1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499
|
>> TODO
- the concrete variable representation currently used in the generated code
no longer suffices for these dependent-record type environments
- either add distinctness conditions to the syntax, generating predicates
is_distinct_t etc, or write them in the typing rules (for labels in
record types, exprs and pats, and termvars in pats)
ideally also:
- implement context rules, so that the explicit reduction context rules
can be replaced by a single one.
<<
metavar typevar, X ::=
{{ isa string }} {{ coq nat }} {{ coq-equality }} {{ hol string }} {{ lem string }} {{ lex Alphanum }}
{{ tex \mathit{[[typevar]]} }} {{ com type variable }}
{{ isavar ''[[typevar]]'' }} {{ holvar "[[typevar]]" }} {{ lemvar "[[typevar]]" }} {{ texvar \mathrm{[[typevar]]} }}
{{ ocamlvar "[[typevar]]" }}
metavar termvar, x ::=
{{ isa string }} {{ coq nat }} {{ hol string }} {{ lem string }} {{ coq-equality }} {{ lex alphanum }}
{{ tex \mathit{[[termvar]]} }} {{ com term variable }}
{{ isavar ''[[termvar]]'' }} {{ holvar "[[termvar]]" }}
{{ lemvar "[[typevar]]" }}
{{ texvar \mathrm{[[termvar]]} }}
{{ ocamlvar "[[termvar]]" }}
rmetavar label, l, k ::=
r {{ isa string }} {{ coq nat }} {{ hol string }} {{ lem string }} {{ lex alphanum }} {{ tex \mathit{[[label]]} }}
r {{ com field label }} {{ isavar ''[[label]]'' }} {{ holvar "[[label]]" }} {{ lemvar "[[typevar]]" }}
r {{ ocamlvar "[[label]]" }}
indexvar index, i, j, n, m ::= {{ isa nat }} {{ coq nat }} {{ hol num }} {{ lem num}} {{ lex numeral }}
{{ com indices }}
grammar
T {{ hol Typ }}, S, U :: 'Ty_' ::= {{ com type }}
| X :: :: Var {{ com type variable }}
| Top :: :: Top {{ com maximum type }}
| T -> T' :: :: Fun {{ com type of functions }}
| Forall X <: T . T' :: :: Forall (+ bind X in T' +) {{ com universal type }}
{{ tex [[Forall]] [[X]] \mathord{[[<:]]} [[T]]. \, [[T']] }}
r | { l1 : T1 , .. , ln : Tn } :: :: Rec {{ com record }}
%R | { } :: :: Rec_empty {{ com empty record }}
%R | { Trb } :: :: Rec_ne {{ com nonempty record }}
% {{ com record type }}
| ( T ) :: S :: paren {{ ichl [[T]] }}
| [ X |-> T ] T' :: M :: sub {{ ichl (Tsubst_T [[T]] [[X]] [[T']]) }}
%R Trb :: 'Trb_' ::=
%R | l : T :: :: rb1
%R | l : T , Trb :: :: rb2
t :: 't_' ::= {{ com term }}
| x :: :: Var {{ com variable }}
| \ x : T . t :: :: Lam (+ bind x in t +) {{ com abstraction }}
{{ tex \lambda [[x]] \mathord{[[:]]} [[T]]. \, [[t]] }}
| t t' :: :: App {{ com application }}
| \ X <: T . t :: :: TLam (+ bind X in t +) {{ com type abstraction}}
{{ tex \Lambda [[X]] \mathord{[[<:]]} [[T]]. \, [[t]] }}
| t [ T ] :: :: TApp {{ com type application}}
