File: otbLabelMapClassifier.cxx

package info (click to toggle)
otb 8.1.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 1,030,436 kB
  • sloc: xml: 231,007; cpp: 224,490; ansic: 4,592; sh: 1,790; python: 1,131; perl: 92; makefile: 72
file content (169 lines) | stat: -rw-r--r-- 7,324 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/*
 * Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
 *
 * This file is part of Orfeo Toolbox
 *
 *     https://www.orfeo-toolbox.org/
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */


#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"

#include <fstream>
#include <iostream>

#include "otbVectorImage.h"
#include "otbAttributesMapLabelObjectWithClassLabel.h"
#include "itkLabelImageToLabelMapFilter.h"
#include "otbShapeAttributesLabelMapFilter.h"
#include "otbBandsStatisticsAttributesLabelMapFilter.h"
#include "otbLabelMapWithClassLabelToLabeledSampleListFilter.h"
#include "otbLibSVMMachineLearningModel.h"
#include "otbLabelMapClassifier.h"
#include "otbLabelMapWithClassLabelToClassLabelImageFilter.h"

const unsigned int     Dimension = 2;
typedef unsigned short LabelType;
typedef double         DoublePixelType;

typedef otb::AttributesMapLabelObjectWithClassLabel<LabelType, Dimension, double, LabelType> LabelObjectType;
typedef itk::LabelMap<LabelObjectType> LabelMapType;
typedef otb::VectorImage<DoublePixelType, Dimension> VectorImageType;
typedef otb::Image<unsigned int, 2>                  LabeledImageType;

typedef otb::ImageFileReader<VectorImageType>  ReaderType;
typedef otb::ImageFileReader<LabeledImageType> LabeledReaderType;
typedef otb::ImageFileWriter<VectorImageType>  WriterType;
typedef otb::ImageFileWriter<LabeledImageType> LabeledWriterType;

typedef itk::LabelImageToLabelMapFilter<LabeledImageType, LabelMapType> LabelMapFilterType;
typedef otb::ShapeAttributesLabelMapFilter<LabelMapType> ShapeFilterType;
typedef otb::BandsStatisticsAttributesLabelMapFilter<LabelMapType, VectorImageType> BandsStatisticsFilterType;

// SVM model estimation
typedef itk::VariableLengthVector<double> VectorType;
typedef itk::FixedArray<LabelType, 1> TrainingVectorType;
typedef itk::Statistics::ListSample<VectorType>         ListSampleType;
typedef itk::Statistics::ListSample<TrainingVectorType> TrainingListSampleType;
typedef otb::LabelMapWithClassLabelToLabeledSampleListFilter<LabelMapType, ListSampleType, TrainingListSampleType> ListSampleFilterType;
typedef otb::LibSVMMachineLearningModel<double, LabelType> SVMType;

typedef otb::LabelMapClassifier<LabelMapType> ClassifierType;
typedef otb::LabelMapWithClassLabelToClassLabelImageFilter<LabelMapType, LabeledImageType> ClassifImageGeneratorType;


LabelObjectType::Pointer makeTrainingSample(LabelMapType* labelMap, LabelType labelObjectId, LabelType classLabel)
{
  LabelObjectType::Pointer newLabelObject = LabelObjectType::New();
  newLabelObject->CopyAllFrom(labelMap->GetLabelObject(labelObjectId));
  newLabelObject->SetClassLabel(classLabel);
  return newLabelObject;
}


int otbLabelMapClassifier(int itkNotUsed(argc), char* argv[])
{
  const char* infname  = argv[1];
  const char* lfname   = argv[2];
  const char* outfname = argv[3];

  // Filters instantiation
  ReaderType::Pointer                reader              = ReaderType::New();
  LabeledReaderType::Pointer         labeledReader       = LabeledReaderType::New();
  LabelMapFilterType::Pointer        filter              = LabelMapFilterType::New();
  ShapeFilterType::Pointer           shapeFilter         = ShapeFilterType::New();
  BandsStatisticsFilterType::Pointer radiometricFilter   = BandsStatisticsFilterType::New();
  LabelMapType::Pointer              trainingLabelMap    = LabelMapType::New();
  ListSampleFilterType::Pointer      labelMap2SampleList = ListSampleFilterType::New();
  SVMType::Pointer                   model               = SVMType::New();
  ClassifierType::Pointer            classifier          = ClassifierType::New();
  ClassifImageGeneratorType::Pointer imGenerator         = ClassifImageGeneratorType::New();
  LabeledWriterType::Pointer         writer              = LabeledWriterType::New();

  // Read inputs
  reader->SetFileName(infname);
  labeledReader->SetFileName(lfname);

  // Make a LabelMap out of it
  filter->SetInput(labeledReader->GetOutput());
  filter->SetBackgroundValue(itk::NumericTraits<LabelType>::max());

  // Compute shape and radimometric attributes
  shapeFilter->SetInput(filter->GetOutput());
  radiometricFilter->SetInput(shapeFilter->GetOutput());
  radiometricFilter->SetFeatureImage(reader->GetOutput());
  radiometricFilter->Update();

  // Build a sub-LabelMap with class-labeled LabelObject
  LabelMapType::Pointer labelMap = radiometricFilter->GetOutput();

  // The following is very specific to the input specified in CMakeLists
  // water
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 13, 0));
  // road
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 88, 1));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 114, 1));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 144, 1));
  // boat
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 52, 2));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 31, 2));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 11, 2));
  // roof
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 58, 3));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 60, 3));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 27, 3));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 81, 3));
  // vegetation
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 161, 4));
  trainingLabelMap->PushLabelObject(makeTrainingSample(labelMap, 46, 4));

  // Make a ListSample out of trainingLabelMap
  labelMap2SampleList->SetInputLabelMap(trainingLabelMap);

  std::vector<std::string>                 attributes = labelMap->GetLabelObject(0)->GetAvailableAttributes();
  std::vector<std::string>::const_iterator attrIt;
  for (attrIt = attributes.begin(); attrIt != attributes.end(); ++attrIt)
  {
    labelMap2SampleList->GetMeasurementFunctor().AddAttribute((*attrIt).c_str());
  }

  labelMap2SampleList->Update();

  // Estimate SVM model
  model->SetInputListSample(const_cast<SVMType::InputListSampleType*>(labelMap2SampleList->GetOutputSampleList()));
  model->SetTargetListSample(const_cast<SVMType::TargetListSampleType*>(labelMap2SampleList->GetOutputTrainingSampleList()));
  model->Train();

  // Classify using the whole LabelMap with estimated model
  classifier->SetInput(labelMap);
  classifier->SetModel(model);

  for (attrIt = attributes.begin(); attrIt != attributes.end(); ++attrIt)
  {
    classifier->GetMeasurementFunctor().AddAttribute((*attrIt).c_str());
  }

  classifier->Update();

  // Make a labeled image with the classification result
  imGenerator->SetInput(classifier->GetOutput());

  writer->SetInput(imGenerator->GetOutput());
  writer->SetFileName(outfname);
  writer->Update();

  return EXIT_SUCCESS;
}