1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbDimensionalityReductionTrainAutoencoder_hxx
#define otbDimensionalityReductionTrainAutoencoder_hxx
#include "otbTrainDimensionalityReductionApplicationBase.h"
#include "otbAutoencoderModel.h"
namespace otb
{
namespace Wrapper
{
template <class TInputValue, class TOutputValue>
void TrainDimensionalityReductionApplicationBase<TInputValue, TOutputValue>::InitAutoencoderParams()
{
AddChoice("algorithm.autoencoder", "Shark Autoencoder");
SetParameterDescription("algorithm.autoencoder", "This group of parameters allows setting Shark autoencoder parameters. ");
// Number Of Iterations
AddParameter(ParameterType_Int, "algorithm.autoencoder.nbiter", "Maximum number of iterations during training");
SetParameterInt("algorithm.autoencoder.nbiter", 100, false);
SetParameterDescription("algorithm.autoencoder.nbiter", "The maximum number of iterations used during training.");
AddParameter(ParameterType_Int, "algorithm.autoencoder.nbiterfinetuning", "Maximum number of iterations during training");
SetParameterInt("algorithm.autoencoder.nbiterfinetuning", 0, false);
SetParameterDescription("algorithm.autoencoder.nbiterfinetuning", "The maximum number of iterations used during fine tuning of the whole network.");
AddParameter(ParameterType_Float, "algorithm.autoencoder.epsilon", "Epsilon");
SetParameterFloat("algorithm.autoencoder.epsilon", 0, false);
SetParameterDescription("algorithm.autoencoder.epsilon", "Epsilon");
AddParameter(ParameterType_Float, "algorithm.autoencoder.initfactor", "Weight initialization factor");
SetParameterFloat("algorithm.autoencoder.initfactor", 1, false);
SetParameterDescription("algorithm.autoencoder.initfactor", "Parameter that control the weight initialization of the autoencoder");
// Number Of Hidden Neurons
AddParameter(ParameterType_StringList, "algorithm.autoencoder.nbneuron", "Size");
SetParameterDescription("algorithm.autoencoder.nbneuron", "The number of neurons in each hidden layer.");
// Regularization
AddParameter(ParameterType_StringList, "algorithm.autoencoder.regularization", "Strength of the regularization");
SetParameterDescription("algorithm.autoencoder.regularization", "Strength of the L2 regularization used during training");
// Noise strength
AddParameter(ParameterType_StringList, "algorithm.autoencoder.noise", "Strength of the noise");
SetParameterDescription("algorithm.autoencoder.noise", "Strength of the noise");
// Sparsity parameter
AddParameter(ParameterType_StringList, "algorithm.autoencoder.rho", "Sparsity parameter");
SetParameterDescription("algorithm.autoencoder.rho", "Sparsity parameter");
// Sparsity regularization strength
AddParameter(ParameterType_StringList, "algorithm.autoencoder.beta", "Sparsity regularization strength");
SetParameterDescription("algorithm.autoencoder.beta", "Sparsity regularization strength");
AddParameter(ParameterType_OutputFilename, "algorithm.autoencoder.learningcurve", "Learning curve");
SetParameterDescription("algorithm.autoencoder.learningcurve", "Learning error values");
MandatoryOff("algorithm.autoencoder.learningcurve");
}
template <class TInputValue, class TOutputValue>
void TrainDimensionalityReductionApplicationBase<TInputValue, TOutputValue>::BeforeTrainAutoencoder(typename ListSampleType::Pointer trainingListSample,
std::string modelPath)
{
typedef shark::LogisticNeuron NeuronType;
typedef otb::AutoencoderModel<InputValueType, NeuronType> AutoencoderModelType;
TrainAutoencoder<AutoencoderModelType>(trainingListSample, modelPath);
}
template <class TInputValue, class TOutputValue>
template <typename autoencoderchoice>
void TrainDimensionalityReductionApplicationBase<TInputValue, TOutputValue>::TrainAutoencoder(typename ListSampleType::Pointer trainingListSample,
std::string modelPath)
{
typename autoencoderchoice::Pointer dimredTrainer = autoencoderchoice::New();
itk::Array<unsigned int> nb_neuron;
itk::Array<float> noise;
itk::Array<float> regularization;
itk::Array<float> rho;
itk::Array<float> beta;
std::vector<std::basic_string<char>> s_nbneuron = GetParameterStringList("algorithm.autoencoder.nbneuron");
std::vector<std::basic_string<char>> s_noise = GetParameterStringList("algorithm.autoencoder.noise");
std::vector<std::basic_string<char>> s_regularization = GetParameterStringList("algorithm.autoencoder.regularization");
std::vector<std::basic_string<char>> s_rho = GetParameterStringList("algorithm.autoencoder.rho");
std::vector<std::basic_string<char>> s_beta = GetParameterStringList("algorithm.autoencoder.beta");
nb_neuron.SetSize(s_nbneuron.size());
noise.SetSize(s_nbneuron.size());
regularization.SetSize(s_nbneuron.size());
rho.SetSize(s_nbneuron.size());
beta.SetSize(s_nbneuron.size());
for (unsigned int i = 0; i < s_nbneuron.size(); i++)
{
nb_neuron[i] = std::stoi(s_nbneuron[i]);
noise[i] = std::stof(s_noise[i]);
regularization[i] = std::stof(s_regularization[i]);
rho[i] = std::stof(s_rho[i]);
beta[i] = std::stof(s_beta[i]);
}
dimredTrainer->SetNumberOfHiddenNeurons(nb_neuron);
dimredTrainer->SetNumberOfIterations(GetParameterInt("algorithm.autoencoder.nbiter"));
dimredTrainer->SetNumberOfIterationsFineTuning(GetParameterInt("algorithm.autoencoder.nbiterfinetuning"));
dimredTrainer->SetEpsilon(GetParameterFloat("algorithm.autoencoder.epsilon"));
dimredTrainer->SetInitFactor(GetParameterFloat("algorithm.autoencoder.initfactor"));
dimredTrainer->SetRegularization(regularization);
dimredTrainer->SetNoise(noise);
dimredTrainer->SetRho(rho);
dimredTrainer->SetBeta(beta);
dimredTrainer->SetWriteWeights(true);
if (HasValue("algorithm.autoencoder.learningcurve") && IsParameterEnabled("algorithm.autoencoder.learningcurve"))
{
dimredTrainer->SetWriteLearningCurve(true);
dimredTrainer->SetLearningCurveFileName(GetParameterString("algorithm.autoencoder.learningcurve"));
}
dimredTrainer->SetInputListSample(trainingListSample);
dimredTrainer->Train();
dimredTrainer->Save(modelPath);
}
} // end namespace wrapper
} // end namespace otb
#endif
|