File: otbKNearestNeighborsMachineLearningModel.hxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (285 lines) | stat: -rw-r--r-- 8,983 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#ifndef otbKNearestNeighborsMachineLearningModel_hxx
#define otbKNearestNeighborsMachineLearningModel_hxx

#include "otb_boost_lexicalcast_header.h"
#include "otbKNearestNeighborsMachineLearningModel.h"
#include "otbOpenCVUtils.h"

#include <fstream>
#include <set>
#include "itkMacro.h"

namespace otb
{

template <class TInputValue, class TTargetValue>
KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::KNearestNeighborsMachineLearningModel()
  :
    m_KNearestModel(cv::ml::KNearest::create()),
    m_K(32),
    m_DecisionRule(KNN_VOTING)
{
  this->m_ConfidenceIndex       = true;
  this->m_IsRegressionSupported = true;
}

/** Train the machine learning model */
template <class TInputValue, class TTargetValue>
void KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::Train()
{
  // convert listsample to opencv matrix
  cv::Mat samples;
  otb::ListSampleToMat<InputListSampleType>(this->GetInputListSample(), samples);

  cv::Mat labels;
  otb::ListSampleToMat<TargetListSampleType>(this->GetTargetListSample(), labels);

  // update decision rule if needed
  if (this->m_RegressionMode)
  {
    if (this->m_DecisionRule == KNN_VOTING)
    {
      this->SetDecisionRule(KNN_MEAN);
    }
  }
  else
  {
    if (this->m_DecisionRule != KNN_VOTING)
    {
      this->SetDecisionRule(KNN_VOTING);
    }
  }

  m_KNearestModel->setDefaultK(m_K);
  // would be nice to expose KDTree mode ( maybe in a different classifier)
  m_KNearestModel->setAlgorithmType(cv::ml::KNearest::BRUTE_FORCE);
  m_KNearestModel->setIsClassifier(!this->m_RegressionMode);
  // setEmax() ?
  m_KNearestModel->train(cv::ml::TrainData::create(samples, cv::ml::ROW_SAMPLE, labels));
}

template <class TInputValue, class TTargetValue>
typename KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::TargetSampleType
KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::DoPredict(const InputSampleType& input, ConfidenceValueType* quality,
                                                                            ProbaSampleType* proba) const
{
  TargetSampleType target;

  // convert listsample to Mat
  cv::Mat sample;
  otb::SampleToMat<InputSampleType>(input, sample);

  float   result;
  cv::Mat nearest(1, m_K, CV_32FC1);
  result = m_KNearestModel->findNearest(sample, m_K, cv::noArray(), nearest, cv::noArray());

  // compute quality if asked (only happens in classification mode)
  if (quality != nullptr)
  {
    assert(!this->m_RegressionMode);
    unsigned int accuracy = 0;
    for (int k = 0; k < m_K; ++k)
    {
      if (nearest.at<float>(0, k) == result)
      {
        accuracy++;
      }
    }
    (*quality) = static_cast<ConfidenceValueType>(accuracy);
  }
  if (proba != nullptr && !this->m_ProbaIndex)
    itkExceptionMacro("Probability per class not available for this classifier !");

  // Decision rule :
  //  VOTING is OpenCV default behaviour for classification
  //  MEAN is OpenCV default behaviour for regression
  //  MEDIAN : only case that must be handled here
  if (this->m_DecisionRule == KNN_MEDIAN)
  {
    std::multiset<float> values;
    for (int k = 0; k < m_K; ++k)
    {
      values.insert(nearest.at<float>(0, k));
    }
    std::multiset<float>::iterator median = values.begin();
    int                            pos    = (m_K >> 1);
    for (int k = 0; k < pos; ++k, ++median)
    {
    }
    result = *median;
  }

  target[0] = static_cast<TTargetValue>(result);
  return target;
}

template <class TInputValue, class TTargetValue>
void KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::Save(const std::string& filename, const std::string& name)
{
  cv::FileStorage fs(filename, cv::FileStorage::WRITE);
  fs << (name.empty() ? m_KNearestModel->getDefaultName() : cv::String(name)) << "{";
  m_KNearestModel->write(fs);
  fs << "DecisionRule" << m_DecisionRule;
  fs << "}";
  fs.release();
}

