1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbVectorPrediction_hxx
#define otbVectorPrediction_hxx
#include "otbVectorPrediction.h"
namespace otb
{
namespace Wrapper
{
template <bool RegressionMode>
void VectorPrediction<RegressionMode>::DoInit()
{
DoInitSpecialization();
// Assert that the all needed parameters have ben defined in DoInitSpecialization
assert(GetParameterByKey("in") != nullptr);
assert(GetParameterByKey("instat") != nullptr);
assert(GetParameterByKey("model") != nullptr);
assert(GetParameterByKey("cfield") != nullptr);
assert(GetParameterByKey("feat") != nullptr);
assert(GetParameterByKey("out") != nullptr);
}
template <bool RegressionMode>
void VectorPrediction<RegressionMode>::DoUpdateParameters()
{
if (HasValue("in"))
{
auto shapefileName = GetParameterString("in");
auto ogrDS = otb::ogr::DataSource::New(shapefileName, otb::ogr::DataSource::Modes::Read);
auto layer = ogrDS->GetLayer(0);
OGRFeatureDefn& layerDefn = layer.GetLayerDefn();
ClearChoices("feat");
FieldParameter::TypeFilterType typeFilter = GetTypeFilter("feat");
for (int iField = 0; iField < layerDefn.GetFieldCount(); iField++)
{
auto fieldDefn = layerDefn.GetFieldDefn(iField);
std::string item = fieldDefn->GetNameRef();
std::string key(item);
key.erase(std::remove_if(key.begin(), key.end(), [](char c) { return !std::isalnum(c); }), key.end());
std::transform(key.begin(), key.end(), key.begin(), tolower);
auto fieldType = fieldDefn->GetType();
if (typeFilter.empty() || std::find(typeFilter.begin(), typeFilter.end(), fieldType) != std::end(typeFilter))
{
std::string tmpKey = "feat." + key;
AddChoice(tmpKey, item);
}
}
}
}
template <bool RegressionMode>
typename VectorPrediction<RegressionMode>::ListSampleType::Pointer
VectorPrediction<RegressionMode>
::ReadInputListSample(otb::ogr::Layer const& layer)
{
typename ListSampleType::Pointer input = ListSampleType::New();
const auto nbFeatures = GetSelectedItems("feat").size();
input->SetMeasurementVectorSize(nbFeatures);
std::vector<int> featureFieldIndex(nbFeatures, -1);
ogr::Layer::const_iterator it_feat = layer.cbegin();
for (unsigned int i = 0; i < nbFeatures; i++)
{
try
{
featureFieldIndex[i] = (*it_feat).GetFieldIndex(GetChoiceNames("feat")[GetSelectedItems("feat")[i]]);
}
catch(...)
{
otbAppLogFATAL("The field name for feature " << GetChoiceNames("feat")[GetSelectedItems("feat")[i]] << " has not been found" << std::endl);
}
}
for (auto const& feature : layer)
{
MeasurementType mv(nbFeatures);
for (unsigned int idx = 0; idx < nbFeatures; ++idx)
{
auto field = feature[featureFieldIndex[idx]];
switch (field.GetType())
{
case OFTInteger:
case OFTInteger64:
mv[idx] = static_cast<ValueType>(field.template GetValue<int>());
break;
case OFTReal:
mv[idx] = static_cast<ValueType>(field.template GetValue<double>());
break;
default:
itkExceptionMacro(<< "incorrect field type: " << field.GetType() << ".");
}
}
input->PushBack(mv);
}
return input;
}
template <bool RegressionMode>
typename VectorPrediction<RegressionMode>::ListSampleType::Pointer VectorPrediction<RegressionMode>::NormalizeListSample(ListSampleType::Pointer input)
{
const int nbFeatures = GetSelectedItems("feat").size();
// Statistics for shift/scale
MeasurementType meanMeasurementVector;
MeasurementType stddevMeasurementVector;
if (HasValue("instat") && IsParameterEnabled("instat"))
{
typename StatisticsReader::Pointer statisticsReader = StatisticsReader::New();
std::string XMLfile = GetParameterString("instat");
statisticsReader->SetFileName(XMLfile);
meanMeasurementVector = statisticsReader->GetStatisticVectorByName("mean");
