1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbScalarImageToAdvancedTexturesFilter_h
#define otbScalarImageToAdvancedTexturesFilter_h
#include "otbGreyLevelCooccurrenceIndexedList.h"
#include "itkMacro.h"
#include "itkImageToImageFilter.h"
namespace otb
{
/**
* \class ScalarImageToAdvancedTexturesFilter
* \brief In this case, 10 advanced texture features will be processed. The 10
* output image channels are: Mean, Variance, Dissimilarity, Sum Average, Sum
* Variance, Sum Entropy, Difference of Entropies, Difference of Variances, IC1
* and IC2. They are provided in this exact order in the output image. The
* textures are computed over a sliding window with user defined radius.
*
* To improve the speed of computation, a variant of Grey Level Co-occurrence
* Matrix(GLCM) called Grey Level Co-occurrence Indexed List (GLCIL) is
* used. Given below is the mathematical explanation on the computation of each
* textures. Here $ g(i, j) $ is the frequency of element in the GLCIL whose
* index is i, j. GLCIL stores a pair of frequency of two pixels from the given
* offset and the cell index (i, j) of the pixel in the neighborhood
* window. :(where each element in GLCIL is a pair of pixel index and it's
* frequency, $ g(i, j) $ is the frequency value of the pair having index is i, j).
*
* "Mean" \f$ = f_{mean} = \sum_{i, j}i g(i, j) \f$
*
* "Sum of squares: Variance" \f$ = f_4 = \sum_{i, j}(i - \mu)^2 g(i, j) \f$
*
* "Dissimilarity" \f$ = f_5 = \sum_{i, j}(i - j) g(i, j)^2 \f$
*
* "Sum average" \f$ = f_6 = -\sum_{i}i g_{x+y}(i) \f$
*
* "Sum Variance" \f$ = f_7 = \sum_{i}(i - f_8)^2 g_{x+y}(i) \f$
*
* "Sum Entropy" \f$= f_8 = -\sum_{i}g_{x+y}(i) log (g_{x+y}(i)) \f$
*
* "Difference variance" \f$ = f_{10} = variance of g_{x-y}(i) \f$
*
* "Difference entropy" \f$ = f_{11} = -\sum_{i}g_{x-y}(i) log (g_{x-y}(i)) \f$
*
* "Information Measures of Correlation IC1" \f$ = f_{12} = \frac{f_9 - HXY1}{H} \f$
*
* "Information Measures of Correlation IC2" \f$ = f_{13} = \sqrt{1 - \exp{-2}|HXY2 - f_9|} \f$
*
* Above, \f$ \mu = \f$ (weighted pixel average) \f$ = \sum_{i, j}i \cdot g(i, j) =
* \sum_{i, j}j \cdot g(i, j) \f$ (due to matrix symmetry), and
*
* \f$ g_{x+y}(k) = \sum_{i}\sum_{j}g(i)\f$ where \f$ i+j=k \f$ and \f$ k = 2, 3, .., 2N_{g} \f$ and
*
* \f$ g_{x-y}(k) = \sum_{i}\sum_{j}g(i)\f$ where \f$ i-j=k \f$ and \f$ k = 0, 1, .., N_{g}-1 \f$
* \f$N_{g}\f$ : Number of distinct gray levels in the quantized image.
*
* References:
*
* Haralick, R.M., K. Shanmugam and I. Dinstein. 1973. Textural Features for
* Image Classification. IEEE Transactions on Systems, Man and Cybernetics.
* SMC-3(6):610-620.
*
* David A. Clausi and Yongping Zhao. 2002. Rapid extraction of image texture by
* co-occurrence using a hybrid data structure. Comput. Geosci. 28, 6 (July
* 2002), 763-774. DOI=10.1016/S0098-3004(01)00108-X
* http://dx.doi.org/10.1016/S0098-3004(01)00108-X
*
* de O.Bastos, L.; Liatsis, P.; Conci, A., Automatic texture segmentation based
* on k-means clustering and efficient calculation of co-occurrence
* features. Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th
* International Conference on , vol., no., pp.141,144, 25-28 June 2008
* doi: 10.1109/IWSSIP.2008.4604387
*
* Neighborhood size can be set using the SetRadius() method. Offset for co-occurence estimation
* is set using the SetOffset() method.
