File: test7.ott

package info (click to toggle)
ott 0.34%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,440 kB
  • sloc: ml: 25,103; makefile: 1,375; awk: 736; lisp: 183; sh: 14; sed: 4
file content (499 lines) | stat: -rw-r--r-- 16,492 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
>> TODO 
- the concrete variable representation currently used in the generated code
   no longer suffices for these dependent-record type environments 
- either add distinctness conditions to the syntax, generating predicates
   is_distinct_t etc, or write them in the typing rules (for labels in 
   record types, exprs and pats, and termvars in pats)

ideally also:

- implement context rules, so that the explicit reduction context rules 
   can be replaced by a single one.
<<
metavar typevar, X ::=
 {{ isa string }} {{ coq nat }} {{ coq-equality }} {{ hol string }} {{ lem string }} {{ lex Alphanum }}  
 {{ tex \mathit{[[typevar]]} }} {{ com  type variable  }}  
 {{ isavar ''[[typevar]]'' }} {{ holvar "[[typevar]]" }} {{ lemvar "[[typevar]]" }} {{ texvar \mathrm{[[typevar]]} }} 
 {{ ocamlvar "[[typevar]]" }}

metavar termvar, x ::=
 {{ isa string }} {{ coq nat }} {{ hol string }}  {{ lem string }} {{ coq-equality }} {{ lex alphanum }}  
 {{ tex \mathit{[[termvar]]} }} {{ com  term variable  }} 
 {{ isavar ''[[termvar]]'' }} {{ holvar "[[termvar]]" }} 
 {{ lemvar "[[typevar]]" }} 
 {{ texvar \mathrm{[[termvar]]} }} 
 {{ ocamlvar "[[termvar]]" }}

rmetavar label, l, k ::=
r {{ isa string }} {{ coq nat }} {{ hol string }} {{ lem string }} {{ lex alphanum }}  {{ tex \mathit{[[label]]} }} 
r {{ com  field label  }}  {{ isavar ''[[label]]'' }} {{ holvar "[[label]]" }} {{ lemvar "[[typevar]]" }} 
r {{ ocamlvar "[[label]]" }}

indexvar index, i, j, n, m  ::= {{ isa nat }} {{ coq nat }} {{ hol num }} {{ lem num}} {{ lex numeral }}
  {{ com indices }}

grammar
T {{ hol Typ }}, S, U :: 'Ty_' ::=                    {{ com type  }}
  | X                                :: :: Var          {{ com type variable }}  
  | Top                              :: :: Top          {{ com maximum type }}   
  | T -> T'                          :: :: Fun          {{ com type of functions }}
  | Forall X <: T . T'               :: :: Forall (+ bind X in T' +) {{ com universal type }} 
                                   {{ tex [[Forall]] [[X]] \mathord{[[<:]]} [[T]]. \, [[T']] }}
r  | { l1 : T1 , .. , ln : Tn }      :: :: Rec           {{ com record }}           
%R  | { }                              :: :: Rec_empty        {{ com empty record }}
%R  | { Trb }                          :: :: Rec_ne           {{ com nonempty record }}
% {{ com record type }}    
  | ( T )                            :: S :: paren {{ ichl [[T]] }}
  | [ X |-> T ] T'                   :: M :: sub   {{ ichl (Tsubst_T [[T]] [[X]] [[T']]) }} 

%R Trb :: 'Trb_' ::=
%R  | l : T                            :: :: rb1
%R  | l : T , Trb                      :: :: rb2         

