File: otbDynamicConvert.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (493 lines) | stat: -rw-r--r-- 19,756 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbWrapperApplication.h"
#include "otbWrapperApplicationFactory.h"

#include "otbVectorRescaleIntensityImageFilter.h"
#include "otbFunctorImageFilter.h"
#include "otbStreamingShrinkImageFilter.h"
#include "itkListSample.h"
#include "otbListSampleToHistogramListGenerator.h"
#include "itkImageRegionConstIterator.h"

#include "otbImageListToVectorImageFilter.h"
#include "otbMultiToMonoChannelExtractROI.h"
#include "otbImageList.h"

#include <numeric>

namespace otb
{
namespace Wrapper
{


class DynamicConvert : public Application
{
public:
  /** Standard class typedefs. */
  typedef DynamicConvert                Self;
  typedef Application                   Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Standard macro */
  itkNewMacro(Self);

  itkTypeMacro(DynamicConvert, otb::Application);

  /** Filters typedef */
  typedef itk::Statistics::ListSample<FloatVectorImageType::PixelType> ListSampleType;
  typedef itk::Statistics::DenseFrequencyContainer2                    DFContainerType;
  typedef ListSampleToHistogramListGenerator<ListSampleType, FloatVectorImageType::InternalPixelType, DFContainerType> HistogramsGeneratorType;

  typedef StreamingShrinkImageFilter<FloatVectorImageType, FloatVectorImageType> ShrinkFilterType;

  typedef StreamingShrinkImageFilter<UInt8ImageType, UInt8ImageType> UInt8ShrinkFilterType;

private:
  void DoInit() override
  {
    SetName("DynamicConvert");
    SetDescription("Change the pixel type and rescale the image's dynamic");

    SetDocLongDescription(
        "This application performs an image pixel type "
        "conversion (short, ushort, uchar, int, uint, float and double types are "
        "handled). The output image is written in the specified format (ie. "
        "that corresponds to the given extension).\n"
        "The conversion can include a rescale of the data range, by default it's set between the 2nd to "
        "the 98th percentile. The rescale can be linear or log2. \n"
        "The choice of the output channels can be done with the extended filename, but "
        "less easy to handle. To do this, a 'channels' parameter allows you to "
        "select the desired bands at the output. There are 3 modes, the "
        "available choices are: \n\n"

        "* **All**: keep all bands.\n"
        "* **Grayscale**: to display mono image as standard color image \n"
        "* **RGB**: select 3 bands in the input image (multi-bands)\n");
    SetDocLimitations("The application does not support complex pixel types as output.");
    SetDocAuthors("OTB-Team");
    SetDocSeeAlso("Rescale");

    AddDocTag(Tags::Manip);
    AddDocTag("Conversion");
    AddDocTag("Image Dynamic");

    AddParameter(ParameterType_InputImage, "in", "Input image");
    SetParameterDescription("in", "Input image");

    AddParameter(ParameterType_OutputImage, "out", "Output Image");
    SetParameterDescription("out", "Output image");
    SetDefaultOutputPixelType("out", ImagePixelType_uint8);

    AddParameter(ParameterType_Choice, "type", "Rescale type");
    SetParameterDescription("type", "Transfer function for the rescaling");
    AddChoice("type.linear", "Linear");
    AddChoice("type.log2", "Log2");
    SetParameterString("type", "linear");

    AddParameter(ParameterType_Float, "type.linear.gamma", "Gamma correction factor");
    SetParameterDescription("type.linear.gamma", "Gamma correction factor");
    SetDefaultParameterFloat("type.linear.gamma", 1.0);
    MandatoryOff("type.linear.gamma");

    AddParameter(ParameterType_InputImage, "mask", "Input mask");
    SetParameterDescription("mask",
                            "Optional mask to indicate which pixels are valid for computing the histogram quantiles. "
                            "Pixels where the mask is zero will not contribute to the histogram. "
                            "The mask must have the same dimensions as the input image.");
    MandatoryOff("mask");
    DisableParameter("mask");

