File: otbTrainVectorRegression.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (123 lines) | stat: -rw-r--r-- 3,739 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbTrainVectorBase.h"

namespace otb
{
namespace Wrapper
{

class TrainVectorRegression : public TrainVectorBase<float, float>
{
public:
  typedef TrainVectorRegression Self;
  typedef TrainVectorBase<float, float> Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  itkNewMacro(Self) itkTypeMacro(Self, Superclass)

      typedef Superclass::SampleType SampleType;
  typedef Superclass::ListSampleType       ListSampleType;
  typedef Superclass::TargetListSampleType TargetListSampleType;

protected:
  TrainVectorRegression()
  {
    this->m_RegressionFlag = true;
  }

  void DoInit() override
  {
    SetName("TrainVectorRegression");
    SetDescription(
        "Train a regression algorithm based on geometries with "
        "list of predictor to consider and a label (dependent variable).");

    SetDocLongDescription(
        "This application trains a regression algorithm based on "
        "geometries containing list of predictors to consider for "
        "regression as well as groundtruth labels.\n"
        "This application is based on LibSVM, OpenCV Machine "
        "Learning (2.3.1 and later), and Shark ML The output of this application "
        "is a text model file, whose format corresponds to the ML model type "
        "chosen. There is no image or vector data output.");

    SetDocLimitations("None");
    SetDocAuthors("OTB Team");
    SetDocSeeAlso("TrainVectorClassifier");

    SetOfficialDocLink();

    Superclass::DoInit();

    AddParameter(ParameterType_Float, "io.mse", "Mean Square Error");
    SetParameterDescription("io.mse", "Mean square error computed using the validation dataset");
    SetParameterRole("io.mse", Role_Output);
    this->MandatoryOff("io.mse");
  }

  void DoUpdateParameters() override
  {
    Superclass::DoUpdateParameters();
  }

  double ComputeMSE(const TargetListSampleType& list1, const TargetListSampleType& list2)
  {
    assert(list1.Size() == list2.Size());
    double mse = 0.;
    for (TargetListSampleType::InstanceIdentifier i = 0; i < list1.Size(); ++i)
    {
      auto elem1 = list1.GetMeasurementVector(i);
      auto elem2 = list2.GetMeasurementVector(i);

      mse += (elem1[0] - elem2[0]) * (elem1[0] - elem2[0]);
    }
    mse /= static_cast<double>(list1.Size());
    return mse;
  }


  void DoExecute() override
  {
    m_FeaturesInfo.SetClassFieldNames(GetChoiceNames("cfield"), GetSelectedItems("cfield"));

    if (m_FeaturesInfo.m_SelectedCFieldIdx.empty() && GetClassifierCategory() == Supervised)
    {
      otbAppLogFATAL(<< "No field has been selected for data labelling!");
    }

    Superclass::DoExecute();

    otbAppLogINFO("Computing training performances");

    auto mse = ComputeMSE(*m_ClassificationSamplesWithLabel.labeledListSample, *m_PredictedList);

    otbAppLogINFO("Mean Square Error = " << mse);
    this->SetParameterFloat("io.mse", mse);
  }

private:
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::TrainVectorRegression)