1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbImageDimensionalityReduction_h
#define otbImageDimensionalityReduction_h
#include "itkImageToImageFilter.h"
#include "otbMachineLearningModel.h"
#include "otbImage.h"
namespace otb
{
/** \class ImageClassificationFilter
* \brief This filter performs the classification of a VectorImage using a Model.
*
* This filter is streamed and threaded, allowing to classify huge images
* while fully using several core.
*
* \sa Classifier
* \ingroup Streamed
* \ingroup Threaded
*
* \ingroup OTBDimensionalityReductionLearning
*/
template <class TInputImage, class TOutputImage, class TMaskImage = TOutputImage>
class ITK_EXPORT ImageDimensionalityReductionFilter : public itk::ImageToImageFilter<TInputImage, TOutputImage>
{
public:
/** Standard typedefs */
typedef ImageDimensionalityReductionFilter Self;
typedef itk::ImageToImageFilter<TInputImage, TOutputImage> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
/** Type macro */
itkNewMacro(Self);
/** Creation through object factory macro */
itkTypeMacro(ImageDimensionalityReductionFilter, ImageToImageFilter);
typedef TInputImage InputImageType;
typedef typename InputImageType::ConstPointer InputImageConstPointerType;
typedef typename InputImageType::InternalPixelType ValueType;
typedef TMaskImage MaskImageType;
typedef typename MaskImageType::ConstPointer MaskImageConstPointerType;
typedef typename MaskImageType::Pointer MaskImagePointerType;
typedef TOutputImage OutputImageType;
typedef typename OutputImageType::Pointer OutputImagePointerType;
typedef typename OutputImageType::RegionType OutputImageRegionType;
typedef typename OutputImageType::InternalPixelType LabelType;
typedef MachineLearningModel<itk::VariableLengthVector<ValueType>, itk::VariableLengthVector<LabelType>> ModelType;
typedef typename ModelType::Pointer ModelPointerType;
typedef otb::Image<double> ConfidenceImageType;
typedef typename ConfidenceImageType::Pointer ConfidenceImagePointerType;
/** Set/Get the model */
itkSetObjectMacro(Model, ModelType);
itkGetObjectMacro(Model, ModelType);
/** Set/Get the default label */
itkSetMacro(DefaultLabel, LabelType);
itkGetMacro(DefaultLabel, LabelType);
/** Set/Get the confidence map flag */
itkSetMacro(UseConfidenceMap, bool);
itkGetMacro(UseConfidenceMap, bool);
itkSetMacro(BatchMode, bool);
itkGetMacro(BatchMode, bool);
itkBooleanMacro(BatchMode);
/**
* If set, only pixels within the mask will be classified.
* All pixels with a value greater than 0 in the mask, will be classified.
* \param mask The input mask.
*/
void SetInputMask(const MaskImageType* mask);
/**
* Get the input mask.
* \return The mask.
*/
const MaskImageType* GetInputMask(void);
/**
* Get the output confidence map
*/
ConfidenceImageType* GetOutputConfidence(void);
protected:
/** Constructor */
ImageDimensionalityReductionFilter();
/** Destructor */
~ImageDimensionalityReductionFilter() override
{
}
/** Generate output information */
virtual void GenerateOutputInformation() override;
/** Threaded generate data */
void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId) override;
void ClassicThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
void BatchThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
/** Before threaded generate data */
void BeforeThreadedGenerateData() override;
/**PrintSelf method */
void PrintSelf(std::ostream& os, itk::Indent indent) const override;
private:
ImageDimensionalityReductionFilter(const Self&) = delete;
void operator=(const Self&) = delete;
/** The model used for classification */
ModelPointerType m_Model;
/** Default label for invalid pixels (when using a mask) */
LabelType m_DefaultLabel;
/** Flag to produce the confidence map (if the model supports it) */
bool m_UseConfidenceMap;
bool m_BatchMode;
};
} // End namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbImageDimensionalityReductionFilter.hxx"
#endif
#endif
|