File: otbTrainVectorClassifier.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (346 lines) | stat: -rw-r--r-- 12,151 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbTrainVectorBase.h"

// Validation
#include "otbConfusionMatrixCalculator.h"
#include "otbContingencyTableCalculator.h"

namespace otb
{
namespace Wrapper
{

class TrainVectorClassifier : public TrainVectorBase<float, int>
{
public:
  typedef TrainVectorClassifier Self;
  typedef TrainVectorBase<float, int> Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;
  itkNewMacro(Self)

      itkTypeMacro(Self, Superclass)

          typedef Superclass::SampleType SampleType;
  typedef Superclass::ListSampleType       ListSampleType;
  typedef Superclass::TargetListSampleType TargetListSampleType;

  // Estimate performance on validation sample
  typedef otb::ConfusionMatrixCalculator<TargetListSampleType, TargetListSampleType> ConfusionMatrixCalculatorType;
  typedef ConfusionMatrixCalculatorType::ConfusionMatrixType ConfusionMatrixType;
  typedef ConfusionMatrixCalculatorType::MapOfIndicesType    MapOfIndicesType;
  typedef ConfusionMatrixCalculatorType::ClassLabelType      ClassLabelType;

  typedef ContingencyTable<ClassLabelType> ContingencyTableType;
  typedef ContingencyTableType::Pointer    ContingencyTablePointerType;

protected:
  void DoInit() override
  {
    SetName("TrainVectorClassifier");
    SetDescription(
        "Train a classifier based on labeled geometries and a "
        "list of features to consider.");

    SetDocLongDescription(
        "This application trains a classifier based on "
        "labeled geometries and a list of features to consider for "
        "classification.\nThis application is based on LibSVM, OpenCV Machine "
        "Learning (2.3.1 and later), and Shark ML The output of this application "
        "is a text model file, whose format corresponds to the ML model type "
        "chosen. There are no image or vector data outputs created.");
    SetDocLimitations("None");
    SetDocAuthors("OTB Team");
    SetDocSeeAlso(" ");

    SetOfficialDocLink();

    Superclass::DoInit();

    // Add a new parameter to compute confusion matrix / contingency table
    this->AddParameter(ParameterType_OutputFilename, "io.confmatout", "Output confusion matrix or contingency table");
    this->SetParameterDescription("io.confmatout",
                                  "Output file containing the confusion matrix or contingency table (.csv format)."
                                  "The contingency table is output when we unsupervised algorithms is used otherwise the confusion matrix is output.");
    this->MandatoryOff("io.confmatout");
  }

  void DoUpdateParameters() override
  {
    Superclass::DoUpdateParameters();
  }

  void DoExecute() override
  {
    m_FeaturesInfo.SetClassFieldNames(GetChoiceNames("cfield"), GetSelectedItems("cfield"));

    if (m_FeaturesInfo.m_SelectedCFieldIdx.empty() && GetClassifierCategory() == Supervised)
    {
      otbAppLogFATAL(<< "No field has been selected for data labelling!");
    }

    Superclass::DoExecute();

    if (GetClassifierCategory() == Supervised)
    {
      ConfusionMatrixCalculatorType::Pointer confMatCalc = ComputeConfusionMatrix(m_PredictedList, m_ClassificationSamplesWithLabel.labeledListSample);
      WriteConfusionMatrix(confMatCalc);
    }
    else
    {
      ContingencyTablePointerType table = ComputeContingencyTable(m_PredictedList, m_ClassificationSamplesWithLabel.labeledListSample);
      WriteContingencyTable(table);
    }
  }

  ContingencyTablePointerType ComputeContingencyTable(const TargetListSampleType::Pointer& predictedListSample,
                                                      const TargetListSampleType::Pointer& performanceLabeledListSample)
  {
    typedef ContingencyTableCalculator<ClassLabelType> ContigencyTableCalcutaltorType;