    AddParameter(ParameterType_Group, "quantile", "Histogram quantile cutting");
    SetParameterDescription("quantile", "Cut the histogram edges before rescaling");

    AddParameter(ParameterType_Float, "quantile.high", "High cut quantile");
    SetParameterDescription("quantile.high",
                            "Quantiles to cut from histogram high values "
                            "before computing min/max rescaling (in percent, 2 by default)");
    MandatoryOff("quantile.high");
    SetDefaultParameterFloat("quantile.high", 2.0);
    DisableParameter("quantile.high");

    AddParameter(ParameterType_Float, "quantile.low", "Low cut quantile");
    SetParameterDescription("quantile.low",
                            "Quantiles to cut from histogram low values "
                            "before computing min/max rescaling (in percent, 2 by default)");
    MandatoryOff("quantile.low");
    SetDefaultParameterFloat("quantile.low", 2.0);
    DisableParameter("quantile.low");

    AddParameter(ParameterType_Choice, "channels", "Channels selection");
    SetParameterDescription("channels",
                            "It's possible to select the channels "
                            "of the output image. There are 3 modes, the available choices are:");

    AddChoice("channels.all", "Default mode");
    SetParameterDescription("channels.all", "Select all bands in the input image, (1,...,n).");

    AddChoice("channels.grayscale", "Grayscale mode");
    SetParameterDescription("channels.grayscale", "Display single channel as standard color image.");
    AddParameter(ParameterType_Int, "channels.grayscale.channel", "Grayscale channel");
    SetDefaultParameterInt("channels.grayscale.channel", 1);
    SetMinimumParameterIntValue("channels.grayscale.channel", 1);

    AddChoice("channels.rgb", "RGB composition");
    SetParameterDescription("channels.rgb",
                            "Select 3 bands in the input image "
                            "(multi-bands), by default (1,2,3).");

    AddParameter(ParameterType_Int, "channels.rgb.red", "Red Channel");
    SetParameterDescription("channels.rgb.red", "Red channel index.");
    SetMinimumParameterIntValue("channels.rgb.red", 1);
    AddParameter(ParameterType_Int, "channels.rgb.green", "Green Channel");
    SetParameterDescription("channels.rgb.green", "Green channel index.");
    SetMinimumParameterIntValue("channels.rgb.green", 1);
    AddParameter(ParameterType_Int, "channels.rgb.blue", "Blue Channel");
    SetParameterDescription("channels.rgb.blue", "Blue channel index.");
    SetMinimumParameterIntValue("channels.rgb.blue", 1);

    AddParameter(ParameterType_Float, "outmin", "Output min value");
    SetDefaultParameterFloat("outmin", 0.0);
    SetParameterDescription("outmin", "Minimum value of the output image.");
    AddParameter(ParameterType_Float, "outmax", "Output max value");
    SetDefaultParameterFloat("outmax", 255.0);
    SetParameterDescription("outmax", "Maximum value of the output image.");
    MandatoryOff("outmin");
    MandatoryOff("outmax");

    AddRAMParameter();

    // Doc example parameter settings
    SetDocExampleParameterValue("in", "QB_Toulouse_Ortho_XS.tif");
    SetDocExampleParameterValue("out", "otbConvertWithScalingOutput.png");
    SetDocExampleParameterValue("type", "linear");
    SetDocExampleParameterValue("channels", "rgb");
    SetDocExampleParameterValue("outmin", "0");
    SetDocExampleParameterValue("outmax", "255");