stddevMeasurementVector = statisticsReader->GetStatisticVectorByName("stddev");
}
else
{
meanMeasurementVector.SetSize(nbFeatures);
meanMeasurementVector.Fill(0.);
stddevMeasurementVector.SetSize(nbFeatures);
stddevMeasurementVector.Fill(1.);
}
typename ShiftScaleFilterType::Pointer trainingShiftScaleFilter = ShiftScaleFilterType::New();
trainingShiftScaleFilter->SetInput(input);
trainingShiftScaleFilter->SetShifts(meanMeasurementVector);
trainingShiftScaleFilter->SetScales(stddevMeasurementVector);
trainingShiftScaleFilter->Update();
otbAppLogINFO("mean used: " << meanMeasurementVector);
otbAppLogINFO("standard deviation used: " << stddevMeasurementVector);
otbAppLogINFO("Loading model");
return trainingShiftScaleFilter->GetOutput();
}
template <bool RegressionMode>
otb::ogr::DataSource::Pointer VectorPrediction<RegressionMode>::ReopenDataSourceInUpdateMode(ogr::DataSource::Pointer source, ogr::Layer& layer,
ogr::DataSource::Pointer buffer)
{
ogr::DataSource::Pointer output;
// Update mode
otbAppLogINFO("Update input vector data.");
// fill temporary buffer for the transfer
otb::ogr::Layer inputLayer = layer;
layer = buffer->CopyLayer(inputLayer, std::string("Buffer"));
// close input data source
source->Clear();
// Re-open input data source in update mode
output = otb::ogr::DataSource::New(GetParameterString("in"), otb::ogr::DataSource::Modes::Update_LayerUpdate);
return output;
}
template <bool RegressionMode>
otb::ogr::DataSource::Pointer VectorPrediction<RegressionMode>::CreateOutputDataSource(ogr::Layer& layer)
{
ogr::DataSource::Pointer output;
// Create new OGRDataSource
output = ogr::DataSource::New(GetParameterString("out"), ogr::DataSource::Modes::Overwrite);
otb::ogr::Layer newLayer = output->CreateLayer(GetParameterString("out"), const_cast<OGRSpatialReference*>(layer.GetSpatialRef()), layer.GetGeomType());
// Copy existing fields
OGRFeatureDefn& inLayerDefn = layer.GetLayerDefn();
for (int k = 0; k < inLayerDefn.GetFieldCount(); k++)
{
OGRFieldDefn fieldDefn(inLayerDefn.GetFieldDefn(k));
newLayer.CreateField(fieldDefn);
}
return output;
}
template <bool RegressionMode>
void VectorPrediction<RegressionMode>::AddPredictionField(otb::ogr::Layer& outLayer, otb::ogr::Layer const& layer, bool computeConfidenceMap)
{
OGRFeatureDefn& layerDefn = layer.GetLayerDefn();
const OGRFieldType labelType = RegressionMode ? OFTReal : OFTInteger;
int idx = layerDefn.GetFieldIndex(GetParameterString("cfield").c_str());
if (idx >= 0)
{
if (layerDefn.GetFieldDefn(idx)->GetType() != labelType)
itkExceptionMacro("Field name " << GetParameterString("cfield") << " already exists with a different type!");
}
else
{
OGRFieldDefn predictedField(GetParameterString("cfield").c_str(), labelType);
ogr::FieldDefn predictedFieldDef(predictedField);
outLayer.CreateField(predictedFieldDef);
}
// Add confidence field in the output layer
if (computeConfidenceMap)
{
idx = layerDefn.GetFieldIndex(confFieldName.c_str());
if (idx >= 0)
{
if (layerDefn.GetFieldDefn(idx)->GetType() != OFTReal)
itkExceptionMacro("Field name " << confFieldName << " already exists with a different type!");
}
else
{
OGRFieldDefn confidenceField(confFieldName.c_str(), OFTReal);
confidenceField.SetWidth(confidenceField.GetWidth());
confidenceField.SetPrecision(confidenceField.GetPrecision());
ogr::FieldDefn confFieldDefn(confidenceField);
outLayer.CreateField(confFieldDefn);
}
}
}
template <bool RegressionMode>
void VectorPrediction<RegressionMode>::FillOutputLayer(otb::ogr::Layer& outLayer, otb::ogr::Layer const& layer, typename LabelListSampleType::Pointer target,
