", "QB_1_ortho.tif");
    SetDocExampleParameterValue("imstat", "EstimateImageStatisticsQB1.xml");
    SetDocExampleParameterValue("model", "clsvmModelQB1.svm");
    SetDocExampleParameterValue("out", "clLabeledImageQB1.tif");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
    // Nothing to do here : all parameters are independent
  }

  void DoExecute() override
  {
    // Load input image
    FloatVectorImageType::Pointer inImage = GetParameterImage("in");
    inImage->UpdateOutputInformation();

    // Load svm model
    otbAppLogINFO("Loading model");
    m_Model = MachineLearningModelFactoryType::CreateMachineLearningModel(GetParameterString("model"), MachineLearningModelFactoryType::ReadMode);

    if (m_Model.IsNull())
    {
      otbAppLogFATAL(<< "Error when loading model " << GetParameterString("model") << " : unsupported model type");
    }

    m_Model->Load(GetParameterString("model"));
    otbAppLogINFO("Model loaded");

    // Normalize input image (optional)
    StatisticsReader::Pointer statisticsReader = StatisticsReader::New();
    MeasurementType           meanMeasurementVector;
    MeasurementType           stddevMeasurementVector;
    m_Rescaler = RescalerType::New();

    // Classify
    m_ClassificationFilter = ClassificationFilterType::New();
    m_ClassificationFilter->SetModel(m_Model);

    m_ClassificationFilter->SetDefaultLabel(GetParameterInt("nodatalabel"));

    // Normalize input image if asked
    if (IsParameterEnabled("imstat"))
    {
      otbAppLogINFO("Input image normalization activated.");
      // Load input image statistics
      statisticsReader->SetFileName(GetParameterString("imstat"));
      meanMeasurementVector   = statisticsReader->GetStatisticVectorByName("mean");
      stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
      otbAppLogINFO("mean used: " << meanMeasurementVector);
      otbAppLogINFO("standard deviation used: " << stddevMeasurementVector);
      // Rescale vector image
      m_Rescaler->SetScale(stddevMeasurementVector);
      m_Rescaler->SetShift(meanMeasurementVector);
      m_Rescaler->SetInput(inImage);

      m_ClassificationFilter->SetInput(m_Rescaler->GetOutput());
    }
    else
    {
      otbAppLogINFO("Input image normalization deactivated.");
      m_ClassificationFilter->SetInput(inImage);
    }


    if (IsParameterEnabled("mask"))
    {
      otbAppLogINFO("Using input mask");
      // Load mask image and cast into LabeledImageType
      MaskImageType::Pointer inMask = GetParameterUInt8Image("mask");

      m_ClassificationFilter->SetInputMask(inMask);
    }
    SetParameterOutputImage<OutputImageType>("out", m_ClassificationFilter->GetOutput());


    // output confidence map
    if (IsParameterEnabled("confmap") && HasValue("confmap"))
    {
      m_ClassificationFilter->SetUseConfidenceMap(true);
      if (m_Model->HasConfidenceIndex())
      {
        SetParameterOutputImage<ConfidenceImageType>("confmap", m_ClassificationFilter->GetOutputConfidence());
      }
      else
      {
        otbAppLogWARNING("Confidence map requested but the classifier doesn't support it!");
        this->DisableParameter("confmap");
      }
    }
    if (IsParameterEnabled("probamap") && HasValue("probamap"))
    {
      m_ClassificationFilter->SetUseProbaMap(true);
      if (m_Model->HasProbaIndex())
      {
        m_ClassificationFilter->SetNumberOfClasses(GetParameterInt("nbclasses"));
        SetParameterOutputImage<ProbaImageType>("probamap", m_ClassificationFilter->GetOutputProba());
      }
      else
      {
        otbAppLogWARNING("Probability map requested but the classifier doesn't support it!");
        this->DisableParameter("probamap");
      }
    }
  }

  ClassificationFilterType::Pointer m_ClassificationFilter;
  ModelPointerType                  m_Model;
  RescalerType::Pointer             m_Rescaler;
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::ImageClassifier)