File: test13d.ott

package info (click to toggle)
ott 0.32%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 6,420 kB
  • sloc: ml: 25,065; makefile: 1,393; awk: 736; lisp: 183; sh: 14; sed: 4
file content (474 lines) | stat: -rw-r--r-- 15,114 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
metavar terminal, tm			::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar metavarroot, mvr  	::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar nontermroot, ntr  	::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar suffix, suff       ::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar variable, var  	::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar auxfn, f          ::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar prodname, pn     ::= {{ isa string }} {{ coq nat }} {{ hol string }} 
indexvar index, i, j, k, l, m, n, o, q, jp {{ tex \mbox{$\scriptstyle j'$} }}, qp {{ tex \mbox{$\scriptstyle q'$} }}, np {{ tex \mbox{$\scriptstyle n'$} }}, op {{ tex \mbox{$\scriptstyle o'$} }}, mp {{ tex \mbox{$\scriptstyle m'$} }}, ip {{ tex \mbox{$\scriptstyle i'$} }} ::= {{ isa string }} {{ coq nat }} {{ hol string }} 

metavar defnclassname, dcn ::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar defnname, dn ::= {{ isa string }} {{ coq nat }} {{ hol string }} 
metavar defnrulename, drn ::= {{ isa string }} {{ coq nat }} {{ hol string }} 

grammar

'metavar', mv :: 'mv_' ::=
  | metavarroot suffix  :: :: 1

nonterm, nt :: 'nt_' ::=
  | nontermroot suffix  :: :: 1

element, e :: 'e_' ::=
  | terminal :: :: tm
  | 'metavar' :: :: mv
  | nonterm  :: :: nt
% TODO - List forms

metavar_set_expression, mse :: 'mse_' ::=
  | 'metavar' :: :: mv
  | auxfn ( nonterm ) :: :: f  {{ tex [[auxfn]]\texttt{(}[[nonterm]]\texttt{)} }}
  | mse union mse' :: :: union
  | {} :: :: empty

bindspec, bs :: 'bs_' ::=
  | 'bind' mse in nonterm :: :: bind
  | auxfn = mse :: :: auxfn


prod, p :: 'p_' ::=
  | '|' element1 .. elementm '::' '::' prodname '(+' bs1 .. bsn '+)'   :: :: 1

rule, r :: 'r_' ::= 
  | nontermroot '::' '''' '::='  prod1 .. prodm :: :: 1

grammar_rules, g :: 'g_' ::= 
  | 'grammar' rule1 .. rulem :: :: 1


auxfn_type, at :: 'at_' ::=
  | nontermroot1 .. nontermrootn -> metavarroot :: :: 1

auxfn_type_env, Phi {{ tex \Phi }} :: 'ate_' ::=
  | empty :: :: 1
  | Phi , auxfn : auxfn_type :: :: 2

grammar_type, G {{ tex \Gamma }} :: 'gt_' ::=
  | nontermroot1 .. nontermrootn  :: :: 1


%%%

concrete_abstract_syntax_term , cast :: 'cast_' ::=
  | var : mvr                          :: :: 1
  | prodname ( cast1 , .. , castm )    :: :: 2

%%%%

cast_type, ct :: 'cast_type_' ::=
  | ntr :: :: 1
  | mvr :: :: 2

substitution, s :: 'subst_' ::= {{ isa (concrete_abstract_syntax_term*variable*metavarroot) list }}
  | { cast1 / var1 : mvr1 , .. , castn / varn : mvrn }    :: :: 1 {{ isa [[ ( cast1 , var1 , mvr1 ) .. ( castn , varn , mvrn ) ]] }}
  | filter var_set from s                               :: M :: 2 {{ isa filter (% x. not x:[[var_set]]) [[s]] }} {{ coq TODO}}

symterm , st :: 'st_' ::=
  | stnb  :: :: 1
  | nonterm :: :: 2

symterm_node_body , stnb :: 'stnb_' ::=
  | prodname ( ste1 , .. , stem )   :: :: 1

symterm_element , ste :: 'ste_' ::=
  | st :: :: symterm
  | 'metavar' :: :: 'metavar'
  | var : mvr :: :: variable
%  | ste1 ... sten  :: :: list