    SetOfficialDocLink();
  }

  void DoUpdateParameters() override
  {
    // Read information
    if (HasValue("in"))
    {
      int nbBand = GetParameterImage("in")->GetNumberOfComponentsPerPixel();
      SetMaximumParameterIntValue("channels.grayscale.channel", nbBand);
      SetMaximumParameterIntValue("channels.rgb.red", nbBand);
      SetMaximumParameterIntValue("channels.rgb.green", nbBand);
      SetMaximumParameterIntValue("channels.rgb.blue", nbBand);

      if (nbBand > 1)
      {
        // get band index : Red/Green/Blue, in depending on the sensor
        auto const& display = GetParameterImage("in")->GetImageMetadata().GetDefaultDisplay();
        SetDefaultParameterInt("channels.rgb.red", display[0] + 1);
        SetDefaultParameterInt("channels.rgb.green", display[1] + 1);
        SetDefaultParameterInt("channels.rgb.blue", display[2] + 1);
      }
    }
  }

  template <class TImageType>
  void GenericDoExecute()
  {
    // Clear previously registered filters
    m_Filters.clear();

    std::string rescaleType = this->GetParameterString("type");
    typedef otb::VectorRescaleIntensityImageFilter<FloatVectorImageType, TImageType> RescalerType;
    typename RescalerType::Pointer rescaler = RescalerType::New();

    // selected channel
    auto tempImage = GetSelectedChannels<FloatVectorImageType>();

    const unsigned int nbComp(tempImage->GetNumberOfComponentsPerPixel());

    // We need to subsample the input image in order to estimate its histogram
    // Shrink factor is computed so as to load a quicklook of 1000
    // pixels square at most
    auto         imageSize    = tempImage->GetLargestPossibleRegion().GetSize();
    unsigned int shrinkFactor = std::max({int(imageSize[0]) / 1000, int(imageSize[1]) / 1000, 1});
    otbAppLogDEBUG(<< "Shrink factor used to compute Min/Max: " << shrinkFactor);

    otbAppLogDEBUG(<< "Shrink starts...");
    typename ShrinkFilterType::Pointer shrinkFilter = ShrinkFilterType::New();
    shrinkFilter->SetShrinkFactor(shrinkFactor);
    shrinkFilter->GetStreamer()->SetAutomaticAdaptativeStreaming(GetParameterInt("ram"));
    AddProcess(shrinkFilter->GetStreamer(), "Computing shrink Image for min/max estimation...");

    if (rescaleType == "log2")
    {
      // define lambda function that applies a log to all bands of the input pixel
      auto logFunction = [](FloatVectorImageType::PixelType& vectorOut, const FloatVectorImageType::PixelType& vectorIn) {
        assert(vectorOut.Size() == vectorIn.Size() && "Input vector types don't have the same size");

        for (unsigned int i = 0; i < vectorIn.Size(); i++)
        {
          vectorOut[i] = std::log(vectorIn[i]);
        }

      };
      // creates functor filter
      auto transferLogFilter = NewFunctorFilter(logFunction, tempImage->GetNumberOfComponentsPerPixel(), {{0, 0}});

      // save a reference to the functor
      m_Filters.push_back(transferLogFilter.GetPointer());

      transferLogFilter->SetInputs(tempImage);
      transferLogFilter->UpdateOutputInformation();

      shrinkFilter->SetInput(transferLogFilter->GetOutput());
      rescaler->SetInput(transferLogFilter->GetOutput());
      shrinkFilter->Update();
    }
    else
    {
      shrinkFilter->SetInput(tempImage);
      rescaler->SetInput(tempImage);
      shrinkFilter->Update();
    }

    otbAppLogDEBUG(<< "Evaluating input Min/Max...");
    itk::ImageRegionConstIterator<FloatVectorImageType> it(shrinkFilter->GetOutput(), shrinkFilter->GetOutput()->GetLargestPossibleRegion());

    typename ListSampleType::Pointer listSample = ListSampleType::New();
    listSample->SetMeasurementVectorSize(tempImage->GetNumberOfComponentsPerPixel());