    ContigencyTableCalcutaltorType::Pointer contingencyTableCalculator = ContigencyTableCalcutaltorType::New();
    contingencyTableCalculator->Compute(performanceLabeledListSample->Begin(), performanceLabeledListSample->End(), predictedListSample->Begin(),
                                        predictedListSample->End());

    if (GetParameterInt("v"))
    {
      otbAppLogINFO("Training performances:");
      otbAppLogINFO(<< "Contingency table: reference labels (rows) vs. produced labels (cols)\n" << contingencyTableCalculator->BuildContingencyTable());
    }

    return contingencyTableCalculator->BuildContingencyTable();
  }


  void WriteContingencyTable(const ContingencyTablePointerType& table)
  {
    if (IsParameterEnabled("io.confmatout"))
    {
      // Write contingency table
      std::ofstream outFile;
      outFile.open(this->GetParameterString("io.confmatout"));
      outFile << table->ToCSV();
    }
  }


  ConfusionMatrixCalculatorType::Pointer ComputeConfusionMatrix(const TargetListSampleType::Pointer& predictedListSample,
                                                                const TargetListSampleType::Pointer& performanceLabeledListSample)
  {
    ConfusionMatrixCalculatorType::Pointer confMatCalc = ConfusionMatrixCalculatorType::New();

    otbAppLogINFO("Predicted list size : " << predictedListSample->Size());
    otbAppLogINFO("ValidationLabeledListSample size : " << performanceLabeledListSample->Size());
    confMatCalc->SetReferenceLabels(performanceLabeledListSample);
    confMatCalc->SetProducedLabels(predictedListSample);
    confMatCalc->Compute();

    otbAppLogINFO("Training performances:");
    LogConfusionMatrix(confMatCalc);

    for (unsigned int itClasses = 0; itClasses < confMatCalc->GetNumberOfClasses(); itClasses++)
    {
      ConfusionMatrixCalculatorType::ClassLabelType classLabel = confMatCalc->GetMapOfIndices()[itClasses];

      otbAppLogINFO("Precision of class [" << classLabel << "] vs all: " << confMatCalc->GetPrecisions()[itClasses]);
      otbAppLogINFO("Recall of class    [" << classLabel << "] vs all: " << confMatCalc->GetRecalls()[itClasses]);
      otbAppLogINFO("F-score of class   [" << classLabel << "] vs all: " << confMatCalc->GetFScores()[itClasses] << "\n");
    }
    otbAppLogINFO("Global performance, Kappa index: " << confMatCalc->GetKappaIndex());
    return confMatCalc;
  }

  /**
   * Write the confidence matrix into a file if output is provided.
   * \param confMatCalc the input matrix to write.
   */
  void WriteConfusionMatrix(const ConfusionMatrixCalculatorType::Pointer& confMatCalc)
  {
    if (this->HasValue("io.confmatout"))
    {
      // Writing the confusion matrix in the output .CSV file

      MapOfIndicesType::iterator itMapOfIndicesValid, itMapOfIndicesPred;
      ClassLabelType             labelValid = 0;

      ConfusionMatrixType confusionMatrix   = confMatCalc->GetConfusionMatrix();
      MapOfIndicesType    mapOfIndicesValid = confMatCalc->GetMapOfIndices();

      unsigned long nbClassesPred = mapOfIndicesValid.size();

      /////////////////////////////////////////////
      // Filling the 2 headers for the output file
      const std::string  commentValidStr = "#Reference labels (rows):";
      const std::string  commentPredStr  = "#Produced labels (columns):";
      const char         separatorChar   = ',';
      std::ostringstream ossHeaderValidLabels, ossHeaderPredLabels;

      // Filling ossHeaderValidLabels and ossHeaderPredLabels for the output file
      ossHeaderValidLabels << commentValidStr;
      ossHeaderPredLabels << commentPredStr;

      itMapOfIndicesValid = mapOfIndicesValid.begin();

      while (itMapOfIndicesValid != mapOfIndicesValid.end())
      {
        // labels labelValid of mapOfIndicesValid are already sorted in otbConfusionMatrixCalculator
        labelValid = itMapOfIndicesValid->second;

        otbAppLogINFO("mapOfIndicesValid[" << itMapOfIndicesValid->first << "] = " << labelValid);

        ossHeaderValidLabels << labelValid;
        ossHeaderPredLabels << labelValid;

