File: ovn-sb.xml

package info (click to toggle)
ovn 23.03.1-1~deb12u2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 12,244 kB
  • sloc: ansic: 79,254; xml: 20,536; sh: 3,253; python: 1,736; makefile: 813
file content (5010 lines) | stat: -rw-r--r-- 194,110 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
<?xml version="1.0" encoding="utf-8"?>
<database name="ovn-sb" title="OVN Southbound Database">
  <p>
    This database holds logical and physical configuration and state for the
    Open Virtual Network (OVN) system to support virtual network abstraction.
    For an introduction to OVN, please see <code>ovn-architecture</code>(7).
  </p>

  <p>
    The OVN Southbound database sits at the center of the OVN
    architecture.  It is the one component that speaks both southbound
    directly to all the hypervisors and gateways, via
    <code>ovn-controller</code>/<code>ovn-controller-vtep</code>, and
    northbound to the Cloud Management System, via <code>ovn-northd</code>:
  </p>

  <h2>Database Structure</h2>

  <p>
    The OVN Southbound database contains classes of data with
    different properties, as described in the sections below.
  </p>

  <h3>Physical network</h3>

  <p>
    Physical network tables contain information about the chassis nodes in the
    system.  This contains all the information necessary to wire the overlay,
    such as IP addresses, supported tunnel types, and security keys.
  </p>

  <p>
    The amount of physical network data is small (O(n) in the number of
    chassis) and it changes infrequently, so it can be replicated to every
    chassis.
  </p>

  <p>
    The <ref table="Chassis"/> and <ref table="Encap"/> tables are the physical
    network tables.
  </p>

  <h3>Logical Network</h3>

  <p>
    Logical network tables contain the topology of logical switches and
    routers, ACLs, firewall rules, and everything needed to describe how
    packets traverse a logical network, represented as logical datapath flows
    (see Logical Datapath Flows, below).
  </p>

  <p>
    Logical network data may be large (O(n) in the number of logical ports, ACL
    rules, etc.).  Thus, to improve scaling, each chassis should receive only
    data related to logical networks in which that chassis participates.
  </p>

  <p>
    The logical network data is ultimately controlled by the cloud management
    system (CMS) running northbound of OVN.  That CMS determines the entire OVN
    logical configuration and therefore the logical network data at any given
    time is a deterministic function of the CMS's configuration, although that
    happens indirectly via the <ref db="OVN_Northbound"/> database and
    <code>ovn-northd</code>.
  </p>

  <p>
    Logical network data is likely to change more quickly than physical network
    data.  This is especially true in a container environment where containers
    are created and destroyed (and therefore added to and deleted from logical
    switches) quickly.
  </p>

  <p>
    The <ref table="Logical_Flow"/>, <ref table="Multicast_Group"/>, <ref
    table="Address_Group"/>, <ref table="DHCP_Options"/>, <ref
    table="DHCPv6_Options"/>, and <ref table="DNS"/> tables contain logical
    network data.
  </p>

  <h3>Logical-physical bindings</h3>

  <p>
    These tables link logical and physical components.  They show the current
    placement of logical components (such as VMs and VIFs) onto chassis, and
    map logical entities to the values that represent them in tunnel
    encapsulations.
  </p>

  <p>
    These tables change frequently, at least every time a VM powers up or down
    or migrates, and especially quickly in a container environment.  The
    amount of data per VM (or VIF) is small.
  </p>

  <p>
    Each chassis is authoritative about the VMs and VIFs that it hosts at any
    given time and can efficiently flood that state to a central location, so
    the consistency needs are minimal.
  </p>

  <p>
    The <ref table="Port_Binding"/> and <ref table="Datapath_Binding"/> tables
    contain binding data.
  </p>

  <h3>MAC bindings</h3>

  <p>
    The <ref table="MAC_Binding"/> table tracks the bindings from IP addresses
    to Ethernet addresses that are dynamically discovered using ARP (for IPv4)
    and neighbor discovery (for IPv6).  Usually, IP-to-MAC bindings for virtual
    machines are statically populated into the <ref table="Port_Binding"/>
    table, so <ref table="MAC_Binding"/> is primarily used to discover bindings
    on physical networks.
  </p>

  <h2>Common Columns</h2>

  <p>
    Some tables contain a special column named <code>external_ids</code>.  This
    column has the same form and purpose each place that it appears, so we
    describe it here to save space later.
  </p>

  <dl>
    <dt><code>external_ids</code>: map of string-string pairs</dt>
    <dd>
      Key-value pairs for use by the software that manages the OVN Southbound
      database rather than by
      <code>ovn-controller</code>/<code>ovn-controller-vtep</code>.  In
      particular, <code>ovn-northd</code> can use key-value pairs in this
      column to relate entities in the southbound database to higher-level
      entities (such as entities in the OVN Northbound database).  Individual
      key-value pairs in this column may be documented in some cases to aid
      in understanding and troubleshooting, but the reader should not mistake
      such documentation as comprehensive.
    </dd>
  </dl>

  <table name="SB_Global" title="Southbound configuration">
    <p>
      Southbound configuration for an OVN system.  This table must have exactly
      one row.
    </p>

    <group title="Status">
      This column allow a client to track the overall configuration state of
      the system.

      <column name="nb_cfg">
        Sequence number for the configuration.  When a CMS or
        <code>ovn-nbctl</code> updates the northbound database, it increments
        the <code>nb_cfg</code> column in the <code>NB_Global</code> table in
        the northbound database.  In turn, when <code>ovn-northd</code> updates
        the southbound database to bring it up to date with these changes, it
        updates this column to the same value.
      </column>
    </group>

    <group title="Common Columns">
      <column name="external_ids">
        See <em>External IDs</em> at the beginning of this document.
      </column>

      <column name="options">
      </column>
    </group>

    <group title="Common options">
      <column name="options">
        This column provides general key/value settings. The supported
        options are described individually below.
      </column>

      <group title="Options for configuring BFD">
        <p>
          These options apply when <code>ovn-controller</code> configures
          BFD on tunnels interfaces.
        </p>

        <column name="options" key="bfd-min-rx">
          BFD option <code>min-rx</code> value to use when configuring BFD on
          tunnel interfaces.
        </column>

        <column name="options" key="bfd-decay-min-rx">
          BFD option <code>decay-min-rx</code> value to use when configuring
          BFD on tunnel interfaces.
        </column>

        <column name="options" key="bfd-min-tx">
          BFD option <code>min-tx</code> value to use when configuring BFD on
          tunnel interfaces.
        </column>

        <column name="options" key="bfd-mult">
          BFD option <code>mult</code> value to use when configuring BFD on
          tunnel interfaces.
        </column>

        <column name="options" key="debug_drop_domain_id">
          <p>
            If set to a 8-bit number and if
            <code>debug_drop_collector_set</code> is also configured,
            <code>ovn-controller</code> will add a <code>sample</code> action
            to every flow that does not come from a logical flow that contains
            a 'drop' action.
            The 8 most significant bits of the observation_domain_id field will
            be those specified in the
            <code> debug_drop_domain_id</code>.
            The 24 least significant bits of the observation_domain_id field
            will be zero.
          </p>
          <p>
            The observation_point_id will be set to the OpenFlow table number.
          </p>
        </column>

        <column name="options" key="debug_drop_collector_set">
          <p>
            If set to a 32-bit number <code>ovn-controller</code> will add a
            <code>sample</code> action to every flow that does not come from
            a logical flow that contains a 'drop' action.
            The sample action will have the specified collector_set_id.
            The value must match that of the local OVS configuration as
            described in <code>ovs-actions</code>(7).
          </p>
        </column>
      </group>

      <group title="Options for configuring Load Balancers">
        <p>
          These options apply when <code>ovn-controller</code> configures
          load balancer related flows.
        </p>

        <column name="options" key="lb_hairpin_use_ct_mark">
          By default this option is turned on (even if not present in the
          database) unless its value is explicitly set to <code>false</code>.

