1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef otbSOMModel_h
#define otbSOMModel_h
#include "otbSOMMap.h"
#include "itkEuclideanDistanceMetric.h" // the distance function
#include "otbCzihoSOMLearningBehaviorFunctor.h"
#include "otbCzihoSOMNeighborhoodBehaviorFunctor.h"
#include "otbMachineLearningModelTraits.h"
#include "otbMachineLearningModel.h"
namespace otb
{
/** \class SOMModel
* MachineLearningModel for Self-Organizing Map
*
* \ingroup OTBDimensionalityReductionLearning
*/
template <class TInputValue, unsigned int MapDimension>
class ITK_EXPORT SOMModel : public MachineLearningModel<itk::VariableLengthVector<TInputValue>, itk::VariableLengthVector<TInputValue>>
{
public:
typedef SOMModel Self;
typedef MachineLearningModel<itk::VariableLengthVector<TInputValue>, itk::VariableLengthVector<TInputValue>> Superclass;
typedef itk::SmartPointer<Self> Pointer;
typedef itk::SmartPointer<const Self> ConstPointer;
typedef typename Superclass::InputValueType InputValueType;
typedef typename Superclass::InputSampleType InputSampleType;
typedef typename Superclass::InputListSampleType InputListSampleType;
typedef typename InputListSampleType::Pointer ListSamplePointerType;
typedef typename Superclass::TargetValueType TargetValueType;
typedef typename Superclass::TargetSampleType TargetSampleType;
typedef typename Superclass::TargetListSampleType TargetListSampleType;
// Confidence map related typedefs
typedef typename Superclass::ConfidenceValueType ConfidenceValueType;
typedef typename Superclass::ConfidenceSampleType ConfidenceSampleType;
typedef typename Superclass::ConfidenceListSampleType ConfidenceListSampleType;
typedef typename Superclass::ProbaSampleType ProbaSampleType;
typedef typename Superclass::ProbaListSampleType ProbaListSampleType;
typedef SOMMap<itk::VariableLengthVector<TInputValue>, itk::Statistics::EuclideanDistanceMetric<itk::VariableLengthVector<TInputValue>>, MapDimension>
MapType;
typedef typename MapType::SizeType SizeType;
typedef typename MapType::SpacingType SpacingType;
typedef Functor::CzihoSOMLearningBehaviorFunctor SOMLearningBehaviorFunctorType;
typedef Functor::CzihoSOMNeighborhoodBehaviorFunctor SOMNeighborhoodBehaviorFunctorType;
itkNewMacro(Self);
itkTypeMacro(SOMModel, DimensionalityReductionModel);
/** Accessors */
itkSetMacro(NumberOfIterations, unsigned int);
itkGetMacro(NumberOfIterations, unsigned int);
itkSetMacro(BetaInit, double);
itkGetMacro(BetaInit, double);
itkSetMacro(WriteMap, bool);
itkGetMacro(WriteMap, bool);
itkSetMacro(BetaEnd, double);
itkGetMacro(BetaEnd, double);
itkSetMacro(MinWeight, InputValueType);
itkGetMacro(MinWeight, InputValueType);
itkSetMacro(MaxWeight, InputValueType);
itkGetMacro(MaxWeight, InputValueType);
itkSetMacro(MapSize, SizeType);
itkGetMacro(MapSize, SizeType);
itkSetMacro(NeighborhoodSizeInit, SizeType);
itkGetMacro(NeighborhoodSizeInit, SizeType);
itkSetMacro(RandomInit, bool);
itkGetMacro(RandomInit, bool);
itkSetMacro(Seed, unsigned int);
itkGetMacro(Seed, unsigned int);
bool CanReadFile(const std::string& filename) override;
bool CanWriteFile(const std::string& filename) override;
void Save(const std::string& filename, const std::string& name = "") override;
void Load(const std::string& filename, const std::string& name = "") override;
void Train() override;
protected:
SOMModel();
~SOMModel() override;
private:
typename MapType::Pointer m_SOMMap;
virtual TargetSampleType DoPredict(const InputSampleType& input, ConfidenceValueType* quality = nullptr, ProbaSampleType* proba = nullptr) const override;
/** Map size (width, height) */
SizeType m_MapSize{0,0};
/** Number of iterations */
unsigned int m_NumberOfIterations;
/** Initial learning coefficient */
double m_BetaInit;
/** Final learning coefficient */
double m_BetaEnd;
/** Initial neighborhood size */
SizeType m_NeighborhoodSizeInit{0,0};
/** Minimum initial neuron weights */
InputValueType m_MinWeight;
/** Maximum initial neuron weights */
InputValueType m_MaxWeight;
/** Random initialization bool */
bool m_RandomInit;
/** Seed for random initialization */
unsigned int m_Seed;
/** Behavior of the Learning weightening (link to the beta coefficient) */
SOMLearningBehaviorFunctorType m_BetaFunctor;
/** Behavior of the Neighborhood extent */
SOMNeighborhoodBehaviorFunctorType m_NeighborhoodSizeFunctor;
/** Write the SOM Map vectors in a txt file */
bool m_WriteMap;
};
} // end namespace otb
#ifndef OTB_MANUAL_INSTANTIATION
#include "otbSOMModel.hxx"
#endif
#endif
|