    // Now we generate the list of samples
    if (IsParameterEnabled("mask"))
    {
      UInt8ImageType::Pointer        mask             = this->GetParameterUInt8Image("mask");
      UInt8ShrinkFilterType::Pointer maskShrinkFilter = UInt8ShrinkFilterType::New();
      maskShrinkFilter->SetShrinkFactor(shrinkFactor);
      maskShrinkFilter->SetInput(mask);
      maskShrinkFilter->GetStreamer()->SetAutomaticAdaptativeStreaming(GetParameterInt("ram"));
      maskShrinkFilter->Update();

      auto itMask = itk::ImageRegionConstIterator<UInt8ImageType>(maskShrinkFilter->GetOutput(), maskShrinkFilter->GetOutput()->GetLargestPossibleRegion());

      // Remove masked pixels
      it.GoToBegin();
      itMask.GoToBegin();
      for (; !it.IsAtEnd(); ++it, ++itMask)
      {
        // valid pixels are non zero
        if (itMask.Get() != 0)
        {
          listSample->PushBack(it.Get());
        }
      }
      // if listSample is empty
      if (listSample->Size() == 0)
      {
        otbAppLogINFO(<< "All pixels were masked, the application assume "
                         "a wrong mask and include all the image");
      }
    }

    // get all pixels : if mask is disable or all pixels were masked
    if ((!IsParameterEnabled("mask")) || (listSample->Size() == 0))
    {
      for (it.GoToBegin(); !it.IsAtEnd(); ++it)
      {
        listSample->PushBack(it.Get());
      }
    }

    // And then the histogram
    typename HistogramsGeneratorType::Pointer histogramsGenerator = HistogramsGeneratorType::New();
    histogramsGenerator->SetListSample(listSample);
    histogramsGenerator->SetNumberOfBins(255);
    // Samples with nodata values are ignored
    histogramsGenerator->NoDataFlagOn();
    histogramsGenerator->Update();
    auto histOutput = histogramsGenerator->GetOutput();
    assert(histOutput);

    // And extract the lower and upper quantile
    typename FloatVectorImageType::PixelType inputMin(nbComp), inputMax(nbComp);
    for (unsigned int i = 0; i < nbComp; ++i)
    {
      auto&& elm = histOutput->GetNthElement(i);
      assert(elm);
      inputMin[i] = elm->Quantile(0, 0.01 * GetParameterFloat("quantile.low"));
      inputMax[i] = elm->Quantile(0, 1.0 - 0.01 * GetParameterFloat("quantile.high"));
    }

    otbAppLogDEBUG(<< std::setprecision(5) << "Min/Max computation done : min=" << inputMin << " max=" << inputMax);

    rescaler->AutomaticInputMinMaxComputationOff();
    rescaler->SetInputMinimum(inputMin);
    rescaler->SetInputMaximum(inputMax);

    if (rescaleType == "linear")
    {
      rescaler->SetGamma(GetParameterFloat("type.linear.gamma"));
    }

    typename TImageType::PixelType minimum(nbComp);
    typename TImageType::PixelType maximum(nbComp);

    /*
    float outminvalue = std::numeric_limits<typename TImageType::InternalPixelType>::min();
    float outmaxvalue = std::numeric_limits<typename TImageType::InternalPixelType>::max();
    // TODO test outmin/outmax values
    if (outminvalue > GetParameterFloat("outmin"))
      itkExceptionMacro("The outmin value at " << GetParameterFloat("outmin") <<
                        " is too low, select a value in "<< outminvalue <<" min.");
    if ( outmaxvalue < GetParameterFloat("outmax") )
      itkExceptionMacro("The outmax value at " << GetParameterFloat("outmax") <<
                        " is too high, select a value in "<< outmaxvalue <<" max.");
    */

    maximum.Fill(GetParameterFloat("outmax"));
    minimum.Fill(GetParameterFloat("outmin"));

    rescaler->SetOutputMinimum(minimum);
    rescaler->SetOutputMaximum(maximum);

    m_Filters.push_back(rescaler.GetPointer());
    SetParameterOutputImage<TImageType>("out", rescaler->GetOutput());
  }