t :: 't_' ::=                                                      {{ com  term  }}
  | x                                :: :: Var                       {{ com variable }}         
  | \ x : T . t                      :: :: Lam  (+ bind x in t +)    {{ com abstraction }}      
                                       {{ tex \lambda [[x]] \mathord{[[:]]} [[T]]. \, [[t]] }}
  | t t'                             :: :: App                       {{ com application }}      
  | \ X <: T . t                     :: :: TLam (+ bind X in t +)    {{ com type abstraction}} 
                                       {{ tex \Lambda [[X]] \mathord{[[<:]]} [[T]]. \, [[t]] }}
  | t [ T ]                          :: :: TApp                      {{ com type application}} 
r  | { l1 = t1 ,  .. , ln = tn }      :: :: Rec                      {{ com record }}
r  | t . l                            :: :: Proj                     {{ com projection }} 
r  | let p = t in t'                  :: :: Let (+ bind b(p) in t' +){{ com pattern binding}}
  | ( t )                            :: S :: paren {{ ichl [[t]] }} 
  | [ x |-> t ] t'                   :: M :: tsub  {{ ichl ( tsubst_t [[t]] [[x]] [[t']] ) }}
  | [ X |-> T ] t                    :: M :: Tsub  {{ ichl ( Tsubst_t [[T]] [[X]] [[t]] ) }} 
%  | E [ t ]                          :: M :: ctx 
r  | s t                              :: M :: tsubs {{ ichl ( m_t_subst_t [[s]] [[t]] ) }}

r p :: 'P_' ::=                                                {{ com  pattern }}
r  | x : T                            :: :: Var (+ b = x  +)     {{ com variable pattern }}
r  | { l1 = p1 , .. , ln = pn }       :: :: Rec (+ b = b(p1 .. pn) +) {{ com  record pattern  }}

v :: 'v_' ::= {{ com  values  }}
  | \ x : T . t                      :: :: Lam  (+ bind x in t +)  {{ com abstraction }}      
  | \ X <: T . t                     :: :: TLam (+ bind X in t +)  {{ com type abstraction }} 
                                       {{ tex \Lambda [[X]] [[<:]] [[T]]. \, [[t]] }}
r  | { l1 = v1 ,  .. , ln = vn }      :: :: Rec                     {{ com record }}
% {{ com record }}
%  E :: E_ ::= 
%        | __                                      :: :: hole
%        | E t                                     :: :: app_fun
%        | v E                                     :: :: app_arg
%        | E [ T ]                                 :: :: type_fun
%r       | E . l                                   :: :: projection           
%r%      | { l1 = v1 , .. , lm = vm , l = E , l1' = t1' , .. , ln' = tn' } :: :: record
%r       | let p = E in t2                         :: :: let_binding

G {{ tex \Gamma }}, D {{ tex \Delta }} :: 'G_' ::= {{ com type environment }}
  | empty                            ::   :: empty       
  | G , X <: T                       ::   :: type        
  | G , x : T                        ::    :: term
%r  | G , G'                           :: M :: comma    {{ ichl TODO }}
r  | G1 , .. , Gn                     :: M :: dots {{ ichl (flatten_G [[G1..Gn]]) }}  

rs {{ tex \sigma }} :: 'S_' ::= {{ com multiple term substitution }} {{ isa (termvar*t) list }} {{ hol (termvar#t) list }} {{ coq list (termvar*t) }} {{ lem list (termvar*t) }}
r  | [ x |-> t ]                    ::   :: singleton {{ ih [ ([[x]],[[t]]) ] }} {{ coq (cons ([[x]],[[t]]) nil) }} {{ lem [ ([[x]],[[t]]) ] }}
r  | s1 , ... , sn                   ::   :: list   {{ isa List.concat [[s1...sn]] }} {{ hol (FLAT [[s1...sn]]) }} {{ coq (List.flat_map (fun x => x) [[s1...sn]]) }} {{ lem (List.flatten [[s1...sn]]) }}

terminals :: terminals_ ::=
  |  \                     ::   :: lambda    {{ tex  \lambda }}
  |  ->                    ::   :: arrow     {{ tex  \rightarrow }}
r  |  =>                    ::   :: Arrow     {{ tex  \Rightarrow }}
%  |  __                    ::   :: hole      {{ tex \_ }}
  | |-                     ::   :: turnstile {{ tex \vdash }}
  | -->                    ::   :: red       {{ tex \longrightarrow }}
  | Forall                 ::   :: forall    {{ tex \forall }}
  | <:                     ::   :: subtype   {{ tex <: }}
  | |->                    ::   :: mapsto    {{ tex \mapsto }}
r  | /\                     ::   :: wedge     {{ tex \wedge }}
r  | \/                     ::   :: vee       {{ tex \vee }}
  | =                      ::   :: eq        {{ tex \!\! = \!\! }}

