1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
|
/*
* Copyright (C) 2005-2022 Centre National d'Etudes Spatiales (CNES)
*
* This file is part of Orfeo Toolbox
*
* https://www.orfeo-toolbox.org/
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "otbImageClassificationFilter.h"
#include "otbVectorImage.h"
#include "otbImage.h"
#include "otbImageFileReader.h"
#include "otbImageFileWriter.h"
#include "otbSharkRandomForestsMachineLearningModelFactory.h"
#include <random>
#include <chrono>
const unsigned int Dimension = 2;
typedef float PixelType;
typedef unsigned short LabeledPixelType;
typedef otb::VectorImage<PixelType, Dimension> ImageType;
typedef otb::Image<LabeledPixelType, Dimension> LabeledImageType;
typedef otb::ImageClassificationFilter<ImageType, LabeledImageType> ClassificationFilterType;
typedef ClassificationFilterType::ModelType ModelType;
typedef ClassificationFilterType::ValueType ValueType;
typedef ClassificationFilterType::LabelType LabelType;
typedef otb::SharkRandomForestsMachineLearningModelFactory<ValueType, LabelType> MachineLearningModelFactoryType;
typedef otb::ImageFileReader<ImageType> ReaderType;
typedef otb::ImageFileReader<LabeledImageType> MaskReaderType;
typedef otb::ImageFileWriter<LabeledImageType> WriterType;
typedef otb::SharkRandomForestsMachineLearningModel<PixelType, short unsigned int> MachineLearningModelType;
typedef MachineLearningModelType::InputValueType LocalInputValueType;
typedef MachineLearningModelType::InputSampleType LocalInputSampleType;
typedef MachineLearningModelType::InputListSampleType LocalInputListSampleType;
typedef MachineLearningModelType::TargetValueType LocalTargetValueType;
typedef MachineLearningModelType::TargetSampleType LocalTargetSampleType;
typedef MachineLearningModelType::TargetListSampleType LocalTargetListSampleType;
void generateSamples(unsigned int num_classes, unsigned int num_samples, unsigned int num_features, LocalInputListSampleType* samples,
LocalTargetListSampleType* labels)
{
std::default_random_engine generator;
std::uniform_int_distribution<int> label_distribution(1, num_classes);
std::uniform_int_distribution<int> feat_distribution(0, 256);
for (size_t scount = 0; scount < num_samples; ++scount)
{
LabeledPixelType label = label_distribution(generator);
LocalInputSampleType sample(num_features);
for (unsigned int i = 0; i < num_features; ++i)
sample[i] = feat_distribution(generator);
samples->SetMeasurementVectorSize(num_features);
samples->PushBack(sample);
labels->PushBack(label);
}
}
void buildModel(unsigned int num_classes, unsigned int num_samples, unsigned int num_features, std::string modelfname)
{
LocalInputListSampleType::Pointer samples = LocalInputListSampleType::New();
LocalTargetListSampleType::Pointer labels = LocalTargetListSampleType::New();
std::cout << "Sample generation\n";
generateSamples(num_classes, num_samples, num_features, samples, labels);
MachineLearningModelType::Pointer classifier = MachineLearningModelType::New();
classifier->SetInputListSample(samples);
classifier->SetTargetListSample(labels);
classifier->SetRegressionMode(false);
classifier->SetNumberOfTrees(100);
classifier->SetMTry(0);
classifier->SetNodeSize(25);
classifier->SetOobRatio(0.3);
std::cout << "Training\n";
using TimeT = std::chrono::milliseconds;
auto start = std::chrono::system_clock::now();
classifier->Train();
auto duration = std::chrono::duration_cast<TimeT>(std::chrono::system_clock::now() - start);
auto elapsed = duration.count();
std::cout << "Training took " << elapsed << " ms\n";
classifier->Save(modelfname);
}
int otbSharkImageClassificationFilter(int argc, char* argv[])
{
if (argc < 6 || argc > 8)
{
std::cout << "Usage: input_image output_image output_confidence output_proba batchmode [in_model_name] [mask_name]\n";
}
std::string imfname = argv[1];
std::string outfname = argv[2];
std::string conffname = argv[3];
std::string probafname = argv[4];
bool batch = (std::string(argv[5]) == "1");
std::string modelfname = "/tmp/rf_model.txt";
std::string maskfname{};
int num_classes = 3;
MaskReaderType::Pointer mask_reader = MaskReaderType::New();
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName(imfname);
reader->UpdateOutputInformation();
auto num_features = reader->GetOutput()->GetNumberOfComponentsPerPixel();
std::cout << "Image has " << num_features << " bands\n";
if (argc > 6)
{
modelfname = argv[6];
// We don't know the number of classes, so we set it to a high number
num_classes = 10;
}
else
{
buildModel(num_classes, 1000, num_features, modelfname);
}
ClassificationFilterType::Pointer filter = ClassificationFilterType::New();
MachineLearningModelType::Pointer model = MachineLearningModelType::New();
model->Load(modelfname);
filter->SetModel(model);
filter->SetInput(reader->GetOutput());
filter->SetNumberOfClasses(num_classes);
if (argc == 8)
{
maskfname = argv[7];
mask_reader->SetFileName(maskfname);
filter->SetInputMask(mask_reader->GetOutput());
}
WriterType::Pointer writer = WriterType::New();
writer->SetInput(filter->GetOutput());
writer->SetFileName(outfname);
std::cout << "Classification\n";
filter->SetBatchMode(batch);
filter->SetUseConfidenceMap(true);
filter->SetUseProbaMap(true);
using TimeT = std::chrono::milliseconds;
auto start = std::chrono::system_clock::now();
writer->Update();
auto duration = std::chrono::duration_cast<TimeT>(std::chrono::system_clock::now() - start);
auto elapsed = duration.count();
std::cout << "Classification took " << elapsed << " ms\n";
auto confWriter = otb::ImageFileWriter<ClassificationFilterType::ConfidenceImageType>::New();
confWriter->SetInput(filter->GetOutputConfidence());
confWriter->SetFileName(conffname);
confWriter->Update();
auto probaWriter = otb::ImageFileWriter<ClassificationFilterType::ProbaImageType>::New();
probaWriter->SetInput(filter->GetOutputProba());
probaWriter->SetFileName(probafname);
probaWriter->Update();
// Check that the chosen labels correspond to the max proba
itk::ImageRegionConstIterator<LabeledImageType> labIt(filter->GetOutput(), filter->GetOutput()->GetLargestPossibleRegion());
itk::ImageRegionConstIterator<ClassificationFilterType::ProbaImageType> probIt(filter->GetOutputProba(),
filter->GetOutputProba()->GetLargestPossibleRegion());
for (labIt.GoToBegin(), probIt.GoToBegin(); !labIt.IsAtEnd(); ++labIt, ++probIt)
{
if (labIt.Get() > 0) // Pixel is not masked
{
auto first = probIt.Get().GetDataPointer();
auto last = probIt.Get().GetDataPointer();
std::advance(last, num_classes);
auto max_proba = std::distance(first, std::max_element(first, last)) + 1;
if (labIt.Get() != max_proba)
{
std::cout << "Chosen label " << labIt.Get() << " and max proba position " << max_proba << " from " << probIt.Get() << " don't match\n";
return EXIT_FAILURE;
}
}
}
return EXIT_SUCCESS;
}
|