          This value is automatically set to <code>false</code> by
          <code>ovn-northd</code> when action <code>ct_lb_mark</code> cannot be
          used for new load balancer sessions and action <code>ct_lb</code>
          will be used instead.  <code>ovn-controller</code> then
          knows that it should check <code>ct_label.natted</code> to detect
          load balanced traffic.
        </column>
      </group>

    </group>

    <group title="Connection Options">
      <column name="connections">
        Database clients to which the Open vSwitch database server should
        connect or on which it should listen, along with options for how these
        connections should be configured.  See the <ref table="Connection"/>
        table for more information.
      </column>
      <column name="ssl">
        Global SSL configuration.
      </column>
    </group>
    <group title="Security Configurations">
      <column name="ipsec">
        Tunnel encryption configuration. If this column is set to be true, all
        OVN tunnels will be encrypted with IPsec.
      </column>
    </group>
  </table>

  <table name="Chassis" title="Physical Network Hypervisor and Gateway Information">
    <p>
      Each row in this table represents a hypervisor or gateway (a chassis) in
      the physical network.  Each chassis, via
      <code>ovn-controller</code>/<code>ovn-controller-vtep</code>, adds
      and updates its own row, and keeps a copy of the remaining rows to
      determine how to reach other hypervisors.
    </p>

    <p>
      When a chassis shuts down gracefully, it should remove its own row.
      (This is not critical because resources hosted on the chassis are equally
      unreachable regardless of whether the row is present.)  If a chassis
      shuts down permanently without removing its row, some kind of manual or
      automatic cleanup is eventually needed; we can devise a process for that
      as necessary.
    </p>

    <column name="name">
      OVN does not prescribe a particular format for chassis names.
      ovn-controller populates this column using <ref key="system-id"
      table="Open_vSwitch" column="external_ids" db="Open_vSwitch"/>
      in the Open_vSwitch database's <ref table="Open_vSwitch"
      db="Open_vSwitch"/> table.  ovn-controller-vtep populates this
      column with <ref table="Physical_Switch" column="name"
      db="hardware_vtep"/> in the hardware_vtep database's
      <ref table="Physical_Switch" db="hardware_vtep"/> table.
    </column>

    <column name="hostname">
      The hostname of the chassis, if applicable.  ovn-controller will populate
      this column with the hostname of the host it is running on.
      ovn-controller-vtep will leave this column empty.
    </column>

    <column name="nb_cfg">
      Deprecated. This column is replaced by the <ref table="Chassis_Private"
      column="nb_cfg"/> column of the <ref table="Chassis_Private"/> table.
    </column>

    <column name="other_config" key="ovn-bridge-mappings">
      <code>ovn-controller</code> populates this key with the set of bridge
      mappings it has been configured to use.  Other applications should treat
      this key as read-only.  See <code>ovn-controller</code>(8) for more
      information.
    </column>

    <column name="other_config" key="datapath-type">
      <code>ovn-controller</code> populates this key with the datapath type
      configured in the <ref table="Bridge" column="datapath_type"/> column of
      the Open_vSwitch database's <ref table="Bridge" db="Open_vSwitch"/>
      table.  Other applications should treat this key as read-only. See
      <code>ovn-controller</code>(8) for more information.
    </column>

    <column name="other_config" key="iface-types">
      <code>ovn-controller</code> populates this key with the interface types
      configured in the <ref table="Open_vSwitch" column="iface_types"/> column
      of the Open_vSwitch database's <ref table="Open_vSwitch"
      db="Open_vSwitch"/> table.  Other applications should treat this key as
      read-only. See <code>ovn-controller</code>(8) for more information.
    </column>

    <column name="other_config" key="ovn-cms-options">
      <code>ovn-controller</code> populates this key with the set of options
      configured in the <ref table="Open_vSwitch"
      column="external_ids:ovn-cms-options"/> column of the Open_vSwitch
      database's <ref table="Open_vSwitch" db="Open_vSwitch"/> table.
      See <code>ovn-controller</code>(8) for more information.
    </column>

    <column name="other_config" key="is-interconn">
      <code>ovn-controller</code> populates this key with the setting
      configured in the <ref table="Open_vSwitch"
      column="external_ids:ovn-is-interconn"/> column of the Open_vSwitch
      database's <ref table="Open_vSwitch" db="Open_vSwitch"/> table.
      If set to true, the chassis is used as an interconnection gateway.
      See <code>ovn-controller</code>(8) for more information.
    </column>

    <column name="other_config" key="is-remote">
      <code>ovn-ic</code> set this key to true for remote interconnection
      gateway chassises learned from the interconnection southbound database.
      See <code>ovn-ic</code>(8) for more information.
    </column>

    <column name="transport_zones">
      <code>ovn-controller</code> populates this key with the transport
      zones configured in the <ref table="Open_vSwitch"
      column="external_ids:ovn-transport-zones"/> column of the Open_vSwitch
      database's <ref table="Open_vSwitch" db="Open_vSwitch"/> table.
      See <code>ovn-controller</code>(8) for more information.
    </column>

    <column name="other_config" key="ovn-chassis-mac-mappings">
      <code>ovn-controller</code> populates this key with the set of options
      configured in the <ref table="Open_vSwitch"
      column="external_ids:ovn-chassis-mac-mappings"/> column of the
      Open_vSwitch database's <ref table="Open_vSwitch" db="Open_vSwitch"/>
      table. See <code>ovn-controller</code>(8) for more information.
    </column>

    <column name="other_config" key="port-up-notif">
      <code>ovn-controller</code> populates this key with <code>true</code>
      when it supports <code>Port_Binding.up</code>.
    </column>

    <group title="Common Columns">
      The overall purpose of these columns is described under <code>Common
      Columns</code> at the beginning of this document.