  // Get the bands order
  std::vector<int> const GetChannels()
  {
    std::vector<int> channels;

    int         nbChan      = GetParameterImage("in")->GetNumberOfComponentsPerPixel();
    std::string channelMode = GetParameterString("channels");

    if (channelMode == "grayscale")
    {
      if (GetParameterInt("channels.grayscale.channel") <= nbChan)
      {
        channels = {GetParameterInt("channels.grayscale.channel"), GetParameterInt("channels.grayscale.channel"),
                    GetParameterInt("channels.grayscale.channel")};
      }
      else
      {
        itkExceptionMacro(<< "The channel has an invalid index");
      }
    }
    else if (channelMode == "rgb")
    {
      if ((GetParameterInt("channels.rgb.red") <= nbChan) && (GetParameterInt("channels.rgb.green") <= nbChan) &&
          (GetParameterInt("channels.rgb.blue") <= nbChan))
      {
        channels = {GetParameterInt("channels.rgb.red"), GetParameterInt("channels.rgb.green"), GetParameterInt("channels.rgb.blue")};
      }
      else
      {
        itkExceptionMacro(<< "At least one needed channel has an invalid "
                             "index");
      }
    }
    else if (channelMode == "all")
    {
      // take all bands
      channels.resize(nbChan);
      std::iota(channels.begin(), channels.end(), 1);
    }
    return channels;
  }

  // return an image with the bands order modified of the input image
  template <class TImageType>
  typename TImageType::Pointer GetSelectedChannels()
  {
    typedef MultiToMonoChannelExtractROI<FloatVectorImageType::InternalPixelType, typename TImageType::InternalPixelType> ExtractROIFilterType;
    typedef otb::ImageList<otb::Image<typename TImageType::InternalPixelType>> ImageListType;
    typedef ImageListToVectorImageFilter<ImageListType, TImageType> ListConcatenerFilterType;

    typename ImageListType::Pointer            imageList  = ImageListType::New();
    typename ListConcatenerFilterType::Pointer concatener = ListConcatenerFilterType::New();

    // m_Filters.push_back(imageList.GetPointer());
    m_Filters.push_back(concatener.GetPointer());

    const bool monoChannel = IsParameterEnabled("channels.grayscale");

    // get band order
    const std::vector<int> channels = GetChannels();

    for (auto&& channel : channels)
    {
      typename ExtractROIFilterType::Pointer extractROIFilter = ExtractROIFilterType::New();
      m_Filters.push_back(extractROIFilter.GetPointer());
      extractROIFilter->SetInput(GetParameterImage("in"));
      if (!monoChannel)
        extractROIFilter->SetChannel(channel);

      extractROIFilter->UpdateOutputInformation();
      imageList->PushBack(extractROIFilter->GetOutput());
    }

    concatener->SetInput(imageList);
    concatener->UpdateOutputInformation();

    return concatener->GetOutput();
  }


  void DoExecute() override
  {
    switch (this->GetParameterOutputImagePixelType("out"))
    {
    case ImagePixelType_uint8:
      GenericDoExecute<UInt8VectorImageType>();
      break;
    case ImagePixelType_int16:
      GenericDoExecute<Int16VectorImageType>();
      break;
    case ImagePixelType_uint16:
      GenericDoExecute<UInt16VectorImageType>();
      break;
    case ImagePixelType_int32:
      GenericDoExecute<Int32VectorImageType>();
      break;
    case ImagePixelType_uint32:
      GenericDoExecute<UInt32VectorImageType>();
      break;
    case ImagePixelType_float:
      GenericDoExecute<FloatVectorImageType>();
      break;
    case ImagePixelType_double:
      GenericDoExecute<DoubleVectorImageType>();
      break;
    default:
      itkExceptionMacro("Unknown pixel type " << this->GetParameterOutputImagePixelType("out") << "." << std::endl
                                              << "The DynamicConvert application does not support complex pixel type as output." << std::endl
                                              << "You can use instead the ExtractROI application to perform complex image conversion.");
      break;
    }
  }

  std::vector<itk::LightObject::Pointer> m_Filters;
};
}
}

OTB_APPLICATION_EXPORT(otb::Wrapper::DynamicConvert)