File: test19.0.ott

package info (click to toggle)
ott 0.34%2Bds-3
  • links: PTS, VCS
  • area: main
  • in suites: experimental
  • size: 6,440 kB
  • sloc: ml: 25,103; makefile: 1,375; awk: 736; lisp: 183; sh: 14; sed: 4
file content (322 lines) | stat: -rw-r--r-- 10,554 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
% cut-down version of POPLmark language with records and record patterns but without type variables, abstraction and application
metavar termvar, x ::=
 {{ isa string }} {{ coq nat }} {{ hol string }}  {{ coq-equality }} {{ lex alphanum }}  
 {{ tex \mathit{[[termvar]]} }} {{ com  term variable  }} 
 {{ isavar ''[[termvar]]'' }} {{ holvar "[[termvar]]" }} {{ texvar \mathrm{[[termvar]]} }} 
 {{ ocamlvar "[[termvar]]" }}

metavar label, l, k ::=
 {{ isa string }} {{ coq nat }} {{ hol string }} {{ lex alphanum }}  {{ tex \mathit{[[label]]} }} 
 {{ com  field label  }}  {{ isavar ''[[label]]'' }} {{ holvar "[[label]]" }}
 {{ ocamlvar "[[label]]" }}

indexvar index, i, j, n, m  ::= {{ isa nat }} {{ coq nat }} {{ hol num }} {{ lex numeral }}
  {{ com indices }}

 grammar

T {{ hol Typ }}, S, U :: 'T_' ::=                                     {{ com type  }}
  | Top                              ::   :: Top                        {{ com maximum type }}   
  | T -> T'                          ::   :: Fun                        {{ com type of functions }}
  | { l1 : T1 , .. , ln : Tn }       ::   :: Rec                        {{ com record }}           
  | ( T )                            :: M :: paren                      {{ ich [[T]] }}

t :: 't_' ::=                                                         {{ com  term  }}
  | x                                ::   :: Var                        {{ com variable }}         
  | \ x : T . t                      ::   :: Lam  (+ bind x in t +)     {{ com abstraction }}      
  | t t'                             ::   :: App                        {{ com application }}      
  | { l1 = t1 ,  .. , ln = tn }      ::   :: Rec                        {{ com record }}
  | t . l                            ::   :: Proj                       {{ com projection }} 
  | let p = t in t'                  ::   :: Let  (+ bind b(p) in t' +) {{ com pattern binding}}
  | ( t )                            :: M :: paren                      {{ ich [[t]] }} 
  | [ x |-> t ] t'                   :: M :: tsub                       {{ ich ( tsubst_t [[t]] [[x]] [[t']] ) }}
  | s t                              :: M :: tsubs                      {{ ich ( m_t_subst_t [[s]] [[t]] ) }}

p :: 'P_' ::=                                                         {{ com  pattern }}
  | x : T                            ::   :: Var  (+ b = x  +)          {{ com variable pattern }}
  | { l1 = p1 , .. , ln = pn }       ::   :: Rec  (+ b = b(p1 .. pn) +) {{ com  record pattern  }}

v :: 'v_' ::=                                                         {{ com  values  }}
  | \ x : T . t                      ::   :: Lam  (+ bind x in t +)     {{ com abstraction }}      
  | { l1 = v1 ,  .. , ln = vn }      ::   :: Rec                        {{ com record }}

G {{ tex \Gamma }}, D {{ tex \Delta }} :: 'G_' ::=                    {{ com type environment }}
  | empty                            ::   :: empty       
  | G , x : T                        ::   :: term
  | G1 , .. , Gn                     :: M :: dots                        {{ ich (flatten_G [[G1..Gn]]) }}  

s {{ tex \sigma }} :: 'S_' ::= {{ com multiple term substitution }} {{ isa (termvar*t) list }} {{ hol (termvar#t) list }} {{ coq list (termvar*t) }}
  | [ x |-> t ]                    ::   :: singleton {{ ih [ ([[x]],[[t]]) ] }} {{ coq (cons ([[x]],[[t]]) nil) }}
  | s1 , .. , sn                   ::   :: list   {{ isa List.concat [[s1..sn]] }} {{ hol (FLAT [[s1..sn]]) }} {{ coq (List.flat_map (fun x => x) [[s1..sn]]) }}