      <column name="external_ids"/>
    </group>

    <group title="Encapsulation Configuration">
      <p>
        OVN uses encapsulation to transmit logical dataplane packets
        between chassis.
      </p>

      <column name="encaps">
        Points to supported encapsulation configurations to transmit
        logical dataplane packets to this chassis.  Each entry is a <ref
        table="Encap"/> record that describes the configuration.
      </column>
    </group>

    <group title="Gateway Configuration">
      <p>
        A <dfn>gateway</dfn> is a chassis that forwards traffic between the
        OVN-managed part of a logical network and a physical VLAN, extending a
        tunnel-based logical network into a physical network.  Gateways are
        typically dedicated nodes that do not host VMs and will be controlled
        by <code>ovn-controller-vtep</code>.
      </p>

      <column name="vtep_logical_switches">
        Stores all VTEP logical switch names connected by this gateway
        chassis.  The <ref table="Port_Binding"/> table entry with
        <ref column="options" table="Port_Binding"/>:<code>vtep-physical-switch</code>
        equal <ref table="Chassis"/> <ref column="name" table="Chassis"/>, and
        <ref column="options" table="Port_Binding"/>:<code>vtep-logical-switch</code>
        value in <ref table="Chassis"/>
        <ref column="vtep_logical_switches" table="Chassis"/>, will be
        associated with this <ref table="Chassis"/>.
      </column>
    </group>
  </table>

  <table name="Chassis_Private" title="Chassis Private">
    <p>
      Each row in this table maintains per chassis private data that are
      accessed only by the owning chassis (write only) and ovn-northd, not by
      any other chassis.  These data are stored in this separate table instead
      of the <ref table="Chassis"/> table for performance considerations:
      the rows in this table can be conditionally monitored by chassises so
      that each chassis only get update notifications for its own row, to avoid
      unnecessary chassis private data update flooding in a large scale
      deployment.
    </p>

    <column name="name">
      The name of the chassis that owns these chassis-private data.
    </column>

    <column name="chassis">
      The reference to <ref table="Chassis"/> table for the chassis that owns
      these chassis-private data.
    </column>

    <column name="nb_cfg">
      Sequence number for the configuration.  When <code>ovn-controller</code>
      updates the configuration of a chassis from the contents of the
      southbound database, it copies <ref table="SB_Global" column="nb_cfg"/>
      from the <ref table="SB_Global"/> table into this column.
    </column>

    <column name="nb_cfg_timestamp">
      The timestamp when <code>ovn-controller</code> finishes processing the
      change corresponding to <ref column="nb_cfg"/>.
    </column>

    <group title="Common Columns">
      The overall purpose of these columns is described under <code>Common
      Columns</code> at the beginning of this document.

      <column name="external_ids"/>
    </group>
  </table>

  <table name="Encap" title="Encapsulation Types">
    <p>
      The <ref column="encaps" table="Chassis"/> column in the <ref
      table="Chassis"/> table refers to rows in this table to identify
      how OVN may transmit logical dataplane packets to this chassis.
      Each chassis, via <code>ovn-controller</code>(8) or
      <code>ovn-controller-vtep</code>(8), adds and updates its own rows
      and keeps a copy of the remaining rows to determine how to reach
      other chassis.
    </p>

    <column name="type">
      The encapsulation to use to transmit packets to this chassis.
      Hypervisors and gateways must use one of: <code>geneve</code>,
      <code>vxlan</code>, or <code>stt</code>.
    </column>

    <column name="options">
      Options for configuring the encapsulation, which may be <ref column="type"/> specific.
    </column>

    <column name="options" key="csum" type='{"type": "boolean"}'>
      <p>
        <code>csum</code> indicates whether this chassis can transmit and
        receive packets that include checksums with reasonable performance.  It
        hints
        to senders transmitting data to this chassis that they should use
        checksums to protect OVN metadata. <code>ovn-controller</code>
        populates this key with the value defined in
        <ref table="Open_vSwitch" column="external_ids:ovn-encap-csum"/> column
        of the Open_vSwitch database's <ref table="Open_vSwitch"
        db="Open_vSwitch"/> table.  Other applications should treat this key as
        read-only. See <code>ovn-controller</code>(8) for more information.
      </p>

      <p>
        In terms of performance, checksumming actually significantly increases
        throughput in most common cases when running on Linux based hosts
        without NICs supporting encapsulation hardware offload (around 60% for
        bulk traffic). The reason is that generally all NICs are capable of
        offloading transmitted and received TCP/UDP checksums (viewed as
        ordinary data packets and not as tunnels). The benefit comes on the
        receive side where the validated outer checksum can be used to
        additionally validate an inner checksum (such as TCP), which in turn
        allows aggregation of packets to be more efficiently handled by the
        rest of the stack.
      </p>

      <p>
        Not all devices see such a benefit. The most notable exception is
        hardware VTEPs. These devices are designed to not buffer entire
        packets in their switching engines and are therefore unable to
        efficiently compute or validate full packet checksums. In addition
        certain versions of the Linux kernel are not able to fully take
        advantage of encapsulation NIC offloads in the presence of checksums.
        (This is actually a pretty narrow corner case though: earlier
        versions of Linux don't support encapsulation offloads at all and
        later versions support both offloads and checksums well.)
      </p>

      <p>
        <code>csum</code> defaults to <code>false</code> for hardware VTEPs and
        <code>true</code> for all other cases.
      </p>

      <p>
        This option applies to <code>geneve</code> and <code>vxlan</code>
        encapsulations.
      </p>
    </column>

    <column name="options" key="dst_port" type='{"type": "integer"}'>
      <p>
        If set, overrides the UDP (for <code>geneve</code> and
        <code>vxlan</code>) or TCP (for <code>stt</code>) destination port.
      </p>
    </column>

    <column name="ip">
      The IPv4 address of the encapsulation tunnel endpoint.
    </column>
    <column name="chassis_name">
      The name of the chassis that created this encap.
    </column>
  </table>

  <table name="Address_Set" title="Address Sets">
    <p>
      This table contains address sets synced from the <ref table="Address_Set"
      db="OVN_Northbound"/> table in the <ref db="OVN_Northbound"/> database
      and address sets generated from the <ref table="Port_Group"
      db="OVN_Northbound"/> table in the <ref db="OVN_Northbound"/> database.
    </p>

    <p>
      See the documentation for the <ref table="Address_Set"
      db="OVN_Northbound"/> table and <ref table="Port_Group"
      db="OVN_Northbound"/> table in the <ref db="OVN_Northbound"/>
      database for details.
    </p>

    <column name="name"/>
    <column name="addresses"/>
  </table>

  <table name="Port_Group" title="Port Groups">
    <p>
      This table contains names for the logical switch ports in the
      <ref db="OVN_Northbound"/> database that belongs to the same group
      that is defined in <ref table="Port_Group" db="OVN_Northbound"/>
      in the <ref db="OVN_Northbound"/> database.
    </p>

    <column name="name"/>
    <column name="ports"/>
  </table>

  <table name="Logical_Flow" title="Logical Network Flows">
    <p>
      Each row in this table represents one logical flow.
      <code>ovn-northd</code> populates this table with logical flows
      that implement the L2 and L3 topologies specified in the
      <ref db="OVN_Northbound"/> database.  Each hypervisor, via
      <code>ovn-controller</code>, translates the logical flows into
      OpenFlow flows specific to its hypervisor and installs them into
      Open vSwitch.
    </p>

    <p>
      Logical flows are expressed in an OVN-specific format, described here.  A
      logical datapath flow is much like an OpenFlow flow, except that the
      flows are written in terms of logical ports and logical datapaths instead
      of physical ports and physical datapaths.  Translation between logical
      and physical flows helps to ensure isolation between logical datapaths.
      (The logical flow abstraction also allows the OVN centralized
      components to do less work, since they do not have to separately
      compute and push out physical flows to each chassis.)
    </p>