formula :: formula_ ::=          
  | judgement              :: :: judgement
% | G = G'                 :: :: Geq     {{ ichl [[G]] = [[G']] }}
  | x = x'                 :: :: xeq     {{ ichl [[x]] = [[x']]  }}
  | X = X'                 :: :: Xeq     {{ ichl [[X]] = [[X']]  }}
  | ( formula )            :: :: paren   {{ ichl ( [[formula]] ) }}
  | not formula            :: :: not     {{ isa Not( [[formula]] ) }}
                                         {{ coq not( [[formula]] ) }}
                                         {{ lem not( [[formula]] ) }}
                                         {{ hol ~( [[formula]] ) }}
                                         {{ tex \neg [[ formula]] }}
%  | x isin dom ( G )      :: :: xin    {{ isa ? T. ([[x]],T,[[G]]):tin }} 
%                                         {{ tex [[x]] \in [[dom]]([[G]]) }}
%  | X isin dom ( G )      :: :: Xin    {{ isa ? T. ([[X]],T,[[G]]):Tin }}
%                                         {{ tex [[X]] \in [[dom]]([[G]]) }}
r  | forall i isin 1 -- m . formula :: :: forall 
r                               {{ tex \forall [[i]] \in 1 .. [[m]] . [[formula]] }} 
r                               {{ isa ![[i]] . ((1::nat)<=[[i]] & [[i]]<=[[m]]) ==> [[formula]] }} 
r                               {{ hol ![[i]] . (1<=[[i]] /\ [[i]]<=[[m]]) ==> [[formula]] }} 
r                               {{ coq (forall [[i]], (1<=[[i]] /\ [[i]] <= m) -> [[formula]]) }}
r                               {{ lem (forall [[i]]. (1<=[[i]] && [[i]] <= m) --> [[formula]]) }}

r  | exists i isin 1 -- m . formula :: :: exists 
r                               {{ tex \exists [[i]] \in 1 .. [[m]]. [[formula]] }}
r                               {{ isa ?[[i]]. ((1::nat)<=[[i]] & i<=[[m]]) ==> [[formula]] }} 
r                               {{ hol ?[[i]] . (1<=[[i]] /\ [[i]]<=[[m]]) ==> [[formula]] }} 
r                               {{ coq exists [[i]], (1<=[[i]] /\ [[i]] <= [[m]]) -> [[formula]] }}
r                               {{ lem (exists [[i]]. (1<=[[i]] && [[i]] <= m) && [[formula]]) }}

r  | formula /\ formula'   :: :: and  {{ isa ([[formula]] & [[formula']]) }}
r                                     {{ hol ([[formula]] /\ [[formula']]) }}
r                                     {{ coq ([[formula]] /\ [[formula']]) }}
r                                     {{ lem ([[formula]] && [[formula']]) }}

r  | l = l'                :: :: leq  {{ ichl ([[l]]=[[l']]) }}
 
% would be nice to write the above as  {{ isa ?[[T]]. [[X<:T isin G]] }}

%formulalist :: formulalist_ ::=          
   | formula1 ... formulan   :: :: dots


subrules
  v <:: t

%  E   _:: t :: t


substitutions
  single   t x :: tsubst    
  single   T X :: Tsubst    
  multiple t x :: m_t_subst 
  multiple T X :: m_T_subst 

freevars
  T X :: ftv 
  t x :: fv



r embed 
r   {{ isa 
r consts append_G :: "G => G => G"
r primrec
r "append_G [[G]] [[empty]] = [[G]]"
r "append_G [[G]] [[G',X<:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',X<:T]])"
r "append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]])"
r consts flatten_G :: "G list => G"
r primrec
r "flatten_G [] = [[empty]]"
r "flatten_G (Cons [[G]] Gs) = append_G [[G]] (flatten_G Gs)"
r }}
r 
r   {{ hol
r val _ = Define `
r    (append_G [[G]] [[empty]] = [[G]])
r /\ (append_G [[G]] [[G',X<:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',X<:T]]))
r /\ (append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]]))`;
r val _ = Define `
r    (flatten_G NIL = [[empty]])
r /\ (flatten_G (CONS [[G]] Gs) = append_G [[G]] (flatten_G Gs))`;
r }}
r 
r {{ coq 
r Fixpoint append_G (g1 g2 : G) {struct g2} : G :=
r   match g2 with
r   | G_empty => g1
r   | G_type gh tv t => G_type (append_G g1 gh) tv t
r   | G_term gh v t => G_term (append_G g1 gh) v t
r end.
r Fixpoint flatten_G (gl:list_G) : G :=
r   match gl with 
r   | Nil_list_G => G_empty
r   | Cons_list_G g gs => append_G g (flatten_G gs)
r end.  }}
r   {{ lem
r (** embedded definitions of operations on type environments **)
r val append_G : G -> G -> G
r let rec  append_G [[G]] [[empty]] = [[G]]
r and      append_G [[G]] [[G',X<:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',X<:T]])
r and      append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]])
r val flatten_G : list G -> G
r let rec flatten_G [] = [[empty]]
r and     flatten_G ([[G]]::Gs) = append_G [[G]] (flatten_G Gs)
r }}
r 