terminals :: terminals_ ::=
  |  \                     ::   :: lambda    {{ tex  \lambda }}
  |  ->                    ::   :: arrow     {{ tex  \rightarrow }}
  |  =>                    ::   :: Arrow     {{ tex  \Rightarrow }}
  | |-                     ::   :: turnstile {{ tex \vdash }}
  | -->                    ::   :: red       {{ tex \longrightarrow }}
  | Forall                 ::   :: forall    {{ tex \forall }}
  | <:                     ::   :: subtype   {{ tex <: }}
  | |->                    ::   :: mapsto    {{ tex \mapsto }}
  | /\                     ::   :: wedge     {{ tex \wedge }}
  | \/                     ::   :: vee       {{ tex \vee }}
  | =                      ::   :: eq        {{ tex \!\! = \!\! }}

formula :: formula_ ::=          
  | judgement              :: :: judgement
% | G = G'                 :: :: Geq     {{ ich [[G]] = [[G']] }}
  | x = x'                 :: :: xeq     {{ ich [[x]] = [[x']]  }}
  | ( formula )            :: :: paren   {{ ich ( [[formula]] ) }}
  | not formula            :: :: not     {{ isa Not( [[formula]] ) }}
                                         {{ coq not( [[formula]] ) }}
                                         {{ hol ~( [[formula]] ) }}
                                         {{ tex \neg [[ formula]] }}
%  | x isin dom ( G )      :: :: xin    {{ isa ? T. ([[x]],T,[[G]]):tin }} 
%                                         {{ tex [[x]] \in [[dom]]([[G]]) }}
  | forall i isin 1 -- m . formula :: :: forall 
                               {{ tex \forall [[i]] \in 1 .. [[m]] . [[formula]] }} 
                               {{ isa ![[i]] . ((1::nat)<=[[i]] & [[i]]<=[[m]]) ==> [[formula]] }} 
                               {{ hol ![[i]] . (1<=[[i]] /\ [[i]]<=[[m]]) ==> [[formula]] }} 
                               {{ coq (forall [[i]], (1<=[[i]] /\ [[i]] <= m) -> [[formula]]) }}

  | exists i isin 1 -- m . formula :: :: exists 
                               {{ tex \exists [[i]] \in 1 .. [[m]]. [[formula]] }}
                               {{ isa ?[[i]]. ((1::nat)<=[[i]] & i<=[[m]]) ==> [[formula]] }} 
                               {{ hol ?[[i]] . (1<=[[i]] /\ [[i]]<=[[m]]) ==> [[formula]] }} 
                               {{ coq exists [[i]], (1<=[[i]] /\ [[i]] <= [[m]]) -> [[formula]] }}

  | formula /\ formula'   :: :: and  {{ isa ([[formula]] & [[formula']]) }}
                                     {{ hol ([[formula]] /\ [[formula']]) }}
                                     {{ coq ([[formula]] /\ [[formula']]) }}

  | l = l'                :: :: leq  {{ ich ([[l]]=[[l']]) }}
 
% would be nice to write the above as  {{ isa ?[[T]]. [[X<:T isin G]] }}

%formulalist :: formulalist_ ::=          
   | formula1 ... formulan   :: :: dots


subrules

  v <:: t


substitutions
  single   t x :: tsubst    
  multiple t x :: m_t_subst 

freevars
  t x :: fv



 embed 
   {{ isa 
 consts append_G :: "G => G => G"
 primrec
 "append_G [[G]] [[empty]] = [[G]]"
 "append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]])"
 consts flatten_G :: "G list => G"
 primrec
 "flatten_G [] = [[empty]]"
 "flatten_G (Cons [[G]] Gs) = append_G [[G]] (flatten_G Gs)"
 }}
 
   {{ hol
 val _ = Define `
    (append_G [[G]] [[empty]] = [[G]])
 /\ (append_G [[G]] [[G',x:T]] = (let [[G'']] = append_G [[G]] [[G']] in [[G'',x:T]]))`;
 val _ = Define `
    (flatten_G NIL = [[empty]])
 /\ (flatten_G (CONS [[G]] Gs) = append_G [[G]] (flatten_G Gs))`;
 }}
 
 {{ coq 
 Fixpoint append_G (g1 g2 : G) {struct g2} : G :=
   match g2 with
   | G_empty => g1
   | G_term gh v t => G_term (append_G g1 gh) v t
 end.
 Fixpoint flatten_G (gl:list_G) : G :=
   match gl with 
   | Nil_list_G => G_empty
   | Cons_list_G g gs => append_G g (flatten_G gs)
 end.  }}

defns
Judgement_in :: '' ::=


defn
x isin dom ( G ) :: :: xinG :: xinG_ {{ tex [[x]] \in [[dom]]([[G]])}} by 

-------------- :: 1
x isin dom(G,x:T)

x isin dom(G)
--------------- :: 3
x isin dom(G,x':T')



defn
x : T isin G :: :: tin :: tin_ {{ tex [[x]] [[:]] [[T]] \in [[G]] }} by

---------------- :: 1
x:T isin G,x:T

x:T isin G
----------------- :: 3
x:T isin G,x':T'



defns
Jtype :: '' ::=

defn
G |- ok :: :: Gok :: Gok_ {{ com type environment $[[G]]$ is well-formed }} by