%%%

% relations, rd :: 'rd_' ::=
%   | defnclass1 .. defnclassn :: :: 1

% defnclass, dc :: 'dc_' ::=
%   | 'defns' defnclassname '::' '''' '::=' definition1 .. definitionn :: :: 1

% definition, d :: 'd_' ::=
%   | 'defn' symterm '::' '::' defnname '::' '''' defnrule1 .. defnrulen :: :: 1

% defnrule, dr :: 'dr_' ::=
%   | symterm1 .. symtermn gives symterm '::' defnrulename :: :: 1 
% {{ tex 
% \begin{array}{ccl} 
% [[ symterm1 ]] .. [[ symtermn ]] \\
% \hline & :: & [[ defnrulename ]]\\
% [[ symterm ]]  

% \end{array} }}

ntmv :: 'ntmv_' ::=
  | nt :: :: 1
  | mv :: :: 2

ntmv_list :: 'ntmv_list_' ::= {{ isa ntmv list }}
  | ntmv1 , .. , ntmvn             :: :: 1 {{ isa [[ntmv1 ..ntmvn ]] }}
  | remove_terminals ( e1 .. en ) :: M :: 2 {{ isa SOME l. ([[e1..en]], l ) \<in> remove_terminals2 }} {{ coq TODO }}
  | []                         :: M :: 4 {{ isa Nil }} {{ coq TODO }}
  | ntmv , ntmv_list               :: M :: 3 {{ isa ( [[ntmv]] ) # ([[ntmv_list]]) }} {{ coq TODO }}


 
var_set :: 'var_set_' ::=  {{ isa (variable*metavarroot) set }}
  | {}                     :: M :: 1 {{ ich {} }}
  | { var : mvr }          :: M :: 2 {{ ich {([[var]], [[mvr]])} }}
  | union { var_set | formula } :: M :: 3  {{ ich Union { [[var_set]] | [[formula]] } }}
  | var_set union var_set' :: M :: 3_5 {{ ich ([[var_set]]) Un ([[var_set']]) }}
  | [| mse |] g ( cast )   :: M :: 4  {{ ich SOME var_set. ([[mse]], [[g]], [[cast]], var_set) \<in> interp_mse }}
  | var_set - var_set'     :: M :: 5  {{ ich [[var_set]] - [[var_set']] }}
  | union { </ var_seti // i /> } :: M :: 6 {{ ich Union ( set [[ </ var_seti // i /> ]] ) }}