defns
Judgement_in :: '' ::=


% defn
% x isin dom ( G ) :: :: xinG :: xinG_ {{ tex [[x]] \in [[dom]]([[G]])}} by 
% 
% x:T isin G
% ---------------- :: 1
% x isin dom(G)
% 
% 
% defn
% X  isin dom ( G ) :: :: XinG :: XinG_  {{ tex [[X]] \in [[dom]]([[G]]) }} by
% 
% X<:U isin G
% ---------------- :: 1
% X isin dom(G)

defn
x isin dom ( G ) :: :: xinG :: xinG_ {{ tex [[x]] \in [[dom]]([[G]])}} by 

-------------- :: 1
x isin dom(G,x:T)

x isin dom(G)
---------------- :: 2
x isin dom(G,X'<:U')

x isin dom(G)
--------------- :: 3
x isin dom(G,x':T')


defn
X  isin dom ( G ) :: :: XinG :: XinG_  {{ tex [[X]] \in [[dom]]([[G]]) }} by

------------- :: 1
X isin dom(G,X<:U)

X isin dom(G)
--------------- :: 2
X isin dom(G,X'<:U')

X isin dom(G)
-------------- :: 3
X isin dom(G,x':T')


defn
x : T isin G :: :: tin :: tin_ {{ tex [[x]] [[:]] [[T]] \in [[G]] }} by

---------------- :: 1
x:T isin G,x:T

x:T isin G
------------------ :: 2
x:T isin G,X'<:U'

x:T isin G
----------------- :: 3
x:T isin G,x':T'




defn
X <: U isin G :: :: Tin :: Tin_ {{ tex [[X]] [[<:]] [[U]] \in [[G]] }} by

---------------- :: 1
X<:U isin G,X<:U

X<:U isin G
------------------ :: 2
X<:U isin G,X'<:U'

X<:U isin G
----------------- :: 3
X<:U isin G,x':T'


defns
Jtype :: '' ::=

defn
G |- ok :: :: Gok :: Gok_ {{ com type environment $[[G]]$ is well-formed }} by

----------- :: 1
empty |- ok

G |- T 
not(x isin dom(G))
------------------ :: 2
G,x:T |- ok

G |- T
not(X isin dom(G))
------------------- :: 3
G,X<:T |- ok


defn
G |- T :: :: GT :: GT_ {{ com type $[[T]]$ is well-formed in type environment $[[G]]$ }} by

G |- ok
X<:U isin G
-------------- :: Var
G |- X 

G |- ok
-------------- :: Top
G |- Top

G |- T
G |- T'
-------------- :: Fun
G |- T->T'

G,X<:T |- T'
------------------ :: Forall
G |- Forall X<:T.T'

rG |- T1 .. G |- Tn
r% and distinctness, if not in the syntax
r--------------------- :: Rcd
rG |- {l1:T1,..,ln:Tn}



defn
G |- S <: T ::  :: SA :: SA_  {{ com $[[S]]$ is a subtype of $[[T]]$ }} by 

G |- ok
---------- :: Top
G |- S <: Top

G |- ok
---------- :: Refl_TVar
G |- X <: X

%G = G1, X<:U , G2
X<:U isin G
G |- U <: T
------------- :: Trans_TVar
G |- X <: T