r | { l1 = t1 , .. , ln = tn } :: :: Rec {{ com record }}
r | t . l :: :: Proj {{ com projection }}
r | let p = t in t' :: :: Let (+ bind b(p) in t' +){{ com pattern binding}}
| ( t ) :: S :: paren {{ ichl [[t]] }}
| [ x |-> t ] t' :: M :: tsub {{ ichl ( tsubst_t [[t]] [[x]] [[t']] ) }}
| [ X |-> T ] t :: M :: Tsub {{ ichl ( Tsubst_t [[T]] [[X]] [[t]] ) }}
% | E [ t ] :: M :: ctx
r | s t :: M :: tsubs {{ ichl ( m_t_subst_t [[s]] [[t]] ) }}
r p :: 'P_' ::= {{ com pattern }}
r | x : T :: :: Var (+ b = x +) {{ com variable pattern }}
r | { l1 = p1 , .. , ln = pn } :: :: Rec (+ b = b(p1 .. pn) +) {{ com record pattern }}
v :: 'v_' ::= {{ com values }}
| \ x : T . t :: :: Lam (+ bind x in t +) {{ com abstraction }}
| \ X <: T . t :: :: TLam (+ bind X in t +) {{ com type abstraction }}
{{ tex \Lambda [[X]] [[<:]] [[T]]. \, [[t]] }}
r | { l1 = v1 , .. , ln = vn } :: :: Rec {{ com record }}
% {{ com record }}
% E :: E_ ::=
% | __ :: :: hole
% | E t :: :: app_fun
% | v E :: :: app_arg
% | E [ T ] :: :: type_fun
%r | E . l :: :: projection
%r% | { l1 = v1 , .. , lm = vm , l = E , l1' = t1' , .. , ln' = tn' } :: :: record
%r | let p = E in t2 :: :: let_binding
G {{ tex \Gamma }}, D {{ tex \Delta }} :: 'G_' ::= {{ com type environment }}
| empty :: :: empty
| G , X <: T :: :: type
| G , x : T :: :: term
%r | G , G' :: M :: comma {{ ichl TODO }}
r | G1 , .. , Gn :: M :: dots {{ ichl (flatten_G [[G1..Gn]]) }}
rs {{ tex \sigma }} :: 'S_' ::= {{ com multiple term substitution }} {{ isa (termvar*t) list }} {{ hol (termvar#t) list }} {{ coq list (termvar*t) }} {{ lem list (termvar*t) }}
r | [ x |-> t ] :: :: singleton {{ ih [ ([[x]],[[t]]) ] }} {{ coq (cons ([[x]],[[t]]) nil) }} {{ lem [ ([[x]],[[t]]) ] }}
r | s1 , ... , sn :: :: list {{ isa List.concat [[s1...sn]] }} {{ hol (FLAT [[s1...sn]]) }} {{ coq (List.flat_map (fun x => x) [[s1...sn]]) }} {{ lem (List.flatten [[s1...sn]]) }}
terminals :: terminals_ ::=
| \ :: :: lambda {{ tex \lambda }}
| -> :: :: arrow {{ tex \rightarrow }}
r | => :: :: Arrow {{ tex \Rightarrow }}
% | __ :: :: hole {{ tex \_ }}
| |- :: :: turnstile {{ tex \vdash }}
| --> :: :: red {{ tex \longrightarrow }}
| Forall :: :: forall {{ tex \forall }}
| <: :: :: subtype {{ tex <: }}
| |-> :: :: mapsto {{ tex \mapsto }}
r | /\ :: :: wedge {{ tex \wedge }}
r | \/ :: :: vee {{ tex \vee }}
| = :: :: eq {{ tex \!\! = \!\! }}
formula :: formula_ ::=
| judgement :: :: judgement
% | G = G' :: :: Geq {{ ichl [[G]] = [[G']] }}
| x = x' :: :: xeq {{ ichl [[x]] = [[x']] }}
| X = X' :: :: Xeq {{ ichl [[X]] = [[X']] }}
| ( formula ) :: :: paren {{ ichl ( [[formula]] ) }}
