File: otbSOMClassification.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (402 lines) | stat: -rw-r--r-- 13,693 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbSOMMap.h"
#include "otbSOM.h"
#include "otbSOMImageClassificationFilter.h"
#include "otbRAMDrivenAdaptativeStreamingManager.h"
#include "itkImageRegionConstIterator.h"
#include "itkImageRandomNonRepeatingConstIteratorWithIndex.h"

#include <ctime>

namespace otb
{
namespace Wrapper
{

class SOMClassification : public Application
{
public:
  /** Standard class typedefs. */
  typedef SOMClassification             Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(SOMClassification, otb::Application);

  /** Filters typedef */
  typedef UInt16ImageType LabeledImageType;

  typedef itk::VariableLengthVector<double>                    SampleType;
  typedef itk::Statistics::EuclideanDistanceMetric<SampleType> DistanceType;
  typedef otb::SOMMap<SampleType, DistanceType, 2> SOMMapType;
  typedef itk::Statistics::ListSample<SampleType> ListSampleType;
  typedef otb::SOM<ListSampleType, SOMMapType> EstimatorType;

  typedef RAMDrivenAdaptativeStreamingManager<FloatVectorImageType> RAMDrivenAdaptativeStreamingManagerType;

  typedef FloatVectorImageType::RegionType RegionType;

  typedef itk::ImageRegionConstIterator<FloatVectorImageType> IteratorType;
  typedef itk::ImageRegionConstIterator<LabeledImageType>     LabeledIteratorType;
  typedef itk::ImageRegionConstIterator<SOMMapType>           SOMIteratorType;

  typedef otb::SOMImageClassificationFilter<FloatVectorImageType, LabeledImageType, SOMMapType> ClassificationFilterType;


private:
  SOMClassification()
  {
    m_UseMask    = false;
    m_Classifier = ClassificationFilterType::New();
  }

  void DoInit() override
  {
    SetName("SOMClassification");
    SetDescription("SOM image classification.");

    // Documentation
    SetDocLongDescription("Unsupervised Self Organizing Map image classification.");
    SetDocLimitations("None");
    SetDocAuthors("OTB-Team");
    SetDocSeeAlso(" ");

    AddDocTag(Tags::Learning);
    AddDocTag(Tags::Segmentation);

    AddParameter(ParameterType_InputImage, "in", "InputImage");
    SetParameterDescription("in", "Input image to classify.");

    AddParameter(ParameterType_OutputImage, "out", "OutputImage");
    SetParameterDescription("out", "Output classified image (each pixel contains the index of its corresponding vector in the SOM).");
    SetDefaultOutputPixelType("out", ImagePixelType_uint8);

    AddParameter(ParameterType_InputImage, "vm", "ValidityMask");
    SetParameterDescription("vm", "Validity mask (only pixels corresponding to a mask value greater than 0 will be used for learning)");
    MandatoryOff("vm");

    AddParameter(ParameterType_Float, "tp", "TrainingProbability");
    SetParameterDescription("tp", "Probability for a sample to be selected in the training set");
    MandatoryOff("tp");

    AddParameter(ParameterType_Int, "ts", "TrainingSetSize");
    SetParameterDescription("ts", "Maximum training set size (in pixels)");
    MandatoryOff("ts");

    AddParameter(ParameterType_OutputImage, "som", "SOM Map");
    SetParameterDescription("som", "Output image containing the Self-Organizing Map");
    MandatoryOff("som");

    AddParameter(ParameterType_Int, "sx", "SizeX");
    SetParameterDescription("sx", "X size of the SOM map");
    MandatoryOff("sx");

    AddParameter(ParameterType_Int, "sy", "SizeY");
    SetParameterDescription("sy", "Y size of the SOM map");
    MandatoryOff("sy");

    AddParameter(ParameterType_Int, "nx", "NeighborhoodX");
    SetParameterDescription("nx", "X size of the initial neighborhood in the SOM map");
    MandatoryOff("nx");

    AddParameter(ParameterType_Int, "ny", "NeighborhoodY");
    SetParameterDescription("ny", "Y size of the initial neighborhood in the SOM map");
    MandatoryOff("nx");

    AddParameter(ParameterType_Int, "ni", "NumberIteration");
    SetParameterDescription("ni", "Number of iterations for SOM learning");
    MandatoryOff("ni");

    AddParameter(ParameterType_Float, "bi", "BetaInit");
    SetParameterDescription("bi", "Initial learning coefficient");
    MandatoryOff("bi");

    AddParameter(ParameterType_Float, "bf", "BetaFinal");
    SetParameterDescription("bf", "Final learning coefficient");
    MandatoryOff("bf");

    AddParameter(ParameterType_Float, "iv", "InitialValue");
    SetParameterDescription("iv", "Maximum initial neuron weight");
    MandatoryOff("iv");

    AddRANDParameter();

    AddRAMParameter();
    // TODO : replace StreamingLines by RAM param ?

