File: otbScalarImageToTexturesFilter.h

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (264 lines) | stat: -rw-r--r-- 9,829 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#ifndef otbScalarImageToTexturesFilter_h
#define otbScalarImageToTexturesFilter_h

#include "otbGreyLevelCooccurrenceIndexedList.h"
#include "itkImageToImageFilter.h"

namespace otb
{
/**
 * \class ScalarImageToTexturesFilter
 * \brief This class compute 8 local Haralick textures features. The 8 output
 * image channels are: Energy, Entropy, Correlation, Inverse Difference Moment,
 * Inertia, Cluster Shade, Cluster Prominence and Haralick Correlation. They
 * are provided in this exact order in the output image. Thus, this application
 * computes the following Haralick textures over a neighborhood with user
 * defined radius.
 *
 * To improve the speed of computation, a variant of Grey Level Co-occurrence
 * Matrix(GLCM) called Grey Level Co-occurrence Indexed List (GLCIL) is
 * used. Given below is the mathematical explanation on the computation of each
 * textures. Here $ g(i, j) $ is the frequency of element in the GLCIL whose
 * index is i, j. GLCIL stores a pair of frequency of two pixels from the given
 * offset and the cell index (i, j) of the pixel in the neighborhood
 * window. :(where each element in GLCIL is a pair of pixel index and it's
 * frequency, $ g(i, j) $ is the frequency value of the pair having index is i, j).
 *
 * "Energy" \f$ = f_1 = \sum_{i, j}g(i, j)^2 \f$
 *
 * "Entropy" \f$ = f_2 = -\sum_{i, j}g(i, j) \log_2 g(i, j)\f$, or 0 if \f$g(i, j) = 0\f$
 *
 * "Correlation" \f$ = f_3 = \sum_{i, j}\frac{(i - \mu)(j - \mu)g(i, j)}{\sigma^2} \f$
 *
 * "Difference Moment" \f$= f_4 = \sum_{i, j}\frac{1}{1 + (i - j)^2}g(i, j) \f$
 *
 * "Inertia" \f$ = f_5 = \sum_{i, j}(i - j)^2g(i, j) \f$ (sometimes called "contrast")
 *
 * "Cluster Shade" \f$ = f_6 = \sum_{i, j}((i - \mu) + (j - \mu))^3 g(i, j) \f$
 *
 * "Cluster Prominence" \f$ = f_7 = \sum_{i, j}((i - \mu) + (j - \mu))^4 g(i, j) \f$
 *
 * "Haralick's Correlation" \f$ = f_8 = \frac{\sum_{i, j}(i, j) g(i, j) -\mu_t^2}{\sigma_t^2} \f$
 * where \f$\mu_t\f$ and \f$\sigma_t\f$ are the mean and standard deviation of the row
 * (or column, due to symmetry) sums.
 *
 * Above, \f$ \mu =  \f$ (weighted pixel average) \f$ = \sum_{i, j}i \cdot g(i, j) =
 * \sum_{i, j}j \cdot g(i, j) \f$ (due to matrix symmetry), and
 *
 * \f$ \sigma =  \f$ (weighted pixel variance) \f$ = \sum_{i, j}(i - \mu)^2 \cdot g(i, j) =
 * \sum_{i, j}(j - \mu)^2 \cdot g(i, j)  \f$  (due to matrix symmetry)
 *

 * References:
 *
 * Haralick, R.M., K. Shanmugam and I. Dinstein. 1973.  Textural Features for
 * Image Classification. IEEE Transactions on Systems, Man and Cybernetics.
 * SMC-3(6):610-620.
 *
 * David A. Clausi and Yongping Zhao. 2002. Rapid extraction of image texture by
 * co-occurrence using a hybrid data structure. Comput. Geosci. 28, 6 (July
 * 2002), 763-774. DOI=10.1016/S0098-3004(01)00108-X
 * http://dx.doi.org/10.1016/S0098-3004(01)00108-X
 *
 * de O.Bastos, L.; Liatsis, P.; Conci, A., Automatic texture segmentation based
 * on k-means clustering and efficient calculation of co-occurrence
 * features. Systems, Signals and Image Processing, 2008. IWSSIP 2008. 15th
 * International Conference on , vol., no., pp.141,144, 25-28 June 2008
 * doi: 10.1109/IWSSIP.2008.4604387
 *
 * Neighborhood size can be set using the SetRadius() method. Offset for co-occurence estimation
 * is set using the SetOffset() method.
 *
 * \sa otb::GreyLevelCooccurrenceIndexedList
 * \sa otb::ScalarImageToAdvancedTexturesFiler
 * \sa otb::ScalarImageToHigherOrderTexturesFilter
 *
 * \ingroup Streamed
 * \ingroup Threaded
 *
 *
 * \ingroup OTBTextures
 */
template <class TInpuImage, class TOutputImage>
class ScalarImageToTexturesFilter : public itk::ImageToImageFilter<TInpuImage, TOutputImage>
{
public:
  /** Standard class typedefs */
  typedef ScalarImageToTexturesFilter Self;
  typedef itk::ImageToImageFilter<TInpuImage, TOutputImage> Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Creation through the object factory */
  itkNewMacro(Self);

  /** RTTI */
  itkTypeMacro(ScalarImageToTexturesFilter, ImageToImageFilter);

