File: otbImageClassificationFilter.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (101 lines) | stat: -rw-r--r-- 3,281 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

#include "otbImageClassificationFilter.h"
#include "otbVectorImage.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbMachineLearningModelFactory.h"

const unsigned int     Dimension = 2;
typedef double         PixelType;
typedef unsigned short LabeledPixelType;

typedef otb::VectorImage<PixelType, Dimension>                      ImageType;
typedef otb::Image<LabeledPixelType, Dimension>                     LabeledImageType;
typedef otb::ImageClassificationFilter<ImageType, LabeledImageType> ClassificationFilterType;
typedef ClassificationFilterType::ModelType ModelType;
typedef ClassificationFilterType::ValueType ValueType;
typedef ClassificationFilterType::LabelType LabelType;
typedef otb::MachineLearningModelFactory<ValueType, LabelType> MachineLearningModelFactoryType;
typedef otb::ImageFileReader<ImageType>        ReaderType;
typedef otb::ImageFileWriter<LabeledImageType> WriterType;


int otbImageClassificationFilterLoadModel(int itkNotUsed(argc), char* argv[])
{
  const char* infname    = argv[1];
  const char* modelfname = argv[2];

  // Instantiating object
  ClassificationFilterType::Pointer filter = ClassificationFilterType::New();

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(infname);

  ModelType::Pointer model;

  model = MachineLearningModelFactoryType::CreateMachineLearningModel(modelfname, MachineLearningModelFactoryType::ReadMode);

  if (model.IsNull())
  {
    std::cerr << "Unable to create a model from " << modelfname << std::endl;
    return EXIT_FAILURE;
  }

  model->Load(modelfname);
  return EXIT_SUCCESS;
}

int otbImageClassificationFilter(int itkNotUsed(argc), char* argv[])
{
  const char* infname    = argv[1];
  const char* modelfname = argv[2];
  const char* outfname   = argv[3];

  // Instantiating object
  ClassificationFilterType::Pointer filter = ClassificationFilterType::New();

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName(infname);

  ModelType::Pointer model;

  model = MachineLearningModelFactoryType::CreateMachineLearningModel(modelfname, MachineLearningModelFactoryType::ReadMode);

  if (model.IsNull())
  {
    std::cerr << "Unable to create a model from " << modelfname << std::endl;
    return EXIT_FAILURE;
  }

  model->Load(modelfname);

  filter->SetModel(model);
  filter->SetInput(reader->GetOutput());

  WriterType::Pointer writer = WriterType::New();
  writer->SetInput(filter->GetOutput());
  writer->SetFileName(outfname);
  writer->Update();

  return EXIT_SUCCESS;
}