File: common_typing.ott

package info (click to toggle)
ott 0.34%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,440 kB
  • sloc: ml: 25,103; makefile: 1,375; awk: 736; lisp: 183; sh: 14; sed: 4
file content (37 lines) | stat: -rw-r--r-- 1,435 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
% (Here we represent type environments with proof assistant lists. One could
%  instead use the Ott free type, or proof assistant finite maps or what have you.)

% (The TAPL version has an implicit convention that the assumptions in G
%  are for distinct variables.  Here instead we always look up the 
%  rightmost assumption in a G.  One could equally well add an explicit
%  well-formedness condition to the T_Var rule.)

grammar
G {{ tex \Gamma }} :: G_ ::=                      {{ com contexts: }}
        {{ isa (termvar*T) list }} 
        {{ coq list (termvar*T) }}
        {{ hol (termvar#Typ) list }} 
  | empty                        ::   :: empty      {{ com empty context }}
        {{ isa Nil }}
        {{ coq nil }}
        {{ hol [] }}
  | G , x : T                    ::   :: vn         {{ com term variable binding }}
        {{ isa ([[x]],[[T]])#[[G]] }}
        {{ coq (cons ([[x]],[[T]]) [[G]]) }}
        {{ hol (([[x]],[[T]])::[[G]]) }}


formula :: 'formula_' ::=          
  | x : T in G          ::   :: xTG 
        {{ tex [[x]]:[[T]] \in [[G]] }}
        {{ isa ? G1 G2. [[G]] = G1 @ ([[x]],[[T]])#G2 & [[x]]~:fst ` set G1 }}
        {{ coq (bound [[x]] [[T]] [[G]])  }}
        {{ hol ? G1 G2. ([[G]] = G1 ++ ([[x]],[[T]])::G2) /\ ~(MEM [[x]] (MAP FST G1)) }}

embed
{{ coq
Definition bound x T0 G :=
  exists G1, exists G2,
    (G = G1 ++ (x,T0)::G2)%list /\
    ~In x (List.map (@fst termvar T) G1).
}}