    <p>
      The default action when no flow matches is to drop packets.
    </p>

    <p><em>Architectural Logical Life Cycle of a Packet</em></p>

    <p>
      This following description focuses on the life cycle of a packet through
      a logical datapath, ignoring physical details of the implementation.
      Please refer to <em>Architectural Physical Life Cycle of a Packet</em> in
      <code>ovn-architecture</code>(7) for the physical information.
    </p>

    <p>
      The description here is written as if OVN itself executes these steps,
      but in fact OVN (that is, <code>ovn-controller</code>) programs Open
      vSwitch, via OpenFlow and OVSDB, to execute them on its behalf.
    </p>

    <p>
      At a high level, OVN passes each packet through the logical datapath's
      logical ingress pipeline, which may output the packet to one or more
      logical port or logical multicast groups.  For each such logical output
      port, OVN passes the packet through the datapath's logical egress
      pipeline, which may either drop the packet or deliver it to the
      destination.  Between the two pipelines, outputs to logical multicast
      groups are expanded into logical ports, so that the egress pipeline only
      processes a single logical output port at a time.  Between the two
      pipelines is also where, when necessary, OVN encapsulates a packet in a
      tunnel (or tunnels) to transmit to remote hypervisors.
    </p>

    <p>
      In more detail, to start, OVN searches the <ref table="Logical_Flow"/>
      table for a row with correct <ref column="logical_datapath"/> or a
      <ref column="logical_dp_group"/>, a <ref column="pipeline"/> of
      <code>ingress</code>, a <ref column="table_id"/> of 0, and a <ref
      column="match"/> that is true for the packet.  If none is found, OVN
      drops the packet.  If OVN finds more than one, it chooses the match with
      the highest <ref column="priority"/>.  Then OVN executes
      each of the actions specified in the row's <ref table="actions"/> column,
      in the order specified.  Some actions, such as those to modify packet
      headers, require no further details.  The <code>next</code> and
      <code>output</code> actions are special.
    </p>

    <p>
      The <code>next</code> action causes the above process to be repeated
      recursively, except that OVN searches for <ref column="table_id"/> of 1
      instead of 0.  Similarly, any <code>next</code> action in a row found in
      that table would cause a further search for a <ref column="table_id"/> of
      2, and so on.  When recursive processing completes, flow control returns
      to the action following <code>next</code>.
    </p>

    <p>
      The <code>output</code> action also introduces recursion.  Its effect
      depends on the current value of the <code>outport</code> field.  Suppose
      <code>outport</code> designates a logical port.  First, OVN compares
      <code>inport</code> to <code>outport</code>; if they are equal, it treats
      the <code>output</code> as a no-op by default.  In the common
      case, where they are different, the packet enters the egress
      pipeline.  This transition to the egress pipeline discards
      register data, e.g. <code>reg0</code> ...  <code>reg9</code> and
      connection tracking state, to achieve uniform behavior regardless
      of whether the egress pipeline is on a different hypervisor
      (because registers aren't preserve across tunnel encapsulation).
    </p>

    <p>
      To execute the egress pipeline, OVN again searches the <ref
      table="Logical_Flow"/> table for a row with correct <ref
      column="logical_datapath"/> or a <ref column="logical_dp_group"/>,
      a <ref column="table_id"/> of 0, a <ref column="match"/> that is true for
      the packet, but now looking for a <ref column="pipeline"/> of
      <code>egress</code>.  If no matching row is found, the output becomes a
      no-op.  Otherwise, OVN executes the actions for the matching flow (which
      is chosen from multiple, if necessary, as already described).
    </p>

    <p>
      In the <code>egress</code> pipeline, the <code>next</code> action acts as
      already described, except that it, of course, searches for
      <code>egress</code> flows.  The <code>output</code> action, however, now
      directly outputs the packet to the output port (which is now fixed,
      because <code>outport</code> is read-only within the egress pipeline).
    </p>

    <p>
      The description earlier assumed that <code>outport</code> referred to a
      logical port.  If it instead designates a logical multicast group, then
      the description above still applies, with the addition of fan-out from
      the logical multicast group to each logical port in the group.  For each
      member of the group, OVN executes the logical pipeline as described, with
      the logical output port replaced by the group member.
    </p>

    <p><em>Pipeline Stages</em></p>

    <p>
      <code>ovn-northd</code> populates the <ref table="Logical_Flow"/> table
      with the logical flows described in detail in <code>ovn-northd</code>(8).
    </p>

    <column name="logical_datapath">
      The logical datapath to which the logical flow belongs.
    </column>

    <column name="logical_dp_group">
      The group of logical datapaths to which the logical flow belongs.  This
      means that the same logical flow belongs to all datapaths in a group.
    </column>

    <column name="pipeline">
      <p>
        The primary flows used for deciding on a packet's destination are the
        <code>ingress</code> flows.  The <code>egress</code> flows implement
        ACLs.  See <em>Logical Life Cycle of a Packet</em>, above, for details.
      </p>
    </column>

    <column name="table_id">
      The stage in the logical pipeline, analogous to an OpenFlow table number.
    </column>

    <column name="priority">
      The flow's priority.  Flows with numerically higher priority take
      precedence over those with lower.  If two logical datapath flows with the
      same priority both match, then the one actually applied to the packet is
      undefined.
    </column>

    <column name="match">
      <p>
        A matching expression.  OVN provides a superset of OpenFlow matching
        capabilities, using a syntax similar to Boolean expressions in a
        programming language.
      </p>

      <p>
        The most important components of match expression are
        <dfn>comparisons</dfn> between <dfn>symbols</dfn> and
        <dfn>constants</dfn>, e.g. <code>ip4.dst == 192.168.0.1</code>,
        <code>ip.proto == 6</code>, <code>arp.op == 1</code>, <code>eth.type ==
        0x800</code>.  The logical AND operator <code>&amp;&amp;</code> and
        logical OR operator <code>||</code> can combine comparisons into a
        larger expression.
      </p>

      <p>
        Matching expressions also support parentheses for grouping, the logical
        NOT prefix operator <code>!</code>, and literals <code>0</code> and
        <code>1</code> to express ``false'' or ``true,'' respectively.  The
        latter is useful by itself as a catch-all expression that matches every
        packet.
      </p>

      <p>
        Match expressions also support a kind of function syntax.  The
        following functions are supported:
      </p>

      <dl>
        <dt><code>is_chassis_resident(<var>lport</var>)</code></dt>
        <dd>
          Evaluates to true on a chassis on which logical port <var>lport</var>
          (a quoted string) resides, and to false elsewhere.  This function was
          introduced in OVN 2.7.
        </dd>
      </dl>

      <p><em>Symbols</em></p>

      <p>
        <em>Type</em>.  Symbols have <dfn>integer</dfn> or <dfn>string</dfn>
        type.  Integer symbols have a <dfn>width</dfn> in bits.
      </p>