  /** Template class typedefs */
  typedef TInpuImage                          InputImageType;
  typedef typename InputImageType::Pointer    InputImagePointerType;
  typedef typename InputImageType::PixelType  InputPixelType;
  typedef typename InputImageType::RegionType InputRegionType;
  typedef typename InputRegionType::SizeType  SizeType;
  typedef typename InputImageType::OffsetType OffsetType;

  typedef TOutputImage                         OutputImageType;
  typedef typename OutputImageType::Pointer    OutputImagePointerType;
  typedef typename OutputImageType::RegionType OutputRegionType;

  typedef GreyLevelCooccurrenceIndexedList<InputPixelType>            CooccurrenceIndexedListType;
  typedef typename CooccurrenceIndexedListType::Pointer               CooccurrenceIndexedListPointerType;
  typedef typename CooccurrenceIndexedListType::ConstPointer          CooccurrenceIndexedListConstPointerType;
  typedef typename CooccurrenceIndexedListType::IndexType             CooccurrenceIndexType;
  typedef typename CooccurrenceIndexedListType::PixelValueType        PixelValueType;
  typedef typename CooccurrenceIndexedListType::RelativeFrequencyType RelativeFrequencyType;
  typedef typename CooccurrenceIndexedListType::VectorType            VectorType;

  typedef typename VectorType::iterator       VectorIteratorType;
  typedef typename VectorType::const_iterator VectorConstIteratorType;

  /** Set the radius of the window on which textures will be computed */
  itkSetMacro(Radius, SizeType);
  /** Get the radius of the window on which textures will be computed */
  itkGetMacro(Radius, SizeType);

  /** Set the offset for co-occurence computation */
  itkSetMacro(Offset, OffsetType);

  /** Get the offset for co-occurence computation */
  itkGetMacro(Offset, OffsetType);

  /** Set the number of bin per axis */
  itkSetMacro(NumberOfBinsPerAxis, unsigned int);

  /** Get the number of bin per axis */
  itkGetMacro(NumberOfBinsPerAxis, unsigned int);

  /** Set the input image minimum */
  itkSetMacro(InputImageMinimum, InputPixelType);

  /** Get the input image minimum */
  itkGetMacro(InputImageMinimum, InputPixelType);

  /** Set the input image maximum */
  itkSetMacro(InputImageMaximum, InputPixelType);

  /** Get the input image maximum */
  itkGetMacro(InputImageMaximum, InputPixelType);

  /** Set the sub-sampling factor */
  itkSetMacro(SubsampleFactor, SizeType);

  /** Get the sub-sampling factor */
  itkGetMacro(SubsampleFactor, SizeType);

  /** Set the sub-sampling offset */
  itkSetMacro(SubsampleOffset, OffsetType);

  /** Get the sub-sampling offset */
  itkGetMacro(SubsampleOffset, OffsetType);

  /** Get the energy output image */
  OutputImageType* GetEnergyOutput();

  /** Get the entropy output image */
  OutputImageType* GetEntropyOutput();

  /** Get the correlation output image */
  OutputImageType* GetCorrelationOutput();

  /** Get the inverse difference moment output image */
  OutputImageType* GetInverseDifferenceMomentOutput();

  /** Get the inertia output image */
  OutputImageType* GetInertiaOutput();

  /** Get the cluster shade output image */
  OutputImageType* GetClusterShadeOutput();

  /** Get the cluster prominence image */
  OutputImageType* GetClusterProminenceOutput();

  /** Get the Haralick correlation output image */
  OutputImageType* GetHaralickCorrelationOutput();

protected:
  /** Constructor */
  ScalarImageToTexturesFilter();
  /** Destructor */
  ~ScalarImageToTexturesFilter() override;
  /** Generate the output information */
  void GenerateOutputInformation() override;
  /** Generate the input requested region */
  void GenerateInputRequestedRegion() override;
  /** Before Parallel textures extraction */
  void BeforeThreadedGenerateData() override;
  /** Parallel textures extraction */
  void ThreadedGenerateData(const OutputRegionType& outputRegion, itk::ThreadIdType threadId) override;

private:
  ScalarImageToTexturesFilter(const Self&) = delete;
  void operator=(const Self&) = delete;

  /** Convenient method to compute union of 2 regions */
  static OutputRegionType RegionUnion(const OutputRegionType& region1, const OutputRegionType& region2);

  /** Radius of the window on which to compute textures */
  SizeType m_Radius;

  /** Offset for co-occurence */
  OffsetType m_Offset;

  /** Radius of the neighborhood iterator which is minimum of m_Radius */
  SizeType m_NeighborhoodRadius;

  /** Number of bins per axis */
  unsigned int m_NumberOfBinsPerAxis;

  /** Input image minimum */
  InputPixelType m_InputImageMinimum;

  /** Input image maximum */
  InputPixelType m_InputImageMaximum;

  // TODO: should we use constexpr? only c++11 and problem for msvc
  inline double GetPixelValueTolerance() const
  {
    return 0.0001;
  }

  /** Sub-sampling factor */
  SizeType m_SubsampleFactor;

  /** Sub-sampling offset */
  OffsetType m_SubsampleOffset;
};
} // End namespace otb

#ifndef OTB_MANUAL_INSTANTIATION
#include "otbScalarImageToTexturesFilter.hxx"
#endif

#endif