| not formula :: :: not {{ isa Not( [[formula]] ) }}
{{ coq not( [[formula]] ) }}
{{ lem not( [[formula]] ) }}
{{ hol ~( [[formula]] ) }}
{{ tex \neg [[ formula]] }}
% | x isin dom ( G ) :: :: xin {{ isa ? T. ([[x]],T,[[G]]):tin }}
% {{ tex [[x]] \in [[dom]]([[G]]) }}
% | X isin dom ( G ) :: :: Xin {{ isa ? T. ([[X]],T,[[G]]):Tin }}
% {{ tex [[X]] \in [[dom]]([[G]]) }}
r | forall i isin 1 -- m . formula :: :: forall
r {{ tex \forall [[i]] \in 1 .. [[m]] . [[formula]] }}
r {{ isa ![[i]] . ((1::nat)<=[[i]] & [[i]]<=[[m]]) ==> [[formula]] }}
r {{ hol ![[i]] . (1<=[[i]] /\ [[i]]<=[[m]]) ==> [[formula]] }}
r {{ coq (forall [[i]], (1<=[[i]] /\ [[i]] <= m) -> [[formula]]) }}
r {{ lem (forall [[i]]. (1<=[[i]] && [[i]] <= m) --> [[formula]]) }}
r | exists i isin 1 -- m . formula :: :: exists
r {{ tex \exists [[i]] \in 1 .. [[m]]. [[formula]] }}
r {{ isa ?[[i]]. ((1::nat)<=[[i]] & i<=[[m]]) ==> [[formula]] }}
r {{ hol ?[[i]] . (1<=[[i]] /\ [[i]]<=[[m]]) ==> [[formula]] }}
r {{ coq exists [[i]], (1<=[[i]] /\ [[i]] <= [[m]]) -> [[formula]] }}
r {{ lem (exists [[i]]. (1<=[[i]] && [[i]] <= m) && [[formula]]) }}
r | formula /\ formula' :: :: and {{ isa ([[formula]] & [[formula']]) }}
r {{ hol ([[formula]] /\ [[formula']]) }}
r {{ coq ([[formula]] /\ [[formula']]) }}
r {{ lem ([[formula]] && [[formula']]) }}
r | l = l' :: :: leq {{ ichl ([[l]]=[[l']]) }}
% would be nice to write the above as {{ isa ?[[T]]. [[X<:T isin G]] }}
%formulalist :: formulalist_ ::=
| formula1 ... formulan :: :: dots
subrules
v <:: t
% E _:: t :: t
substitutions
single t x :: tsubst
single T X :: Tsubst
multiple t x :: m_t_subst
multiple T X :: m_T_subst
freevars
T X :: ftv
t x :: fv
r embed
r {{ isa
r consts append_G :: "G => G => G"
r primrec
r "append_G [[G]] [[empty]] = [[G]]"
r "append_G [[G]] [[G',X<:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',X<:T]])"
r "append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]])"
r consts flatten_G :: "G list => G"
r primrec
r "flatten_G [] = [[empty]]"
r "flatten_G (Cons [[G]] Gs) = append_G [[G]] (flatten_G Gs)"
r }}
r
r {{ hol
r val _ = Define `
r (append_G [[G]] [[empty]] = [[G]])
r /\ (append_G [[G]] [[G',X<:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',X<:T]]))
r /\ (append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]]))`;
r val _ = Define `
r (flatten_G NIL = [[empty]])
r /\ (flatten_G (CONS [[G]] Gs) = append_G [[G]] (flatten_G Gs))`;
r }}
r
r {{ coq
r Fixpoint append_G (g1 g2 : G) {struct g2} : G :=
r match g2 with
r | G_empty => g1
r | G_type gh tv t => G_type (append_G g1 gh) tv t
r | G_term gh v t => G_term (append_G g1 gh) v t
r end.