      <p>
        <em>Kinds</em>.  There are three kinds of symbols:
      </p>

      <ul>
        <li>
          <p>
            <dfn>Fields</dfn>.  A field symbol represents a packet header or
            metadata field.  For example, a field
            named <code>vlan.tci</code> might represent the VLAN TCI field in a
            packet.
          </p>

          <p>
            A field symbol can have integer or string type.  Integer fields can
            be nominal or ordinal (see <em>Level of Measurement</em>,
            below).
          </p>
        </li>

        <li>
          <p>
            <dfn>Subfields</dfn>.  A subfield represents a subset of bits from
            a larger field.  For example, a field <code>vlan.vid</code> might
            be defined as an alias for <code>vlan.tci[0..11]</code>.  Subfields
            are provided for syntactic convenience, because it is always
            possible to instead refer to a subset of bits from a field
            directly.
          </p>

          <p>
            Only ordinal fields (see <em>Level of Measurement</em>,
            below) may have subfields.  Subfields are always ordinal.
          </p>
        </li>

        <li>
          <p>
            <dfn>Predicates</dfn>.  A predicate is shorthand for a Boolean
            expression.  Predicates may be used much like 1-bit fields.  For
            example, <code>ip4</code> might expand to <code>eth.type ==
            0x800</code>.  Predicates are provided for syntactic convenience,
            because it is always possible to instead specify the underlying
            expression directly.
          </p>

          <p>
            A predicate whose expansion refers to any nominal field or
            predicate (see <em>Level of Measurement</em>, below) is nominal;
            other predicates have Boolean level of measurement.
          </p>
        </li>
      </ul>

      <p>
        <em>Level of Measurement</em>.  See
        http://en.wikipedia.org/wiki/Level_of_measurement for the statistical
        concept on which this classification is based.  There are three
        levels:
      </p>

      <ul>
        <li>
          <p>
            <dfn>Ordinal</dfn>.  In statistics, ordinal values can be ordered
            on a scale.  OVN considers a field (or subfield) to be ordinal if
            its bits can be examined individually.  This is true for the
            OpenFlow fields that OpenFlow or Open vSwitch makes ``maskable.''
          </p>

          <p>
            Any use of a ordinal field may specify a single bit or a range of
            bits, e.g. <code>vlan.tci[13..15]</code> refers to the PCP field
            within the VLAN TCI, and <code>eth.dst[40]</code> refers to the
            multicast bit in the Ethernet destination address.
          </p>

          <p>
            OVN supports all the usual arithmetic relations (<code>==</code>,
            <code>!=</code>, <code>&lt;</code>, <code>&lt;=</code>,
            <code>&gt;</code>, and <code>&gt;=</code>) on ordinal fields and
            their subfields, because OVN can implement these in OpenFlow and
            Open vSwitch as collections of bitwise tests.
          </p>
        </li>

        <li>
          <p>
            <dfn>Nominal</dfn>.  In statistics, nominal values cannot be
            usefully compared except for equality.  This is true of OpenFlow
            port numbers, Ethernet types, and IP protocols are examples: all of
            these are just identifiers assigned arbitrarily with no deeper
            meaning.  In OpenFlow and Open vSwitch, bits in these fields
            generally aren't individually addressable.
          </p>

          <p>
            OVN only supports arithmetic tests for equality on nominal fields,
            because OpenFlow and Open vSwitch provide no way for a flow to
            efficiently implement other comparisons on them.  (A test for
            inequality can be sort of built out of two flows with different
            priorities, but OVN matching expressions always generate flows with
            a single priority.)
          </p>

          <p>
            String fields are always nominal.
          </p>
        </li>

        <li>
          <p>
            <dfn>Boolean</dfn>.  A nominal field that has only two values, 0
            and 1, is somewhat exceptional, since it is easy to support both
            equality and inequality tests on such a field: either one can be
            implemented as a test for 0 or 1.
          </p>

          <p>
            Only predicates (see above) have a Boolean level of measurement.
          </p>

          <p>
            This isn't a standard level of measurement.
          </p>
        </li>
      </ul>

      <p>
        <em>Prerequisites</em>.  Any symbol can have prerequisites, which are
        additional condition implied by the use of the symbol.  For example,
        For example, <code>icmp4.type</code> symbol might have prerequisite
        <code>icmp4</code>, which would cause an expression <code>icmp4.type ==
        0</code> to be interpreted as <code>icmp4.type == 0 &amp;&amp;
        icmp4</code>, which would in turn expand to <code>icmp4.type == 0
        &amp;&amp; eth.type == 0x800 &amp;&amp; ip4.proto == 1</code> (assuming
        <code>icmp4</code> is a predicate defined as suggested under
        <em>Types</em> above).
      </p>

      <p><em>Relational operators</em></p>

      <p>
        All of the standard relational operators <code>==</code>,
        <code>!=</code>, <code>&lt;</code>, <code>&lt;=</code>,
        <code>&gt;</code>, and <code>&gt;=</code> are supported.  Nominal
        fields support only <code>==</code> and <code>!=</code>, and only in a
        positive sense when outer <code>!</code> are taken into account,
        e.g. given string field <code>inport</code>, <code>inport ==
        "eth0"</code> and <code>!(inport != "eth0")</code> are acceptable, but
        not <code>inport != "eth0"</code>.
      </p>

      <p>
        The implementation of <code>==</code> (or <code>!=</code> when it is
        negated), is more efficient than that of the other relational
        operators.
      </p>

      <p><em>Constants</em></p>

      <p>
        Integer constants may be expressed in decimal, hexadecimal prefixed by
        <code>0x</code>, or as dotted-quad IPv4 addresses, IPv6 addresses in
        their standard forms, or Ethernet addresses as colon-separated hex
        digits.  A constant in any of these forms may be followed by a slash
        and a second constant (the mask) in the same form, to form a masked
        constant.  IPv4 and IPv6 masks may be given as integers, to express
        CIDR prefixes.
      </p>

      <p>
        String constants have the same syntax as quoted strings in JSON (thus,
        they are Unicode strings).
      </p>

      <p>
        Some operators support sets of constants written inside curly braces
        <code>{</code> ... <code>}</code>.  Commas between elements of a set,
        and after the last elements, are optional.  With <code>==</code>,
        ``<code><var>field</var> == { <var>constant1</var>,
        <var>constant2</var>,</code> ... <code>}</code>'' is syntactic sugar
        for ``<code><var>field</var> == <var>constant1</var> ||
        <var>field</var> == <var>constant2</var> || </code>...<code></code>.
        Similarly, ``<code><var>field</var> != { <var>constant1</var>,
        <var>constant2</var>, </code>...<code> }</code>'' is equivalent to
        ``<code><var>field</var> != <var>constant1</var> &amp;&amp;
        <var>field</var> != <var>constant2</var> &amp;&amp;
        </code>...<code></code>''.
      </p>

      <p>
        You may refer to a set of IPv4, IPv6, or MAC addresses stored in the
        <ref table="Address_Set"/> table by its <ref column="name"
        table="Address_Set"/>.  An <ref table="Address_Set"/> with a name
        of <code>set1</code> can be referred to as
        <code>$set1</code>.
      </p>