----------- :: 1
empty |- ok

G |- T 
not(x isin dom(G))
------------------ :: 2
G,x:T |- ok


defn
G |- T :: :: GT :: GT_ {{ com type $[[T]]$ is well-formed in type environment $[[G]]$ }} by

G |- ok
-------------- :: Top
G |- Top

G |- T
G |- T'
-------------- :: Fun
G |- T->T'

G |- T1 .. G |- Tn
% and distinctness, if not in the syntax
--------------------- :: Rcd
G |- {l1:T1,..,ln:Tn}



defn
G |- S <: T ::  :: SA :: SA_  {{ com $[[S]]$ is a subtype of $[[T]]$ }} by 

G |- ok
---------- :: Top
G |- S <: Top

G |- T1<:S1
G |- S2<:T2
---------------------- :: Arrow 
G |- S1->S2 <: T1->T2

forall i isin 1 -- m. exists j isin 1 -- n. (ki=lj /\ G |- Si<:Tj)
--------------------------------------------------------------------------- :: Rcd
G |- {k1:S1 , .. , km:Sm} <: {l1:T1,..,ln:Tn}


defn
G |- t : T ::  :: Ty :: Ty_  {{ com term $[[t]]$ has type $[[T]]$ }} by 

G |- ok
x:T isin G
-------------- :: Var
G |- x:T

G,x:T1 |- t2:T2
----------------------- :: Abs
G |- \x:T1.t2 : T1->T2

G|- t1:T11->T12
G|- t2:T11
-------------------- :: App
G|- t1 t2 : T12

G|- t1:T1
|- p:T1=>D
G,D |- t2:T2
------------------------ :: Let
G|- let p=t1 in t2 : T2

G|-t1:T1 .. G|-tn:Tn
% and distinctness, if not in the syntax
------------------------------------- :: Rcd
G|- {l1=t1,..,ln=tn}:{l1:T1,..,ln:Tn}

G|- t:{l1:T1,..,ln:Tn}
----------------------- :: Proj
G|- t.lj : Tj



G|- t:S
G|- S<:T
--------- :: Sub
G|- t:T


defn
 |- p : T => D ::  :: Pat :: Pat_  {{ com pattern $[[p]]$ matches type $[[T]]$ giving bindings $[[D]]$ }} by 
 
 ------------------ :: Var
 |- x:T : T => empty,x:T
 
 |- p1:T1=>D1 .. |- pn:Tn=>Dn
 % and distinctness, if not in the syntax
 ------------------------------------------------ :: Rcd
 |- {l1=p1,..,ln=pn}:{l1:T1,..,ln:Tn} => D1,..,Dn


defns
Jop :: '' ::=


defn
t1 --> t2 ::  :: reduce :: reduce_  {{ com $[[t1]]$ reduces to $[[t2]]$ }} by 

-----------------------------------------  :: AppAbs
(\x:T11.t12) v2 -->  :t_tsub: [x|->v2]t12

match(p,v1)=s
-------------------------  :: LetV
let p=v1 in t2 -->  s t2

--------------------------- :: ProjRcd
{l'1=v1,..,l'n=vn}.l'j --> vj

t1 --> t1'
---------------- :: Ctx_app_fun
t1 t --> t1' t

t1 --> t1'
---------------- :: Ctx_app_arg
v t1 --> v t1'

t --> t'
-------------- :: Ctx_record
{l1=v1,..,lm=vm,l=t,l1'=t1',..,ln'=tn'} --> {l1=v1,..,lm=vm,l=t',l1'=t1',..,ln'=tn'}

t1 --> t1'
---------------------------------- :: Ctx_let_binding
let p=t1 in t2 --> let p=t1' in t2

defn
match ( p , v ) = s ::  :: M :: M_  by 

----------------------- :: Var
match(x:T,v) = [x|->v]

forall i isin 1 -- m. exists j isin 1 -- n. (li=kj /\ match(pi,vj)=si)
---------------------------------------------------------------------- :: Rcd
match({l1=p1,..,lm=pm},{k1=v1,..,kn=vn}) = s1,..,sm