File: test1.ott

package info (click to toggle)
ott 0.34%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,440 kB
  • sloc: ml: 25,103; makefile: 1,375; awk: 736; lisp: 183; sh: 14; sed: 4
file content (181 lines) | stat: -rw-r--r-- 4,064 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181

metavar ident , x ::= 
  {{ isa string }} {{ coq nat }} {{ hol string }} {{ ocaml string }} {{ lex [A-Z]+ }} {{ coq-equality }}

grammar
  exp , e :: Exp_ ::= 
        | x                     ::   :: ident
        | ()                    ::   :: unit
        | ( exp , exp' )        ::   :: pair      
        | function x : type -> exp      ::   :: 'fun'
        | exp exp'              ::   :: app
%        |                       ::   :: empty

  type , t :: Typ_ ::=
        | unit                  ::   :: unit
        | type * type'          ::   :: pair
        | type -> type'         ::   :: 'fun'

  E :: E_ ::= {{ isa (ident*type) list }} {{ coq list (ident*type) }} {{ hol (ident#type) list }}
        | empty         :: :: empty  
             {{ isa [] }} 
             {{ coq nil }}
             {{ hol [] }} 
        | E , x : t      :: :: ident  
             {{ isa (([[x]],[[t]])#[[E]]) }}
             {{ coq (cons ([[x]],[[t]]) [[E]]) }}
             {{ hol (([[x]],[[t]])::[[E]]) }}
        | E , x : t , E' :: :: ident2 
             {{ isa ([[E']] @ ([[x]],[[t]])#[[E]]) }}
             {{ coq (app [[E']] (cons ([[x]],[[t]]) [[E]])) }}
             {{ hol ( [[E']] ++ ([[x]],[[t]])::[[E]] )}}

  formula :: formula_ ::=          
        | judgement             ::   :: judgement
        | not ( formula )       ::   :: not 
             {{ isa ~( [[formula]] ) }}
             {{ coq not([[formula]]) }}
             {{ hol ~( [[formula]] ) }}
             {{ ocaml not([[formula]]) }}
        | x in dom ( E )        :: M :: indom 
             {{ isa list_ex ( \<lambda>(x',y'). [[x]]=x') [[E]] }}
             {{ ocaml List.exists (fun (x',y') -> [[x]]=x') [[E]] }}
	     {{ coq (indom [[x]] [[E]]) }}
             {{ hol (EXISTS ( \(x',y'). [[x]]=x') [[E]]) }}  % TODO 

  terminals :: 'terminals_' ::=
    | \                   ::   :: lambda     {{ tex \lambda }}
    | -->                 ::   :: red        {{ tex \longrightarrow }}
    |  ->                 ::   :: arrow      {{ tex \rightarrow }}
    | |-                  ::   :: turnstile  {{ tex \vdash }}
    | in                  ::   :: in         {{ tex \in }}

embed 
  {{ coq
Fixpoint indom (x:ident) (e:E) { struct e } : Prop :=
  match e with
  | nil => False
  | cons (x',y') tl => if eq_ident x x' then True else indom x tl
end. }}

{{ isa

primrec
  order :: "type => nat"
where
  "order [[unit]] = 0"
| "order [[t*t']] = max (order [[t]]) (order [[t']])"
| "order [[t->t']] = max (1+order [[t]]) (order [[t']])"

}}


{{ tex
A test of some filtered embedded latex: 
$Foo( [[ E,x:t |- ok ]] )$
}}

% defns
% Jin :: '' ::=
% defn
% x in dom ( E ) :: :: xinE :: xinE_ by
% 
% -------------------- :: 1
% x in dom ( E )
% 
% x in dom(E)
% -------------------- :: 2
% x in dom(E,x':t)


% this type system doesn't allow any shadowing

defns
Jtype :: '' ::=

defn
E |- ok ::  :: Eok :: Eok_  by 

----------- :: empty
empty |- ok



E |- ok
not (x in dom(E))
-------------- :: ident
E,x:t |- ok



defn
E |- e : t ::  :: Eet :: Eet_  by 

E,x:t,E' |- ok
--------------- :: ident
E,x:t,E' |- x:t



E |- ok
---------------- :: unit
E |- () : unit

E |- e1:t1
E |- e2:t2
------------------- :: pair
E |- (e1,e2):t1*t2

E,x:t1 |- e :t2
---------------------- :: 'fun'
E |- function x:t1 -> e : t1->t2

E |- e : t1->t2
E |- e': t1
------------------ :: app
E |- e e' : t2


>>
        | let pat = exp in exp' ::   :: let

  pat , p :: Pat_ ::= 
          x                     ::   :: ident
        | _                     ::   :: wildcard
        | ()                    ::   :: unit
        | ( pat , pat' )        ::   :: pair
<<

>>
|- p : t gives E'
E |- e : t
E,E' |- e' : t'
------------------------ :: let
E |- let p=e in e' : t'


defn
|- p : t gives E' ::  :: Ept :: Ept_  by 

----------------------- :: ident
|- x:t gives empty,x:t


----------------------- :: wildcard
|- _:t gives empty

------------------------ :: unit
|- () : unit gives empty

|- p1:t1 gives E1
|- p2:t2 gives E2
-------------------------- :: pair
|- (p1,p2):t1*t2 gives E1,E2




<<