      <p>
        You may refer to a group of logical switch ports stored in the
        <ref table="Port_Group"/> table by its <ref column="name"
        table="Port_Group"/>.  An <ref table="Port_Group"/> with a name
        of <code>port_group1</code> can be referred to as
        <code>@port_group1</code>.
      </p>

      <p>
        Additionally, you may refer to the set of addresses belonging to a
        group of logical switch ports stored in the <ref table="Port_Group"/>
        table by its <ref column="name" table="Port_Group"/> followed by
        a suffix '_ip4'/'_ip6'.  The IPv4 address set of a
        <ref table="Port_Group"/> with a name of <code>port_group1</code>
        can be referred to as <code>$port_group1_ip4</code>, and the IPv6
        address set of the same <ref table="Port_Group"/> can be referred to
        as <code>$port_group1_ip6</code>
      </p>

      <p><em>Miscellaneous</em></p>

      <p>
        Comparisons may name the symbol or the constant first,
        e.g. <code>tcp.src == 80</code> and <code>80 == tcp.src</code> are both
        acceptable.
      </p>

      <p>
        Tests for a range may be expressed using a syntax like <code>1024 &lt;=
        tcp.src &lt;= 49151</code>, which is equivalent to <code>1024 &lt;=
        tcp.src &amp;&amp; tcp.src &lt;= 49151</code>.
      </p>

      <p>
        For a one-bit field or predicate, a mention of its name is equivalent
        to <code><var>symobl</var> == 1</code>, e.g. <code>vlan.present</code>
        is equivalent to <code>vlan.present == 1</code>.  The same is true for
        one-bit subfields, e.g. <code>vlan.tci[12]</code>.  There is no
        technical limitation to implementing the same for ordinal fields of all
        widths, but the implementation is expensive enough that the syntax
        parser requires writing an explicit comparison against zero to make
        mistakes less likely, e.g. in <code>tcp.src != 0</code> the comparison
        against 0 is required.
      </p>

      <p>
        <em>Operator precedence</em> is as shown below, from highest to lowest.
        There are two exceptions where parentheses are required even though the
        table would suggest that they are not: <code>&amp;&amp;</code> and
        <code>||</code> require parentheses when used together, and
        <code>!</code> requires parentheses when applied to a relational
        expression.  Thus, in <code>(eth.type == 0x800 || eth.type == 0x86dd)
        &amp;&amp; ip.proto == 6</code> or <code>!(arp.op == 1)</code>, the
        parentheses are mandatory.
      </p>

      <ul>
        <li><code>()</code></li>
        <li><code>==   !=   &lt;   &lt;=   &gt;   &gt;=</code></li>
        <li><code>!</code></li>
        <li><code>&amp;&amp;   ||</code></li>
      </ul>

      <p>
        <em>Comments</em> may be introduced by <code>//</code>, which extends
        to the next new-line.  Comments within a line may be bracketed by
        <code>/*</code> and <code>*/</code>.  Multiline comments are not
        supported.
      </p>

      <p><em>Symbols</em></p>

      <p>
        Most of the symbols below have integer type.  Only <code>inport</code>
        and <code>outport</code> have string type.  <code>inport</code> names a
        logical port.  Thus, its value is a <ref column="logical_port"/> name
        from the <ref table="Port_Binding"/> table.  <code>outport</code> may
        name a logical port, as <code>inport</code>, or a logical multicast
        group defined in the <ref table="Multicast_Group"/> table.  For both
        symbols, only names within the flow's logical datapath may be used.
      </p>

      <p>
        The <code>reg</code><var>X</var> symbols are 32-bit integers.
        The <code>xxreg</code><var>X</var> symbols are 128-bit integers,
        which overlay four of the 32-bit registers: <code>xxreg0</code>
        overlays <code>reg0</code> through <code>reg3</code>, with
        <code>reg0</code> supplying the most-significant bits of
        <code>xxreg0</code> and <code>reg3</code> the least-significant.
        <code>xxreg1</code> similarly overlays <code>reg4</code> through
        <code>reg7</code>.
      </p>

      <ul>
        <li><code>reg0</code>...<code>reg9</code></li>
        <li><code>xxreg0</code> <code>xxreg1</code></li>
        <li><code>inport</code> <code>outport</code></li>
        <li><code>flags.loopback</code></li>
        <li><code>pkt.mark</code></li>
        <li><code>eth.src</code> <code>eth.dst</code> <code>eth.type</code></li>
        <li><code>vlan.tci</code> <code>vlan.vid</code> <code>vlan.pcp</code> <code>vlan.present</code></li>
        <li><code>ip.proto</code> <code>ip.dscp</code> <code>ip.ecn</code> <code>ip.ttl</code> <code>ip.frag</code></li>
        <li><code>ip4.src</code> <code>ip4.dst</code></li>
        <li><code>ip6.src</code> <code>ip6.dst</code> <code>ip6.label</code></li>
        <li><code>arp.op</code> <code>arp.spa</code> <code>arp.tpa</code> <code>arp.sha</code> <code>arp.tha</code></li>
        <li><code>rarp.op</code> <code>rarp.spa</code> <code>rarp.tpa</code> <code>rarp.sha</code> <code>rarp.tha</code></li>
        <li><code>tcp.src</code> <code>tcp.dst</code> <code>tcp.flags</code></li>
        <li><code>udp.src</code> <code>udp.dst</code></li>
        <li><code>sctp.src</code> <code>sctp.dst</code></li>
        <li><code>icmp4.type</code> <code>icmp4.code</code></li>
        <li><code>icmp6.type</code> <code>icmp6.code</code></li>
        <li><code>nd.target</code> <code>nd.sll</code> <code>nd.tll</code></li>
        <li><code>ct_mark</code> <code>ct_label</code></li>
        <li>
          <p>
            <code>ct_state</code>, which has several Boolean subfields.  The
            <code>ct_next</code> action initializes the following subfields:
          </p>
          <ul>
            <li>
              <code>ct.trk</code>: Always set to true by <code>ct_next</code>
              to indicate that connection tracking has taken place.  All other
              <code>ct</code> subfields have <code>ct.trk</code> as a
              prerequisite.
            </li>
            <li><code>ct.new</code>: True for a new flow</li>
            <li><code>ct.est</code>: True for an established flow</li>
            <li><code>ct.rel</code>: True for a related flow</li>
            <li><code>ct.rpl</code>: True for a reply flow</li>
            <li><code>ct.inv</code>: True for a connection entry in a bad state</li>
          </ul>
          <p>
            The <code>ct_dnat</code>, <code>ct_snat</code>, and
            <code>ct_lb</code> actions initialize the following subfields:
          </p>
          <ul>
            <li>
              <code>ct.dnat</code>: True for a packet whose destination IP
              address has been changed.
            </li>
            <li>
              <code>ct.snat</code>: True for a packet whose source IP
              address has been changed.
            </li>
          </ul>
        </li>
      </ul>

