File: otbTrainRandomForests.hxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (116 lines) | stat: -rw-r--r-- 5,908 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbTrainRandomForests_hxx
#define otbTrainRandomForests_hxx
#include "otbLearningApplicationBase.h"
#include "otbRandomForestsMachineLearningModel.h"

namespace otb
{
namespace Wrapper
{

template <class TInputValue, class TOutputValue>
void LearningApplicationBase<TInputValue, TOutputValue>::InitRandomForestsParams()
{
  AddChoice("classifier.rf", "Random forests classifier");
  SetParameterDescription("classifier.rf", "http://docs.opencv.org/modules/ml/doc/random_trees.html");
  // MaxDepth
  AddParameter(ParameterType_Int, "classifier.rf.max", "Maximum depth of the tree");
  SetParameterInt("classifier.rf.max", 5);
  SetParameterDescription("classifier.rf.max",
                          "The depth of the tree. A low value will likely underfit and conversely a high value will likely overfit. "
                          "The optimal value can be obtained using cross validation or other suitable methods.");

  // MinSampleCount
  AddParameter(ParameterType_Int, "classifier.rf.min", "Minimum number of samples in each node");
  SetParameterInt("classifier.rf.min", 10);
  SetParameterDescription("classifier.rf.min",
                          "If the number of samples in a node is smaller than this parameter, "
                          "then the node will not be split. A reasonable value is a small percentage of the total data e.g. 1 percent.");

  // RegressionAccuracy
  AddParameter(ParameterType_Float, "classifier.rf.ra", "Termination Criteria for regression tree");
  SetParameterFloat("classifier.rf.ra", 0.);
  SetParameterDescription("classifier.rf.ra",
                          "If all absolute differences between an estimated value in a node "
                          "and the values of the train samples in this node are smaller than this regression accuracy parameter, "
                          "then the node will not be split.");

  // MaxNumberOfCategories
  AddParameter(ParameterType_Int, "classifier.rf.cat", "Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split");
  SetParameterInt("classifier.rf.cat", 10);
  SetParameterDescription("classifier.rf.cat", "Cluster possible values of a categorical variable into K <= cat clusters to find a suboptimal split.");

  // Priors are not exposed.

  // CalculateVariableImportance not exposed

  // MaxNumberOfVariables
  AddParameter(ParameterType_Int, "classifier.rf.var", "Size of the randomly selected subset of features at each tree node");
  SetParameterInt("classifier.rf.var", 0);
  SetParameterDescription("classifier.rf.var",
                          "The size of the subset of features, randomly selected at each tree node, that are used to find the best split(s). "
                          "If you set it to 0, then the size will be set to the square root of the total number of features.");

  // MaxNumberOfTrees
  AddParameter(ParameterType_Int, "classifier.rf.nbtrees", "Maximum number of trees in the forest");
  SetParameterInt("classifier.rf.nbtrees", 100);
  SetParameterDescription("classifier.rf.nbtrees",
                          "The maximum number of trees in the forest. Typically, the more trees you have, the better the accuracy. "
                          "However, the improvement in accuracy generally diminishes and reaches an asymptote for a certain number of trees. "
                          "Also to keep in mind, increasing the number of trees increases the prediction time linearly.");

  // ForestAccuracy
  AddParameter(ParameterType_Float, "classifier.rf.acc", "Sufficient accuracy (OOB error)");
  SetParameterFloat("classifier.rf.acc", 0.01);
  SetParameterDescription("classifier.rf.acc", "Sufficient accuracy (OOB error).");


  // TerminationCriteria not exposed
}

template <class TInputValue, class TOutputValue>
void LearningApplicationBase<TInputValue, TOutputValue>::TrainRandomForests(typename ListSampleType::Pointer trainingListSample,
                                                                            typename TargetListSampleType::Pointer trainingLabeledListSample,
                                                                            std::string                            modelPath)
{
  typedef otb::RandomForestsMachineLearningModel<InputValueType, OutputValueType> RandomForestType;
  typename RandomForestType::Pointer classifier = RandomForestType::New();
  classifier->SetRegressionMode(this->m_RegressionFlag);
  classifier->SetInputListSample(trainingListSample);
  classifier->SetTargetListSample(trainingLabeledListSample);
  classifier->SetMaxDepth(GetParameterInt("classifier.rf.max"));
  classifier->SetMinSampleCount(GetParameterInt("classifier.rf.min"));
  classifier->SetRegressionAccuracy(GetParameterFloat("classifier.rf.ra"));
  classifier->SetMaxNumberOfCategories(GetParameterInt("classifier.rf.cat"));
  classifier->SetMaxNumberOfVariables(GetParameterInt("classifier.rf.var"));
  classifier->SetMaxNumberOfTrees(GetParameterInt("classifier.rf.nbtrees"));
  classifier->SetForestAccuracy(GetParameterFloat("classifier.rf.acc"));

  classifier->Train();
  classifier->Save(modelPath);
}

} // end namespace wrapper
} // end namespace otb

#endif