File: otbVectorPrediction.h

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (135 lines) | stat: -rw-r--r-- 4,886 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbVectorPrediction_h
#define otbVectorPrediction_h

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbOGRDataSourceWrapper.h"
#include "otbOGRFeatureWrapper.h"

#include "itkVariableLengthVector.h"
#include "otbStatisticsXMLFileReader.h"

#include "itkListSample.h"
#include "otbShiftScaleSampleListFilter.h"

#include "otbMachineLearningModelFactory.h"

#include "otbMachineLearningModel.h"

#include <time.h>

namespace otb
{
namespace Wrapper
{

template <bool RegressionMode>
class VectorPrediction : public Application
{
public:
  /** Standard class typedefs. */
  using Self         = VectorPrediction;
  using Superclass   = Application;
  using Pointer      = itk::SmartPointer<Self>;
  using ConstPointer = itk::SmartPointer<const Self>;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(Self, Application)

      /** Filters typedef */
      using ValueType = float;
  // Label type is float for regression and unsigned int for classification
  using LabelType = typename std::conditional<RegressionMode, float, unsigned int>::type;

  using LabelSampleType     = itk::FixedArray<LabelType, 1>;
  using LabelListSampleType = itk::Statistics::ListSample<LabelSampleType>;

  using MachineLearningModelType        = otb::MachineLearningModel<ValueType, LabelType>;
  using MachineLearningModelFactoryType = otb::MachineLearningModelFactory<ValueType, LabelType>;
  using ModelPointerType                = typename MachineLearningModelType::Pointer;
  using ConfidenceListSampleType        = typename MachineLearningModelType::ConfidenceListSampleType;

  /** Statistics Filters typedef */
  using MeasurementType  = itk::VariableLengthVector<ValueType>;
  using StatisticsReader = otb::StatisticsXMLFileReader<MeasurementType>;

  using InputSampleType      = itk::VariableLengthVector<ValueType>;
  using ListSampleType       = itk::Statistics::ListSample<InputSampleType>;
  using ShiftScaleFilterType = otb::Statistics::ShiftScaleSampleListFilter<ListSampleType, ListSampleType>;

  ~VectorPrediction() override
  {
    MachineLearningModelFactoryType::CleanFactories();
  }

private:
  void DoInit() override;

  /** Method defining the parameters used in the application and their documentation, specialized for RegressionMode=1 and RegrssionMode=0 */
  void DoInitSpecialization();

  void DoUpdateParameters() override;

  void DoExecute() override;

  /** Method returning whether the confidence map should be computed, depending on the regression mode and input parameters */
  bool shouldComputeConfidenceMap() const;

  /** Method returning the input list sample from the input layer */
  typename ListSampleType::Pointer ReadInputListSample(otb::ogr::Layer const& layer);

  /** Normalize a list sample using the statistic file given  */
  typename ListSampleType::Pointer NormalizeListSample(ListSampleType::Pointer input);

  /** Update the output DataSource : the input layer is buffered and the input data source is re opened in update mode. */
  otb::ogr::DataSource::Pointer ReopenDataSourceInUpdateMode(ogr::DataSource::Pointer source, ogr::Layer& layer,
                                                             ogr::DataSource::Pointer buffer);

  /** Create the output DataSource. */
  otb::ogr::DataSource::Pointer CreateOutputDataSource(ogr::Layer& layer);

  /** Add a prediction field in the output layer if it does not exist.
   * If computeConfidenceMap evaluates to true a confidence field will be
   * added. */
  void AddPredictionField(otb::ogr::Layer& outLayer, otb::ogr::Layer const& layer, bool computeConfidenceMap);

  /** Fill the output layer with the predicted values and optionally the confidence */
  void FillOutputLayer(otb::ogr::Layer& outLayer, otb::ogr::Layer const& layer, typename LabelListSampleType::Pointer target,
                       typename ConfidenceListSampleType::Pointer quality, bool updateMode, bool computeConfidenceMap);

  ModelPointerType m_Model;

  /** Name used for the confidence field */
  std::string confFieldName = "confidence";
};
}
}

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbVectorPrediction.hxx"
#endif

#endif