      <p>
        The following predicates are supported:
      </p>

      <ul>
        <li><code>eth.bcast</code> expands to <code>eth.dst == ff:ff:ff:ff:ff:ff</code></li>
        <li><code>eth.mcast</code> expands to <code>eth.dst[40]</code></li>
        <li><code>vlan.present</code> expands to <code>vlan.tci[12]</code></li>
        <li><code>ip4</code> expands to <code>eth.type == 0x800</code></li>
        <li><code>ip4.src_mcast</code> expands to
        <code>ip4.src[28..31] == 0xe</code></li>
        <li><code>ip4.mcast</code> expands to <code>ip4.dst[28..31] == 0xe</code></li>
        <li><code>ip6</code> expands to <code>eth.type == 0x86dd</code></li>
        <li><code>ip</code> expands to <code>ip4 || ip6</code></li>
        <li><code>icmp4</code> expands to <code>ip4 &amp;&amp; ip.proto == 1</code></li>
        <li><code>icmp6</code> expands to <code>ip6 &amp;&amp; ip.proto == 58</code></li>
        <li><code>icmp</code> expands to <code>icmp4 || icmp6</code></li>
        <li><code>ip.is_frag</code> expands to <code>ip.frag[0]</code></li>
        <li><code>ip.later_frag</code> expands to <code>ip.frag[1]</code></li>
        <li><code>ip.first_frag</code> expands to <code>ip.is_frag &amp;&amp; !ip.later_frag</code></li>
        <li><code>arp</code> expands to <code>eth.type == 0x806</code></li>
        <li><code>rarp</code> expands to <code>eth.type == 0x8035</code></li>
        <li><code>nd</code> expands to <code>icmp6.type == {135, 136} &amp;&amp; icmp6.code == 0 &amp;&amp; ip.ttl == 255</code></li>
        <li><code>nd_ns</code> expands to <code>icmp6.type == 135 &amp;&amp; icmp6.code == 0 &amp;&amp; ip.ttl == 255</code></li>
        <li><code>nd_na</code> expands to <code>icmp6.type == 136 &amp;&amp; icmp6.code == 0 &amp;&amp; ip.ttl == 255</code></li>
        <li><code>nd_rs</code> expands to <code>icmp6.type == 133 &amp;&amp;
        icmp6.code == 0 &amp;&amp; ip.ttl == 255</code></li>
        <li><code>nd_ra</code> expands to <code>icmp6.type == 134 &amp;&amp;
        icmp6.code == 0 &amp;&amp; ip.ttl == 255</code></li>
        <li><code>tcp</code> expands to <code>ip.proto == 6</code></li>
        <li><code>udp</code> expands to <code>ip.proto == 17</code></li>
        <li><code>sctp</code> expands to <code>ip.proto == 132</code></li>
      </ul>
    </column>

    <column name="actions">
      <p>
        Logical datapath actions, to be executed when the logical flow
        represented by this row is the highest-priority match.
      </p>

      <p>
        Actions share lexical syntax with the <ref column="match"/> column.  An
        empty set of actions (or one that contains just white space or
        comments), or a set of actions that consists of just
        <code>drop;</code>, causes the matched packets to be dropped.
        Otherwise, the column should contain a sequence of actions, each
        terminated by a semicolon.
      </p>

      <p>
        The following actions are defined:
      </p>

      <dl>
        <dt><code>output;</code></dt>
        <dd>
          <p>
            In the ingress pipeline, this action executes the
            <code>egress</code> pipeline as a subroutine.  If
            <code>outport</code> names a logical port, the egress pipeline
            executes once; if it is a multicast group, the egress pipeline runs
            once for each logical port in the group.
          </p>

          <p>
            In the egress pipeline, this action performs the actual
            output to the <code>outport</code> logical port.  (In the egress
            pipeline, <code>outport</code> never names a multicast group.)
          </p>

          <p>
            By default, output to the input port is implicitly dropped,
            that is, <code>output</code> becomes a no-op if
            <code>outport</code> == <code>inport</code>.  Occasionally
            it may be useful to override this behavior, e.g. to send an
            ARP reply to an ARP request; to do so, use
            <code>flags.loopback = 1</code> to allow the packet to
            "hair-pin" back to the input port.
          </p>
        </dd>

        <dt><code>next;</code></dt>
        <dt><code>next(<var>table</var>);</code></dt>
        <dt><code>next(pipeline=<var>pipeline</var>, table=<var>table</var>);</code></dt>
        <dd>
          Executes the given logical datapath <var>table</var> in
          <var>pipeline</var> as a subroutine.  The default <var>table</var> is
          just after the current one.  If <var>pipeline</var> is specified, it
          may be <code>ingress</code> or <code>egress</code>; the default
          <var>pipeline</var> is the one currently executing. Actions in the
          both ingress and egress pipeline can use <code>next</code> to jump
          across the other pipeline.  Actions in the ingress pipeline should
          use <code>next</code> to jump into the specific table of egress
          pipeline only if it is certain that the packets are local and not
          tunnelled and wants to skip certain stages in the packet processing.
        </dd>

        <dt><code><var>field</var> = <var>constant</var>;</code></dt>
        <dd>
          <p>
            Sets data or metadata field <var>field</var> to constant value
            <var>constant</var>, e.g. <code>outport = "vif0";</code> to set the
            logical output port.  To set only a subset of bits in a field,
            specify a subfield for <var>field</var> or a masked
            <var>constant</var>, e.g. one may use <code>vlan.pcp[2] = 1;</code>
            or <code>vlan.pcp = 4/4;</code> to set the most significant bit of
            the VLAN PCP.
          </p>

          <p>
            Assigning to a field with prerequisites implicitly adds those
            prerequisites to <ref column="match"/>; thus, for example, a flow
            that sets <code>tcp.dst</code> applies only to TCP flows,
            regardless of whether its <ref column="match"/> mentions any TCP
            field.
          </p>

          <p>
            Not all fields are modifiable (e.g. <code>eth.type</code> and
            <code>ip.proto</code> are read-only), and not all modifiable fields
            may be partially modified (e.g. <code>ip.ttl</code> must assigned
            as a whole).  The <code>outport</code> field is modifiable in the
            <code>ingress</code> pipeline but not in the <code>egress</code>
            pipeline.
          </p>
        </dd>

        <dt><code><var>ovn_field</var> = <var>constant</var>;</code></dt>
        <dd>
          <p>
            Sets OVN field <var>ovn_field</var> to constant value
            <var>constant</var>.
          </p>

          <p>
            <code>OVN</code> supports setting the values of certain fields
            which are not yet supported in OpenFlow to set or modify them.
          </p>

          <p>
            Below are the supported <code>OVN fields</code>:
          </p>

          <ul>
            <li>
              <code>icmp4.frag_mtu</code>
              <code>icmp6.frag_mtu</code>
              <p>
                This field sets the low-order 16 bits of the ICMP{4,6} header
                field that is labelled "unused" in the ICMP specification as
                defined in the RFC 1191 with the value specified in
                <var>constant</var>.
              </p>

              <p>
                Eg. icmp4.frag_mtu = 1500;
              </p>
            </li>
          </ul>
        </dd>