formula :: 'formula_' ::=          
  | judgement           ::   :: judgement
  | formula1 ... formulan ::  :: dots
  | i = j              ::   :: ieq {{ ic [[i]] = [[j]] }}
  | f = f'              ::   :: feq {{ ic [[f]] = [[f']] }}
  | mvr = mvr'              ::   :: mvreq {{ ic [[mvr]] = [[mvr']] }}
  | ntr = ntr'              ::   :: ntreq {{ ic [[ntr]] = [[ntr']] }}
  | var = var'              ::   :: vareq {{ ic [[var]] = [[var']] }}
  | mv = mv'              ::   :: mveq {{ ic [[mv]] = [[mv']] }}
  | nt = nt'              ::   :: nteq {{ ic [[nt]] = [[nt']] }}
  | ntmv = ntmv'              ::   :: ntmveq {{ ic [[ntmv]] = [[ntmv']] }}
  | e = e'              ::   :: eeq {{ ic [[e]] = [[e']] }}
  | mse = mse'              ::   :: mseeq {{ ic [[mse]] = [[mse']] }}
  | bs = bs'              ::   :: bseq {{ ic [[bs]] = [[bs']] }}
  | p = p'              ::   :: peq {{ ic [[p]] = [[p']] }}
  | r = r'              ::   :: req {{ ic [[r]] = [[r']] }}
  | g = g'              ::   :: geq {{ ic [[g]] = [[g']] }}
  | var_set = var_set'              ::   :: var_seteq {{ ic [[var_set]] = [[var_set']] }}
  | cast = cast'              ::   :: casteq {{ ic [[cast]] = [[cast']] }}
  | s = s'              ::   :: seq {{ ic [[s]] = [[s']] }}
  | ( formula )            :: :: paren   {{ ic ( [[formula]] ) }}
  | not formula            :: :: not     {{ isa Not( [[formula]] ) }}
  | forall i isin 1 -- m . formula :: :: forall 
                               {{ tex \forall [[i]] \in 1 .. [[m]]. [[formula]] }} 
                               {{ isa (![[i]]. ((1::nat)<=[[i]] & [[i]]<=[[m]]) --> [[formula]]) }} 
  | exists i isin 1 -- m . formula :: :: exists 
                               {{ tex \exists [[i]] \in 1 .. [[m]]. [[formula]] }}
                               {{ isa (?[[i]]. ((1::nat)<=[[i]] & [[i]]<=[[m]]) --> [[formula]]) }} 
  | existsuniq i isin 1 -- m . formula :: :: existsuni 
                               {{ tex \exists ! [[i]] \in 1 .. [[m]]. [[formula]] }}
                               {{ isa (?[[i]]. ((1::nat)<=[[i]] & [[i]]<=[[m]]) --> [[formula]]) }} 
  | exists nt . formula :: :: existsnt 
                               {{ tex \exists [[nt]]. [[formula]] }}
                               {{ isa (?[[nt]]. [[formula]]) }} 
  | exists var:mvr . formula :: :: existsvar 
                               {{ tex \exists [[var:mvr]]. [[formula]] }}
                               {{ isa (?[[var]] [[mvr]]. [[formula]]) }} 
  | formula /\ formula'   :: :: and  {{ isa ([[formula]] & [[formula']]) }}
  | formula => formula'   :: :: implies  {{ isa ([[formula]] --> [[formula']]) }}
  | true :: :: true {{ isa True }} 
  | j INDEXES p1 .. pm                  ::   :: Indexesp
        {{ coq (1 <= [[j]] /\ [[j]] <= length (unmake_list'p [[p1..pm]])) }}
        {{ hol (1 <= [[j]] /\ [[j]] <= LENGTH [[p1..pm]]) }}
        {{ isa (1 <= [[j]] & [[j]] <= length [[p1..pm]]) }}

terminals :: '' ::=
  | '{}' :: :: quote {{ tex \texttt{\{\} } }}
%  | '('  :: :: lparen {{ tex \texttt{(} }}
%  | ')'  :: :: rparen {{ tex \texttt{)} }}
  | '(+'  :: :: lparenplus {{ tex \texttt{(+} }}
  | '+)'  :: :: rparenplus {{ tex \texttt{+)} }}
  | ''''  :: :: quotequote {{ tex \texttt{''} }}
  | '::'  :: :: coloncolon {{ tex \texttt{::} }}
  | '::='  :: :: coloncoloneq {{ tex \texttt{::=} }}
  | 'grammar' :: :: tgrammar {{ tex \texttt{grammar} }}
  | 'bind' :: :: bind {{ tex \texttt{bind} }}
  | 'in' :: :: in {{ tex \texttt{in} }}
  | 'union' :: :: union {{ tex \texttt{union} }}
  |  ->                    ::   :: arrow     {{ tex  \rightarrow }}
  |  =>                    ::   :: AArrow     {{ tex  \Rightarrow }}
  | |-                     ::   :: turnstile {{ tex \vdash }}
  | /\  :: :: wedge {{ tex {\scriptsize\wedge} }}
  | \/  :: :: vee {{ tex {\scriptsize\vee} }}
  | '|' :: :: bar {{ tex \texttt{|} }}
  | 'defns' :: :: tdefns {{ tex \texttt{defns} }}
  | 'defn' :: :: tdefn {{ tex \texttt{defn} }}
  | isin :: :: isin {{ tex \in }}

defns
Jtype :: '' ::=


defn
Phi |- f : at :: :: FF :: FF_ by

------------------ :: 1
Phi,f:at |- f : at


Phi |- f : at
not (f=f')
------------------ :: 2
Phi,f':at' |- f:at



defn
Phi ; e1 .. en |- mse : metavarroot ::  :: Mse :: Mse_  by 

---------------------- :: 1
Phi;e1..en |- {} : mvr


ej = mvr suff
---------------------------- :: 2
Phi;e1..en |- mvr suff : mvr 


Phi |- f : ntr1 .. ntrm -> mvr
ej = nt
:formula_nteq: nt = ntri suff
------------------------- :: 3
Phi;e1..en |- f(nt) : mvr