*
* \sa otb::ScalarImageToCooccurrenceIndexedList
* \sa otb::ScalarImageToTexturesFiler
* \sa otb::ScalarImageToHigherOrderTexturesFilter
* \ingroup Streamed
* \ingroup Threaded
*
*
* \ingroup OTBTextures
*/
template <class TInpuImage, class TOutputImage>
class ScalarImageToAdvancedTexturesFilter : public itk::ImageToImageFilter<TInpuImage, TOutputImage>
{
public:
/** Standard class typedefs */
typedef ScalarImageToAdvancedTexturesFilter Self;
typedef itk::ImageToImageFilter<TInpuImage, TOutputImage> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Creation through the object factory */
itkNewMacro(Self);
/** RTTI */
itkTypeMacro(ScalarImageToAdvancedTexturesFilter, ImageToImageFilter);
/** Template class typedefs */
typedef TInpuImage InputImageType;
typedef typename InputImageType::Pointer InputImagePointerType;
typedef typename InputImageType::PixelType InputPixelType;
typedef typename InputImageType::RegionType InputRegionType;
typedef typename InputImageType::OffsetType OffsetType;
typedef typename InputRegionType::SizeType SizeType;
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::Pointer OutputImagePointerType;
typedef typename OutputImageType::RegionType OutputRegionType;
typedef GreyLevelCooccurrenceIndexedList<InputPixelType> CooccurrenceIndexedListType;
typedef typename CooccurrenceIndexedListType::Pointer CooccurrenceIndexedListPointerType;
typedef typename CooccurrenceIndexedListType::ConstPointer CooccurrenceIndexedListConstPointerType;
typedef typename CooccurrenceIndexedListType::IndexType CooccurrenceIndexType;
typedef typename CooccurrenceIndexedListType::PixelValueType PixelValueType;
typedef typename CooccurrenceIndexedListType::RelativeFrequencyType RelativeFrequencyType;
typedef typename CooccurrenceIndexedListType::VectorType VectorType;
typedef typename VectorType::iterator VectorIteratorType;
typedef typename VectorType::const_iterator VectorConstIteratorType;
/** Set the radius of the window on which textures will be computed */
itkSetMacro(Radius, SizeType);
/** Get the radius of the window on which textures will be computed */
itkGetMacro(Radius, SizeType);
/** Set the offset for co-occurence computation */
itkSetMacro(Offset, OffsetType);
/** Get the offset for co-occurence computation */
itkGetMacro(Offset, OffsetType);
/** Set the number of bin per axis */
itkSetMacro(NumberOfBinsPerAxis, unsigned int);
/** Get the number of bin per axis*/
itkGetMacro(NumberOfBinsPerAxis, unsigned int);
/** Set the input image minimum */
itkSetMacro(InputImageMinimum, InputPixelType);
/** Get the input image minimum */
itkGetMacro(InputImageMinimum, InputPixelType);
/** Set the input image maximum */
itkSetMacro(InputImageMaximum, InputPixelType);
/** Get the input image maximum */
itkGetMacro(InputImageMaximum, InputPixelType);
/** Set the sub-sampling factor */
itkSetMacro(SubsampleFactor, SizeType);
/** Get the sub-sampling factor */
itkGetMacro(SubsampleFactor, SizeType);
/** Set the sub-sampling offset */
itkSetMacro(SubsampleOffset, OffsetType);
/** Get the sub-sampling offset */
itkGetMacro(SubsampleOffset, OffsetType);
/** Get the mean output image */
OutputImageType* GetMeanOutput();
/** Get the variance output image */
OutputImageType* GetVarianceOutput();
/** Get the dissimilarity output image */
OutputImageType* GetDissimilarityOutput();
/** Get the sum average output image */
OutputImageType* GetSumAverageOutput();
/** Get the sum of variances output image */
OutputImageType* GetSumVarianceOutput();
/** Get the sum of entropies output image */
OutputImageType* GetSumEntropyOutput();
/** Get the difference of entropies output image */
OutputImageType* GetDifferenceEntropyOutput();
/** Get the difference of variance output image */
OutputImageType* GetDifferenceVarianceOutput();
/** Get the IC1 image */
OutputImageType* GetIC1Output();
/** Get the IC2 output image */
OutputImageType* GetIC2Output();
protected:
/** Constructor */
ScalarImageToAdvancedTexturesFilter();
/** Destructor */
~ScalarImageToAdvancedTexturesFilter() override;
/** Generate the output information */
void GenerateOutputInformation() override;
/** Generate the input requested region */
void GenerateInputRequestedRegion() override;
/** Before Parallel textures extraction */
void BeforeThreadedGenerateData() override;
/** Parallel textures extraction */
void ThreadedGenerateData(const OutputRegionType& outputRegion, itk::ThreadIdType threadId) override;
private:
ScalarImageToAdvancedTexturesFilter(const Self&) = delete;
void operator=(const Self&) = delete;
/** Convenient method to compute union of 2 regions */
static OutputRegionType RegionUnion(const OutputRegionType& region1, const OutputRegionType& region2);
/** Radius of the window on which to compute textures */
SizeType m_Radius;
/** Offset for co-occurence */
OffsetType m_Offset;
/** Radius of the neighborhood iterator which is minimum of m_Radius */
SizeType m_NeighborhoodRadius;
/** Number of bins per axis */
unsigned int m_NumberOfBinsPerAxis;
/** Input image minimum */
InputPixelType m_InputImageMinimum;
/** Input image maximum */
InputPixelType m_InputImageMaximum;
/** Sub-sampling factor */
SizeType m_SubsampleFactor;
/** Sub-sampling offset */
OffsetType m_SubsampleOffset;
};
} // End namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbScalarImageToAdvancedTexturesFilter.hxx"
#endif
#endif
|