    // Default parameters
    SetDefaultParameterFloat("tp", 1.0);
    SetDefaultParameterInt("sx", 32);
    SetDefaultParameterInt("sy", 32);
    SetDefaultParameterInt("nx", 10);
    SetDefaultParameterInt("ny", 10);
    SetDefaultParameterInt("ni", 5);
    SetDefaultParameterFloat("bi", 1.0);
    SetDefaultParameterFloat("bf", 0.1);
    SetDefaultParameterFloat("iv", 0.0);

    // Doc example parameter settings
    SetDocExampleParameterValue("in", "QB_1_ortho.tif");
    SetDocExampleParameterValue("out", "SOMClassification.tif");
    SetDocExampleParameterValue("tp", "1.0");
    SetDocExampleParameterValue("ts", "16384");
    SetDocExampleParameterValue("sx", "32");
    SetDocExampleParameterValue("sy", "32");
    SetDocExampleParameterValue("nx", "10");
    SetDocExampleParameterValue("ny", "10");
    SetDocExampleParameterValue("ni", "5");
    SetDocExampleParameterValue("bi", "1.0");
    SetDocExampleParameterValue("bf", "0.1");
    SetDocExampleParameterValue("iv", "0");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
  }

  void DoExecute() override
  {
    // initiating random number generation
    itk::Statistics::MersenneTwisterRandomVariateGenerator::Pointer randomGen = itk::Statistics::MersenneTwisterRandomVariateGenerator::GetInstance();

    FloatVectorImageType::Pointer input = GetParameterImage("in");
    LabeledImageType::Pointer     mask;
    m_UseMask = false;
    if (HasValue("vm"))
    {
      mask = GetParameterUInt16Image("vm");
      if (input->GetLargestPossibleRegion() != mask->GetLargestPossibleRegion())
      {
        otbAppLogFATAL("Mask image and input image have different sizes.");
      }
      m_UseMask = true;
    }

    /*******************************************/
    /*           Sampling data                 */
    /*******************************************/
    otbAppLogINFO("-- SAMPLING DATA --");

    RegionType largestRegion = input->GetLargestPossibleRegion();

    // Setting up local streaming capabilities

    RAMDrivenAdaptativeStreamingManagerType::Pointer streamingManager = RAMDrivenAdaptativeStreamingManagerType::New();
    int                                              availableRAM     = GetParameterInt("ram");
    streamingManager->SetAvailableRAMInMB(availableRAM);
    float bias = 2.0; // empiric value;
    streamingManager->SetBias(bias);

    streamingManager->PrepareStreaming(input, largestRegion);

    unsigned long numberOfStreamDivisions = streamingManager->GetNumberOfSplits();


    otbAppLogINFO("The images will be streamed into " << numberOfStreamDivisions << " parts.");

    // Training sample lists
    ListSampleType::Pointer sampleList = ListSampleType::New();
    sampleList->SetMeasurementVectorSize(input->GetNumberOfComponentsPerPixel());

    const double trainingProb = static_cast<double>(GetParameterFloat("tp"));
    unsigned int nbsamples;
    if (HasValue("ts"))
    {
      nbsamples = GetParameterInt("ts");
    }
    else
    {
      nbsamples = largestRegion.GetNumberOfPixels();
    }

    // Sample dimension and max dimension
    unsigned int sampleSize   = input->GetNumberOfComponentsPerPixel();
    unsigned int totalSamples = 0;
    otbAppLogINFO("The following sample size will be used: " << sampleSize);

    // local streaming variables
    unsigned int piece = 0;
    RegionType   streamingRegion;

    // create a random permutation to explore
    itk::RandomPermutation randPerm(numberOfStreamDivisions);
    unsigned int           index = 0;

    // Randomize seed if not given
    if (!HasUserValue("rand")) {
      SetParameterInt("rand", std::time(0));
    }