Phi;e1..en |- mse : mvr
Phi;e1..en |- mse' : mvr
---------------------------------- :: 4
Phi;e1..en |- mse union mse' : mvr



defn
Phi ; e1 .. en |- bs ok :: :: Bs :: Bs_ by

Phi;e1..en |- mse : mvr
existsuniq j isin 1 -- n . ej=nt
-------------------------------- :: 1
Phi;e1..en |- bind mse in nt ok

Phi;e1..en |- mse : mvr
Phi |- f : ntr1..ntrn -> mvr
------------------------------- :: 2
Phi;e1..en |- f=mse ok



defn
Phi |- prod ok :: :: Prod :: Prod_ by

forall i isin 1--m. Phi;e1..en |- bsi ok
prod = | e1..en :: :: prodname (+ bs1..bsm +) 
------------------------------------------------- :: 1
Phi |- prod ok




defn
Phi |- rule ok :: :: Rule :: Rule_ by

forall i isin 1--m. Phi |- prodi ok
rule = ntr :: '' ::= prod1..prodm 
------------------------------------------ :: 1
Phi |- rule ok



defn
Phi |- grammar_rules ok :: :: Grammar :: Grammar_ by

forall i isin 1--m. Phi |- rulei ok
grammar_rules = grammar  rule1..rulem 
forall i isin 1--m. forall j isin 1--n.  ((rulei=ntr :: '' ::= prod1..prodm /\ rulej=ntr :: '' ::= prod1'..prodn') =>  i=j)
------------------------------------------ :: 1
Phi |- grammar_rules ok

% TODO (SS) : 
% - Check above rules for unique definitions
% - Prove lemma (easy, by structural induction) that definitions of
%   auxfns are unique
% - This property is assumed in what follows



% have to do this relationally in current ott, unfortunatly
defn
remove_suffix ( ntmv ) = ct :: :: remove_suffix :: remove_suffix_ by

-------- :: 1
remove_suffix(ntr suff) = ntr

-------- :: 2
remove_suffix(mvr suff) = mvr

% extract_types ( e1  ..  en )  = ct_list :: :: extract_types2 :: extract_types2_ by
% 
% ---------------------- :: 1
% extract_types ()  = []
% 
% ------------------------------------------------- :: 2
% extract_types (tm e1..en) = extract_types (e1..en)
% 
% ------------------------------------------------------------ :: 3
% extract_types (ntr suff e1..en) = ntr,extract_types (e1..en)
% 
% ------------------------------------------------------------ :: 4
% extract_types (mvr suff e1..en) = mvr,extract_types (e1..en)


defn
remove_terminals ( e1  ..  en )  = ntmv_list :: :: remove_terminals2 :: remove_terminals2_ by

---------------------- :: 1
remove_terminals()  = []

remove_terminals(e1..en) = ntmv_list
------------------------------------------------- :: 2
remove_terminals(tm e1..en) = ntmv_list

remove_terminals(e1..en) = ntmv_list
------------------------------------------------------------ :: 3
remove_terminals(nt e1..en) = nt,ntmv_list

remove_terminals(e1..en) = ntmv_list
------------------------------------------------------------ :: 4
remove_terminals(mv e1..en) = mv,ntmv_list



defn
p isin g ( ntr )  :: :: lookup_p :: lookup_p_ by

g = grammar r1 .. rl
ri = ntr :: '' ::=  p1 .. pm 
j INDEXES p1 .. pm
---------------------------- :: 2
pj isin g ( ntr ) 



defn
g |- cast : cast_type :: :: cast_ty :: cast_ty_ by

------------------ :: 1
g |- var : mvr : mvr


%lmnoq
%ijk l
| e1 .. en :: :: pn (+ bs1 .. bso +) isin g(ntr)
remove_terminals(e1..en) = ntmv1,..,ntmvq
remove_suffix(ntmv1)=ct1 .. remove_suffix(ntmvq)=ctq 
g |- cast1 : ct1 ..  g |- castq : ctq 
---------------------------- :: 2
g |- pn(cast1,..,castq) : ntr 