typename ConfidenceListSampleType::Pointer quality, bool updateMode, bool computeConfidenceMap)
{
unsigned int count = 0;
std::string classfieldname = GetParameterString("cfield");
for (auto const& feature : layer)
{
ogr::Feature dstFeature(outLayer.GetLayerDefn());
dstFeature.SetFrom(feature, TRUE);
dstFeature.SetFID(feature.GetFID());
auto field = dstFeature[classfieldname];
switch (field.GetType())
{
case OFTInteger64:
case OFTInteger:
field.template SetValue<int>(target->GetMeasurementVector(count)[0]);
break;
case OFTReal:
field.template SetValue<double>(target->GetMeasurementVector(count)[0]);
break;
case OFTString:
field.template SetValue<std::string>(std::to_string(target->GetMeasurementVector(count)[0]));
break;
default:
itkExceptionMacro(<< "incorrect field type: " << field.GetType() << ".");
}
if (computeConfidenceMap)
dstFeature[confFieldName].template SetValue<double>(quality->GetMeasurementVector(count)[0]);
if (updateMode)
{
outLayer.SetFeature(dstFeature);
}
else
{
outLayer.CreateFeature(dstFeature);
}
count++;
}
}
template <bool RegressionMode>
void VectorPrediction<RegressionMode>::DoExecute()
{
m_Model = MachineLearningModelFactoryType::CreateMachineLearningModel(GetParameterString("model"), MachineLearningModelFactoryType::ReadMode);
if (m_Model.IsNull())
{
otbAppLogFATAL(<< "Error when loading model " << GetParameterString("model") << " : unsupported model type");
}
m_Model->SetRegressionMode(RegressionMode);
m_Model->Load(GetParameterString("model"));
otbAppLogINFO("Model loaded");
auto shapefileName = GetParameterString("in");
ogr::DataSource::Pointer source = ogr::DataSource::New(shapefileName, ogr::DataSource::Modes::Read);
auto layer = source->GetLayer(0);
auto input = ReadInputListSample(layer);
ListSampleType::Pointer listSample = NormalizeListSample(input);
typename LabelListSampleType::Pointer target;
// The quality listSample containing confidence values is defined here, but is only used when
// computeConfidenceMap evaluates to true. This listSample is also used in FillOutputLayer(...)
const bool computeConfidenceMap = shouldComputeConfidenceMap();
typename ConfidenceListSampleType::Pointer quality;
if (computeConfidenceMap)
{
quality = ConfidenceListSampleType::New();
target = m_Model->PredictBatch(listSample, quality);
}
else
{
target = m_Model->PredictBatch(listSample);
}
const bool updateMode = !(IsParameterEnabled("out") && HasValue("out"));
ogr::DataSource::Pointer buffer;
ogr::DataSource::Pointer output;
if (updateMode)
{
// in update mode, output is added to input data source.
// buffer needs to be allocated here, as its life-cycle is bound to "layer"
buffer = ogr::DataSource::New();
output = ReopenDataSourceInUpdateMode(source, layer, buffer);
}
else
{
output = CreateOutputDataSource(layer);
}
otb::ogr::Layer outLayer = output->GetLayer(0);
OGRErr errStart = outLayer.ogr().StartTransaction();
if (errStart != OGRERR_NONE)
{
itkExceptionMacro(<< "Unable to start transaction for OGR layer " << outLayer.ogr().GetName() << ".");
}
AddPredictionField(outLayer, layer, computeConfidenceMap);
FillOutputLayer(outLayer, layer, target, quality, updateMode, computeConfidenceMap);
if (outLayer.ogr().TestCapability("Transactions"))
{
const OGRErr errCommitX = outLayer.ogr().CommitTransaction();
if (errCommitX != OGRERR_NONE)
{
itkExceptionMacro(<< "Unable to commit transaction for OGR layer " << outLayer.ogr().GetName() << ".");
}
}
output->SyncToDisk();
}
} // end namespace wrapper
} // end namespace otb
#endif
|