File: otbImageDimensionalityReductionFilter.h

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (147 lines) | stat: -rw-r--r-- 5,108 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#ifndef otbImageDimensionalityReduction_h
#define otbImageDimensionalityReduction_h

#include "itkImageToImageFilter.h"
#include "otbMachineLearningModel.h"
#include "otbImage.h"

namespace otb
{
/** \class ImageClassificationFilter
 *  \brief This filter performs the classification of a VectorImage using a Model.
 *
 *  This filter is streamed and threaded, allowing to classify huge images
 *  while fully using several core.
 *
 * \sa Classifier
 * \ingroup Streamed
 * \ingroup Threaded
 *
 * \ingroup OTBDimensionalityReductionLearning
 */
template <class TInputImage, class TOutputImage, class TMaskImage = TOutputImage>
class ITK_EXPORT ImageDimensionalityReductionFilter : public itk::ImageToImageFilter<TInputImage, TOutputImage>
{
public:
  /** Standard typedefs */
  typedef ImageDimensionalityReductionFilter Self;
  typedef itk::ImageToImageFilter<TInputImage, TOutputImage> Superclass;
  typedef itk::SmartPointer<Self>       Pointer;
  typedef itk::SmartPointer<const Self> ConstPointer;

  /** Type macro */
  itkNewMacro(Self);

  /** Creation through object factory macro */
  itkTypeMacro(ImageDimensionalityReductionFilter, ImageToImageFilter);

  typedef TInputImage                                InputImageType;
  typedef typename InputImageType::ConstPointer      InputImageConstPointerType;
  typedef typename InputImageType::InternalPixelType ValueType;

  typedef TMaskImage                           MaskImageType;
  typedef typename MaskImageType::ConstPointer MaskImageConstPointerType;
  typedef typename MaskImageType::Pointer      MaskImagePointerType;

  typedef TOutputImage                                OutputImageType;
  typedef typename OutputImageType::Pointer           OutputImagePointerType;
  typedef typename OutputImageType::RegionType        OutputImageRegionType;
  typedef typename OutputImageType::InternalPixelType LabelType;

  typedef MachineLearningModel<itk::VariableLengthVector<ValueType>, itk::VariableLengthVector<LabelType>> ModelType;
  typedef typename ModelType::Pointer ModelPointerType;

  typedef otb::Image<double>                    ConfidenceImageType;
  typedef typename ConfidenceImageType::Pointer ConfidenceImagePointerType;

  /** Set/Get the model */
  itkSetObjectMacro(Model, ModelType);
  itkGetObjectMacro(Model, ModelType);

  /** Set/Get the default label */
  itkSetMacro(DefaultLabel, LabelType);
  itkGetMacro(DefaultLabel, LabelType);

  /** Set/Get the confidence map flag */
  itkSetMacro(UseConfidenceMap, bool);
  itkGetMacro(UseConfidenceMap, bool);

  itkSetMacro(BatchMode, bool);
  itkGetMacro(BatchMode, bool);
  itkBooleanMacro(BatchMode);

  /**
   * If set, only pixels within the mask will be classified.
   * All pixels with a value greater than 0 in the mask, will be classified.
   * \param mask The input mask.
   */
  void SetInputMask(const MaskImageType* mask);

  /**
   * Get the input mask.
   * \return The mask.
   */
  const MaskImageType* GetInputMask(void);

  /**
   * Get the output confidence map
   */
  ConfidenceImageType* GetOutputConfidence(void);

protected:
  /** Constructor */
  ImageDimensionalityReductionFilter();
  /** Destructor */
  ~ImageDimensionalityReductionFilter() override
  {
  }

  /** Generate output information */
  virtual void GenerateOutputInformation() override;

  /** Threaded generate data */
  void ThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId) override;
  void ClassicThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
  void BatchThreadedGenerateData(const OutputImageRegionType& outputRegionForThread, itk::ThreadIdType threadId);
  /** Before threaded generate data */
  void BeforeThreadedGenerateData() override;
  /**PrintSelf method */
  void PrintSelf(std::ostream& os, itk::Indent indent) const override;

private:
  ImageDimensionalityReductionFilter(const Self&) = delete;
  void operator=(const Self&) = delete;

  /** The model used for classification */
  ModelPointerType m_Model;
  /** Default label for invalid pixels (when using a mask) */
  LabelType m_DefaultLabel;
  /** Flag to produce the confidence map (if the model supports it) */
  bool m_UseConfidenceMap;
  bool m_BatchMode;
};
} // End namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbImageDimensionalityReductionFilter.hxx"
#endif

#endif