        ++itMapOfIndicesValid;

        if (itMapOfIndicesValid != mapOfIndicesValid.end())
        {
          ossHeaderValidLabels << separatorChar;
          ossHeaderPredLabels << separatorChar;
        }
        else
        {
          ossHeaderValidLabels << std::endl;
          ossHeaderPredLabels << std::endl;
        }
      }

      std::ofstream outFile;
      outFile.open(this->GetParameterString("io.confmatout"));
      outFile << std::fixed;
      outFile.precision(10);

      /////////////////////////////////////
      // Writing the 2 headers
      outFile << ossHeaderValidLabels.str();
      outFile << ossHeaderPredLabels.str();
      /////////////////////////////////////

      unsigned int indexLabelValid = 0, indexLabelPred = 0;

      for (itMapOfIndicesValid = mapOfIndicesValid.begin(); itMapOfIndicesValid != mapOfIndicesValid.end(); ++itMapOfIndicesValid)
      {
        indexLabelPred = 0;

        for (itMapOfIndicesPred = mapOfIndicesValid.begin(); itMapOfIndicesPred != mapOfIndicesValid.end(); ++itMapOfIndicesPred)
        {
          // Writing the confusion matrix (sorted in otbConfusionMatrixCalculator) in the output file
          outFile << confusionMatrix(indexLabelValid, indexLabelPred);
          if (indexLabelPred < (nbClassesPred - 1))
          {
            outFile << separatorChar;
          }
          else
          {
            outFile << std::endl;
          }
          ++indexLabelPred;
        }

        ++indexLabelValid;
      }

      outFile.close();
    }
  }

  /**
   * Display the log of the confusion matrix computed with
   * \param confMatCalc the input confusion matrix to display
   */
  void LogConfusionMatrix(ConfusionMatrixCalculatorType* confMatCalc)
  {
    ConfusionMatrixCalculatorType::ConfusionMatrixType matrix = confMatCalc->GetConfusionMatrix();

    // Compute minimal width
    size_t minwidth = 0;

    for (unsigned int i = 0; i < matrix.Rows(); i++)
    {
      for (unsigned int j = 0; j < matrix.Cols(); j++)
      {
        std::ostringstream os;
        os << matrix(i, j);
        size_t size = os.str().size();

        if (size > minwidth)
        {
          minwidth = size;
        }
      }
    }

    MapOfIndicesType mapOfIndices = confMatCalc->GetMapOfIndices();

    MapOfIndicesType::const_iterator it  = mapOfIndices.begin();
    MapOfIndicesType::const_iterator end = mapOfIndices.end();

    for (; it != end; ++it)
    {
      std::ostringstream os;
      os << "[" << it->second << "]";

      size_t size = os.str().size();
      if (size > minwidth)
      {
        minwidth = size;
      }
    }

    // Generate matrix string, with 'minwidth' as size specifier
    std::ostringstream os;

    // Header line
    for (size_t i = 0; i < minwidth; ++i)
      os << " ";
    os << " ";

    it  = mapOfIndices.begin();
    end = mapOfIndices.end();
    for (; it != end; ++it)
    {
      os << "[" << it->second << "]"
         << " ";
    }

    os << std::endl;

    // Each line of confusion matrix
    for (unsigned int i = 0; i < matrix.Rows(); i++)
    {
      ConfusionMatrixCalculatorType::ClassLabelType label = mapOfIndices[i];
      os << "[" << std::setw(minwidth - 2) << label << "]"
         << " ";
      for (unsigned int j = 0; j < matrix.Cols(); j++)
      {
        os << std::setw(minwidth) << matrix(i, j) << " ";
      }
      os << std::endl;
    }

    otbAppLogINFO("Confusion matrix (rows = reference labels, columns = produced labels):\n" << os.str());
  }
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::TrainVectorClassifier)