defn
[| mse |] g ( cast ) => var_set :: :: interp_mse :: interp_mse_ by


-------------------- :: 1
[| {} |]g (cast) => {}


[| mse |] g (cast) => var_set
[| mse' |] g (cast) => var_set'
---------------------------------------------------------------- :: 2
[| mse union mse' |]g (cast) => var_set  union var_set' 



| e1 .. en :: :: pn (+ bs1 .. bso +) isin  g(ntr)
remove_terminals(e1..en) = ntmv1,..,ntmvq 
ntmvl = nt
:formula_nteq: nt = ntr' suff'
castl = pn' (cast'1, .. , cast'qp) 
| e'1 .. e'np :: :: pn' (+ bs'1 .. bs'op +) isin g(ntr')
bs'k = f=mse'
[|mse'|]g(castl) => var_set
------------------- :: 3
[| f(nt) |]g(pn(cast1,..,castq)) => var_set 




| e1 .. en :: :: pn (+ bs1 .. bso +)  isin g(ntr)
remove_terminals(e1..en) = ntmv1,..,ntmvq 
ntmvl = mv
castl = var':mvr'
------------------- :: 4
[| mv |]g(pn(cast1,..,castq)) => {var':mvr'}

defn
var : mvr in dom ( s ) :: :: indom :: indom_ by

----------- :: 1
var:mvr in dom ({</casti/vari:mvri//i/>, cast/var:mvr, </cast'j/var'j:mvr'j//j/>})


defns
Jsubst_fv :: '' ::=

defn
subst s in cast = cast''  :: :: subst :: subst_ by

----------- :: 1
subst {</casti/vari:mvri//i/>, cast/var:mvr, </cast'j/var'j:mvr'j//j/>} in pn(var:mvr)  = cast

not(var:mvr in dom (s))
----------- :: 2
subst s in pn(var:mvr) = pn(var:mvr)

----------- :: 0
subst s in var:mvr = var:mvr

cast = pn(</castk//k/>)
not(exists var:mvr. cast = pn (var:mvr) )
| e1 .. en :: :: pn (+ bs1 .. bsm +)  isin g(ntr)
remove_terminals(e1..en) = </ntmvk//k/>
</sk = filter union{[| mse' |] g (cast) | exists nt. exists j isin 1--m. (bsj = bind mse' in nt /\ ntmvk = nt)} from s//k/>
</ subst sk in castk = cast'k // k />
cast' = pn(</cast'k//k/>)
----------- :: 3
subst s in cast = cast'



%% The free occurences of vars in singleton productions of mvr
%% in the ntr grammar within cast
defn
fv ntr mvr of cast = var_set  :: :: fv :: fv_ by

| e1 .. en :: :: pn (+ bs1 .. bso +)  isin g(ntr')
not (ntr = ntr')
----------- :: 1
fv ntr mvr of pn(var:mvr) = {}

| e1 .. en :: :: pn (+ bs1 .. bso +)  isin g(ntr)
not (mvr = mvr')
----------- :: 1_5
fv ntr mvr of pn(var:mvr') = {}

| e1 .. en :: :: pn (+ bs1 .. bso +)  isin g(ntr)
----------- :: 2
fv ntr mvr of pn(var:mvr) = { var:mvr }

----------- :: 0
fv ntr mvr of var:mvr = {} 

cast = pn(</castk//k/>)
not(exists var:mvr. cast = pn (var:mvr) )
| e1 .. en :: :: pn (+ bs1 .. bsm +)  isin g(ntr)
remove_terminals(e1..en) = </ntmvk//k/>
</var_setk = union{[| mse' |] g (cast) | exists nt. exists j isin 1--m. (bsj = bind mse' in nt /\ ntmvk = nt)}//k/> 
%% The above are things that are binding around castk
</ fv ntr mvr of castk = var_set'k // k />
var_set = union {</var_set'k - var_setk//k/>}
----------- :: 3
fv ntr mvr of cast = var_set