r Fixpoint flatten_G (gl:list_G) : G :=
r match gl with
r | Nil_list_G => G_empty
r | Cons_list_G g gs => append_G g (flatten_G gs)
r end. }}
r {{ lem
r (** embedded definitions of operations on type environments **)
r val append_G : G -> G -> G
r let rec append_G [[G]] [[empty]] = [[G]]
r and append_G [[G]] [[G',X<:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',X<:T]])
r and append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]])
r val flatten_G : list G -> G
r let rec flatten_G [] = [[empty]]
r and flatten_G ([[G]]::Gs) = append_G [[G]] (flatten_G Gs)
r }}
r
defns
Judgement_in :: '' ::=
% defn
% x isin dom ( G ) :: :: xinG :: xinG_ {{ tex [[x]] \in [[dom]]([[G]])}} by
%
% x:T isin G
% ---------------- :: 1
% x isin dom(G)
%
%
% defn
% X isin dom ( G ) :: :: XinG :: XinG_ {{ tex [[X]] \in [[dom]]([[G]]) }} by
%
% X<:U isin G
% ---------------- :: 1
% X isin dom(G)
defn
x isin dom ( G ) :: :: xinG :: xinG_ {{ tex [[x]] \in [[dom]]([[G]])}} by
-------------- :: 1
x isin dom(G,x:T)
x isin dom(G)
---------------- :: 2
x isin dom(G,X'<:U')
x isin dom(G)
--------------- :: 3
x isin dom(G,x':T')
defn
X isin dom ( G ) :: :: XinG :: XinG_ {{ tex [[X]] \in [[dom]]([[G]]) }} by
------------- :: 1
X isin dom(G,X<:U)
X isin dom(G)
--------------- :: 2
X isin dom(G,X'<:U')
X isin dom(G)
-------------- :: 3
X isin dom(G,x':T')
defn
x : T isin G :: :: tin :: tin_ {{ tex [[x]] [[:]] [[T]] \in [[G]] }} by
---------------- :: 1
x:T isin G,x:T
x:T isin G
------------------ :: 2
x:T isin G,X'<:U'
x:T isin G
----------------- :: 3
x:T isin G,x':T'
defn
X <: U isin G :: :: Tin :: Tin_ {{ tex [[X]] [[<:]] [[U]] \in [[G]] }} by
---------------- :: 1
X<:U isin G,X<:U
X<:U isin G
------------------ :: 2
X<:U isin G,X'<:U'
X<:U isin G
----------------- :: 3
X<:U isin G,x':T'
defns
Jtype :: '' ::=
defn
G |- ok :: :: Gok :: Gok_ {{ com type environment $[[G]]$ is well-formed }} by
----------- :: 1
empty |- ok
G |- T
not(x isin dom(G))
------------------ :: 2
G,x:T |- ok
G |- T
not(X isin dom(G))
------------------- :: 3
G,X<:T |- ok
defn
G |- T :: :: GT :: GT_ {{ com type $[[T]]$ is well-formed in type environment $[[G]]$ }} by
G |- ok
X<:U isin G
-------------- :: Var
G |- X
G |- ok
-------------- :: Top
G |- Top
G |- T
G |- T'
-------------- :: Fun
G |- T->T'
G,X<:T |- T'
------------------ :: Forall
G |- Forall X<:T.T'
rG |- T1 .. G |- Tn
r% and distinctness, if not in the syntax
r--------------------- :: Rcd
rG |- {l1:T1,..,ln:Tn}
defn
G |- S <: T :: :: SA :: SA_ {{ com $[[S]]$ is a subtype of $[[T]]$ }} by
G |- ok
---------- :: Top
G |- S <: Top
G |- ok
---------- :: Refl_TVar
G |- X <: X
%G = G1, X<:U , G2
X<:U isin G
G |- U <: T
------------- :: Trans_TVar
G |- X <: T
G |- T1<:S1
G |- S2<:T2
---------------------- :: Arrow