    // reset seed and step once (itk::RandomPermutation may have used it)
    randomGen->SetSeed(GetParameterInt("rand"));
    randomGen->GetVariateWithClosedRange();

    // TODO : maybe change the approach: at the moment, the sampling process is able to pick a sample twice or more
    while (totalSamples < nbsamples)
    {
      unsigned int localNbSamples = 0;

      piece           = randPerm[index];
      streamingRegion = streamingManager->GetSplit(piece);
      // otbAppLogINFO("Processing region: "<<streamingRegion);

      input->SetRequestedRegion(streamingRegion);
      input->PropagateRequestedRegion();
      input->UpdateOutputData();

      IteratorType it(input, streamingRegion);
      it.GoToBegin();

      if (m_UseMask)
      {
        mask->SetRequestedRegion(streamingRegion);
        mask->PropagateRequestedRegion();
        mask->UpdateOutputData();

        LabeledIteratorType maskIt(mask, streamingRegion);
        maskIt.GoToBegin();

        // Loop on the image and the mask
        while (!it.IsAtEnd() && !maskIt.IsAtEnd() && (totalSamples < nbsamples))
        {
          // If the current pixel is labeled
          if (maskIt.Get() > 0)
          {
            if (randomGen->GetVariateWithClosedRange() < trainingProb)
            {
              SampleType newSample;
              newSample.SetSize(sampleSize);
              // build the sample
              newSample.Fill(0);
              for (unsigned int i = 0; i < sampleSize; ++i)
              {
                newSample[i] = it.Get()[i];
              }
              // Update the sample lists
              sampleList->PushBack(newSample);
              ++totalSamples;
              ++localNbSamples;
            }
          }
          ++it;
          ++maskIt;
        }
        index++;
        // we could break out of the while loop here, once the entire image has been streamed once
        if (index == numberOfStreamDivisions)
          index = 0;
      }
      else
      {
        // Loop on the image
        while (!it.IsAtEnd() && (totalSamples < nbsamples))
        {
          if (randomGen->GetVariateWithClosedRange() < trainingProb)
          {
            SampleType newSample;
            newSample.SetSize(sampleSize);
            // build the sample
            newSample.Fill(0);
            for (unsigned int i = 0; i < sampleSize; ++i)
            {
              newSample[i] = it.Get()[i];
            }
            // Update the sample lists
            sampleList->PushBack(newSample);
            ++totalSamples;
            ++localNbSamples;
          }
          ++it;
        }
        index++;
        // we could break out of the while loop here, once the entire image has been streamed once
        if (index == numberOfStreamDivisions)
          index = 0;
      }
    }

    otbAppLogINFO("The final training set contains " << totalSamples << " samples.");


    /*******************************************/
    /*           Learning                      */
    /*******************************************/
    otbAppLogINFO("-- LEARNING --");

    EstimatorType::Pointer estimator = EstimatorType::New();

    estimator->SetListSample(sampleList);
    EstimatorType::SizeType size;
    size[0] = GetParameterInt("sx");
    size[1] = GetParameterInt("sy");
    estimator->SetMapSize(size);
    EstimatorType::SizeType radius;
    radius[0] = GetParameterInt("nx");
    radius[1] = GetParameterInt("ny");
    estimator->SetNeighborhoodSizeInit(radius);
    estimator->SetNumberOfIterations(GetParameterInt("ni"));
    estimator->SetBetaInit(GetParameterFloat("bi"));
    estimator->SetBetaEnd(GetParameterFloat("bf"));
    estimator->SetMaxWeight(GetParameterFloat("iv"));

    AddProcess(estimator, "Learning");
    estimator->Update();

    m_SOMMap = estimator->GetOutput();
    if (HasValue("som"))
    {
      otbAppLogINFO("-- Using Leaning image --");
      SetParameterOutputImage<DoubleVectorImageType>("som", m_SOMMap);
    }

    /*******************************************/
    /*           Classification                */
    /*******************************************/
    otbAppLogINFO("-- CLASSIFICATION --");

    m_Classifier->SetInput(input);
    m_Classifier->SetMap(m_SOMMap);
    if (m_UseMask)
      m_Classifier->SetInputMask(mask);

    AddProcess(m_Classifier, "Classification");

    SetParameterOutputImage<LabeledImageType>("out", m_Classifier->GetOutput());
  }

  bool                              m_UseMask;
  SOMMapType::Pointer               m_SOMMap;
  ClassificationFilterType::Pointer m_Classifier;
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::SOMClassification)