template <class TInputValue, class TTargetValue>
void KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::Load(const std::string& filename, const std::string& itkNotUsed(name))
{
  std::ifstream ifs(filename);
  if (!ifs)
  {
    itkExceptionMacro(<< "Could not read file " << filename);
  }
  // try to load with the 3.x syntax
  bool isKNNv3 = false;
  while (!ifs.eof())
  {
    std::string line;
    std::getline(ifs, line);
    if (line.find(m_KNearestModel->getDefaultName()) != std::string::npos)
    {
      isKNNv3 = true;
      break;
    }
  }
  ifs.close();
  if (isKNNv3)
  {
    cv::FileStorage fs(filename, cv::FileStorage::READ);
    m_KNearestModel->read(fs.getFirstTopLevelNode());
    m_DecisionRule = (int)(fs.getFirstTopLevelNode()["DecisionRule"]);
    m_K = m_KNearestModel->getDefaultK();
    return;
  }
  ifs.open(filename);
  // there is no m_KNearestModel->load(filename.c_str(), name.c_str());

  // first line is the K parameter of this algorithm.
  std::string line;
  std::getline(ifs, line);
  std::istringstream iss(line);
  if (line.find("K") == std::string::npos)
  {
    itkExceptionMacro(<< "Could not read file " << filename);
  }
  std::string::size_type pos     = line.find_first_of("=", 0);
  std::string::size_type nextpos = line.find_first_of(" \n\r", pos + 1);
  this->SetK(boost::lexical_cast<int>(line.substr(pos + 1, nextpos - pos - 1)));

  // second line is the IsRegression parameter
  std::getline(ifs, line);
  if (line.find("IsRegression") == std::string::npos)
  {
    itkExceptionMacro(<< "Could not read file " << filename);
  }
  pos     = line.find_first_of("=", 0);
  nextpos = line.find_first_of(" \n\r", pos + 1);
  this->SetRegressionMode(boost::lexical_cast<bool>(line.substr(pos + 1, nextpos - pos - 1)));
  // third line is the DecisionRule parameter (only for regression)
  if (this->m_RegressionMode)
  {
    std::getline(ifs, line);
    pos     = line.find_first_of("=", 0);
    nextpos = line.find_first_of(" \n\r", pos + 1);
    this->SetDecisionRule(boost::lexical_cast<int>(line.substr(pos + 1, nextpos - pos - 1)));
  }
  // Clear previous listSample (if any)
  typename InputListSampleType::Pointer  samples = InputListSampleType::New();
  typename TargetListSampleType::Pointer labels  = TargetListSampleType::New();

  // Read a txt file. First column is the label, other columns are the sample data.
  unsigned int nbFeatures = 0;
  while (!ifs.eof())
  {
    std::getline(ifs, line);

    if (nbFeatures == 0)
    {
      nbFeatures = std::count(line.begin(), line.end(), ' ');
    }

    if (line.size() > 1)
    {
      // Parse label
      pos = line.find_first_of(" ", 0);
      TargetSampleType label;
      label[0] = static_cast<TargetValueType>(boost::lexical_cast<unsigned int>(line.substr(0, pos)));
      // Parse sample features
      InputSampleType sample(nbFeatures);
      sample.Fill(0);
      unsigned int id = 0;
      nextpos         = line.find_first_of(" ", pos + 1);
      while (nextpos != std::string::npos)
      {
        nextpos             = line.find_first_of(" \n\r", pos + 1);
        std::string subline = line.substr(pos + 1, nextpos - pos - 1);
        // sample[id] = static_cast<InputValueType>(boost::lexical_cast<float>(subline));
        sample[id] = atof(subline.c_str());
        pos        = nextpos;
        id++;
      }
      samples->SetMeasurementVectorSize(itk::NumericTraits<InputSampleType>::GetLength(sample));
      samples->PushBack(sample);
      labels->PushBack(label);
    }
  }
  ifs.close();

  this->SetInputListSample(samples);
  this->SetTargetListSample(labels);
  this->Train();
}

template <class TInputValue, class TTargetValue>
bool KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::CanReadFile(const std::string& file)
{
  try
  {
    this->Load(file);
  }
  catch (...)
  {
    return false;
  }
  return true;
}

template <class TInputValue, class TTargetValue>
bool KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::CanWriteFile(const std::string& itkNotUsed(file))
{
  return false;
}


template <class TInputValue, class TTargetValue>
void KNearestNeighborsMachineLearningModel<TInputValue, TTargetValue>::PrintSelf(std::ostream& os, itk::Indent indent) const
{
  // Call superclass implementation
  Superclass::PrintSelf(os, indent);
}

} // end namespace otb

#endif