G |- S1->S2 <: T1->T2
G |- T1<:S1
G,X<:T1 |- S2<:T2
--------------------------------------- :: All
G |- Forall X<:S1.S2 <: Forall X<:T1.T2
r forall i isin 1 -- m. exists j isin 1 -- n. (ki=lj /\ G |- Si<:Tj)
r --------------------------------------------------------------------------- :: Rcd
r G |- {k1:S1 , .. , km:Sm} <: {l1:T1,..,ln:Tn}
defn
G |- t : T :: :: Ty :: Ty_ {{ com term $[[t]]$ has type $[[T]]$ }} by
G |- ok
x:T isin G
-------------- :: Var
G |- x:T
G,x:T1 |- t2:T2
----------------------- :: Abs
G |- \x:T1.t2 : T1->T2
G|- t1:T11->T12
G|- t2:T11
-------------------- :: App
G|- t1 t2 : T12
G,X<:T1 |- t2:T2
-------------------------------- :: TAbs
G|- \X<:T1.t2 : Forall X<:T1.T2
G|- t1 : Forall X<:T11.T12
G|- T2 <: T11
--------------------------- :: TApp
G|- t1[T2] : [X|->T2]T12
r G|- t1:T1
r |- p:T1=>D
r G,D |- t2:T2
r ------------------------ :: Let
r G|- let p=t1 in t2 : T2
r
r G|-t1:T1 .. G|-tn:Tn
r % and distinctness, if not in the syntax
r ------------------------------------- :: Rcd
r G|- {l1=t1,..,ln=tn}:{l1:T1,..,ln:Tn}
r
r G|- t:{l1:T1,..,ln:Tn}
r ----------------------- :: Proj
r G|- t.lj : Tj
G|- t:S
G|- S<:T
--------- :: Sub
G|- t:T
rdefn
r |- p : T => D :: :: Pat :: Pat_ {{ com pattern $[[p]]$ matches type $[[T]]$ giving bindings $[[D]]$ }} by
r
r ------------------ :: Var
r |- x:T : T => empty,x:T
r
r |- p1:T1=>D1 .. |- pn:Tn=>Dn
r % and distinctness, if not in the syntax
r ------------------------------------------------ :: Rcd
r |- {l1=p1,..,ln=pn}:{l1:T1,..,ln:Tn} => D1,..,Dn
defns
Jop :: '' ::=
defn
t1 --> t2 :: :: reduce :: reduce_ {{ com $[[t1]]$ reduces to $[[t2]]$ }} by
----------------------------------------- :: AppAbs
(\x:T11.t12) v2 --> :t_tsub: [x|->v2]t12
----------------------------------- :: TappTabs
(\X<:T11.t12) [T2] --> [X|->T2]t12
r match(p,v1)=s
r ------------------------- :: LetV
r let p=v1 in t2 --> s t2
r
r --------------------------- :: ProjRcd
r {l'1=v1,..,l'n=vn}.l'j --> vj
%t1 --> t1'
%------------------- :: Ctx
%E[t1] --> E[t1']
t1 --> t1'
---------------- :: Ctx_app_fun
t1 t --> t1' t
t1 --> t1'
---------------- :: Ctx_app_arg
v t1 --> v t1'
t1 --> t1'
---------------- :: Ctx_type_fun
t1[T] --> t1'[T]
r t --> t'
r -------------- :: Ctx_record
r {l1=v1,..,lm=vm,l=t,l1'=t1',..,ln'=tn'} --> {l1=v1,..,lm=vm,l=t',l1'=t1',..,ln'=tn'}
r
r t1 --> t1'
r ---------------------------------- :: Ctx_let_binding
r let p=t1 in t2 --> let p=t1' in t2
r
rdefn
r match ( p , v ) = s :: :: M :: M_ by
r
r ----------------------- :: Var
r match(x:T,v) = [x|->v]
r
r forall i isin 1 -- m. exists j isin 1 -- n. (li=kj /\ match(pi,vj)=si)
r ---------------------------------------------------------------------- :: Rcd
r match({l1=p1,..,lm=pm},{k1=v1,..,kn=vn}) = s1,..,sm
|