G |- T1<:S1
G |- S2<:T2
---------------------- :: Arrow 
G |- S1->S2 <: T1->T2

G |- T1<:S1
G,X<:T1 |- S2<:T2
--------------------------------------- :: All
G |- Forall X<:S1.S2 <: Forall X<:T1.T2

r forall i isin 1 -- m. exists j isin 1 -- n. (ki=lj /\ G |- Si<:Tj)
r --------------------------------------------------------------------------- :: Rcd
r G |- {k1:S1 , .. , km:Sm} <: {l1:T1,..,ln:Tn}


defn
G |- t : T ::  :: Ty :: Ty_  {{ com term $[[t]]$ has type $[[T]]$ }} by 

G |- ok
x:T isin G
-------------- :: Var
G |- x:T

G,x:T1 |- t2:T2
----------------------- :: Abs
G |- \x:T1.t2 : T1->T2

G|- t1:T11->T12
G|- t2:T11
-------------------- :: App
G|- t1 t2 : T12

G,X<:T1 |- t2:T2
-------------------------------- :: TAbs
G|- \X<:T1.t2 : Forall X<:T1.T2

G|- t1 : Forall X<:T11.T12
G|- T2 <: T11
--------------------------- :: TApp
G|- t1[T2] : [X|->T2]T12


r G|- t1:T1
r |- p:T1=>D
r G,D |- t2:T2
r ------------------------ :: Let
r G|- let p=t1 in t2 : T2
r 
r G|-t1:T1 .. G|-tn:Tn
r % and distinctness, if not in the syntax
r ------------------------------------- :: Rcd
r G|- {l1=t1,..,ln=tn}:{l1:T1,..,ln:Tn}
r 
r G|- t:{l1:T1,..,ln:Tn}
r ----------------------- :: Proj
r G|- t.lj : Tj



G|- t:S
G|- S<:T
--------- :: Sub
G|- t:T


rdefn
r |- p : T => D ::  :: Pat :: Pat_  {{ com pattern $[[p]]$ matches type $[[T]]$ giving bindings $[[D]]$ }} by 
r 
r ------------------ :: Var
r |- x:T : T => empty,x:T
r 
r |- p1:T1=>D1 .. |- pn:Tn=>Dn
r % and distinctness, if not in the syntax
r ------------------------------------------------ :: Rcd
r |- {l1=p1,..,ln=pn}:{l1:T1,..,ln:Tn} => D1,..,Dn


defns
Jop :: '' ::=


defn
t1 --> t2 ::  :: reduce :: reduce_  {{ com $[[t1]]$ reduces to $[[t2]]$ }} by 

-----------------------------------------  :: AppAbs
(\x:T11.t12) v2 -->  :t_tsub: [x|->v2]t12

-----------------------------------  :: TappTabs
(\X<:T11.t12) [T2] -->  [X|->T2]t12

r match(p,v1)=s
r -------------------------  :: LetV
r let p=v1 in t2 -->  s t2
r 
r --------------------------- :: ProjRcd
r {l'1=v1,..,l'n=vn}.l'j --> vj


%t1 --> t1'
%------------------- :: Ctx
%E[t1] --> E[t1']

t1 --> t1'
---------------- :: Ctx_app_fun
t1 t --> t1' t

t1 --> t1'
---------------- :: Ctx_app_arg
v t1 --> v t1'

t1 --> t1'
---------------- :: Ctx_type_fun
t1[T] --> t1'[T]

r t --> t'
r -------------- :: Ctx_record
r {l1=v1,..,lm=vm,l=t,l1'=t1',..,ln'=tn'} --> {l1=v1,..,lm=vm,l=t',l1'=t1',..,ln'=tn'}
r 
r t1 --> t1'
r ---------------------------------- :: Ctx_let_binding
r let p=t1 in t2 --> let p=t1' in t2
r
rdefn
r match ( p , v ) = s ::  :: M :: M_  by 
r 
r ----------------------- :: Var
r match(x:T,v) = [x|->v]
r 
r forall i isin 1 -- m. exists j isin 1 -- n. (li=kj /\ match(pi,vj)=si)
r ---------------------------------------------------------------------- :: Rcd
r match({l1=p1,..,lm=pm},{k1=v1,..,kn=vn}) = s1,..,sm