        <dt><code><var>field1</var> = <var>field2</var>;</code></dt>
        <dd>
          <p>
            Sets data or metadata field <var>field1</var> to the value of data
            or metadata field <var>field2</var>, e.g. <code>reg0 =
            ip4.src;</code> copies <code>ip4.src</code> into <code>reg0</code>.
            To modify only a subset of a field's bits, specify a subfield for
            <var>field1</var> or <var>field2</var> or both, e.g. <code>vlan.pcp
            = reg0[0..2];</code> copies the least-significant bits of
            <code>reg0</code> into the VLAN PCP.
          </p>

          <p>
            <var>field1</var> and <var>field2</var> must be the same type,
            either both string or both integer fields.  If they are both
            integer fields, they must have the same width.
          </p>

          <p>
            If <var>field1</var> or <var>field2</var> has prerequisites, they
            are added implicitly to <ref column="match"/>.  It is possible to
            write an assignment with contradictory prerequisites, such as
            <code>ip4.src = ip6.src[0..31];</code>, but the contradiction means
            that a logical flow with such an assignment will never be matched.
          </p>
        </dd>

        <dt><code><var>field1</var> &lt;-&gt; <var>field2</var>;</code></dt>
        <dd>
          <p>
            Similar to <code><var>field1</var> = <var>field2</var>;</code>
            except that the two values are exchanged instead of copied.  Both
            <var>field1</var> and <var>field2</var> must modifiable.
          </p>
        </dd>

        <dt><code>push(<var>field</var>);</code></dt>
        <dd>
          <p>
            Push the value of <var>field</var> to the stack top.
          </p>
        </dd>

        <dt><code>pop(<var>field</var>);</code></dt>
        <dd>
          <p>
            Pop the stack top and store the value to <var>field</var>,
            which must be modifiable.
          </p>
        </dd>

        <dt><code>ip.ttl--;</code></dt>
        <dd>
          <p>
            Decrements the IPv4 or IPv6 TTL.  If this would make the TTL zero
            or negative, then processing of the packet halts; no further
            actions are processed.  (To properly handle such cases, a
            higher-priority flow should match on
            <code>ip.ttl == {0, 1};</code>.)
          </p>

          <p><b>Prerequisite:</b> <code>ip</code></p>
        </dd>

        <dt><code>ct_next;</code></dt>
        <dd>
          <p>
            Apply connection tracking to the flow, initializing
            <code>ct_state</code> for matching in later tables.
            Automatically moves on to the next table, as if followed by
            <code>next</code>.
          </p>

          <p>
            As a side effect, IP fragments will be reassembled for matching.
            If a fragmented packet is output, then it will be sent with any
            overlapping fragments squashed.  The connection tracking state is
            scoped by the logical port when the action is used in a flow for
            a logical switch, so overlapping addresses may be used.  To allow
            traffic related to the matched flow, execute <code>ct_commit
            </code>.  Connection tracking state is scoped by the logical
            topology when the action is used in a flow for a router.
          </p>

          <p>
            It is possible to have actions follow <code>ct_next</code>,
            but they will not have access to any of its side-effects and
            is not generally useful.
          </p>
        </dd>

        <dt><code>ct_commit { };</code></dt>
        <dt><code>ct_commit { ct_mark=<var>value[/mask]</var>; };</code></dt>
        <dt><code>ct_commit { ct_label=<var>value[/mask]</var>; };</code></dt>
        <dt><code>ct_commit { ct_mark=<var>value[/mask]</var>; ct_label=<var>value[/mask]</var>; };</code></dt>
        <dd>
          <p>
            Commit the flow to the connection tracking entry associated with it
            by a previous call to <code>ct_next</code>.  When
            <code>ct_mark=<var>value[/mask]</var></code> and/or
            <code>ct_label=<var>value[/mask]</var></code> are supplied,
            <code>ct_mark</code> and/or <code>ct_label</code> will be set to the
            values indicated by <var>value[/mask]</var> on the connection
            tracking entry. <code>ct_mark</code> is a 32-bit field.
            <code>ct_label</code> is a 128-bit field. The <var>value[/mask]</var>
            should be specified in hex string if more than 64bits are to be used.
            Registers and other named fields can be used for <var>value</var>.
            <code>ct_mark</code> and <code>ct_label</code> may be sub-addressed
            in order to have specific bits set.
          </p>

          <p>
            Note that if you want processing to continue in the next table,
            you must execute the <code>next</code> action after
            <code>ct_commit</code>.  You may also leave out <code>next</code>
            which will commit connection tracking state, and then drop the
            packet.  This could be useful for setting <code>ct_mark</code>
            on a connection tracking entry before dropping a packet,
            for example.
          </p>
        </dd>

        <dt><code>ct_dnat;</code></dt>
        <dt><code>ct_dnat(<var>IP</var>);</code></dt>
        <dd>
          <p>
            <code>ct_dnat</code> sends the packet through the DNAT zone in
            connection tracking table to unDNAT any packet that was DNATed in
            the opposite direction.  The packet is then automatically sent to
            to the next tables as if followed by <code>next;</code> action.
            The next tables will see the changes in the packet caused by
            the connection tracker.
          </p>
          <p>
            <code>ct_dnat(<var>IP</var>)</code> sends the packet through the
            DNAT zone to change the destination IP address of the packet to
            the one provided inside the parentheses and commits the connection.
            The packet is then automatically sent to the next tables as if
            followed by <code>next;</code> action.  The next tables will see
            the changes in the packet caused by the connection tracker.
          </p>
        </dd>

        <dt><code>ct_snat;</code></dt>
        <dt><code>ct_snat(<var>IP</var>);</code></dt>
        <dd>
          <p>
            <code>ct_snat</code> sends the packet through the SNAT zone to
            unSNAT any packet that was SNATed in the opposite direction.  The
            packet is automatically sent to the next tables as if followed by
            the <code>next;</code> action.   The next tables will see the
            changes in the packet caused by the connection tracker.
          </p>
          <p>
            <code>ct_snat(<var>IP</var>)</code> sends the packet through the
            SNAT zone to change the source IP address of the packet to
            the one provided inside the parenthesis and commits the connection.
            The packet is then automatically sent to the next tables as if
            followed by <code>next;</code> action.  The next tables will see the
            changes in the packet caused by the connection tracker.
          </p>
        </dd>

        <dt><code>ct_dnat_in_czone;</code></dt>
        <dt><code>ct_dnat_in_czone(<var>IP</var>);</code></dt>
        <dd>
          <p>
            <code>ct_dnat_in_czone</code> sends the packet through the common
            NAT zone (used for both DNAT and SNAT) in connection tracking table
            to unDNAT any packet that was DNATed in the opposite direction.
            The packet is then automatically sent to to the next tables as if
            followed by <code>next;</code> action.  The next tables will see
            the changes in the packet caused by the connection tracker.
          </p>
          <p>
            <code>ct_dnat_in_czone(<var>IP</var>)</code> sends the packet
            through the common NAT zone to change the destination IP address
            of the packet to the one provided inside the parentheses and
            commits the connection.  The packet is then automatically sent to
            the next tables as if followed by <code>next;</code> action.  The
            next tables will see the changes in the packet caused by the
            connection tracker.
          </p>
        </dd>

        <dt><code>ct_snat_in_czone;</code></dt>
        <dt><code>ct_snat_in_czone(<var>IP</var>);</code></dt>
        <dd>
          <p>
            <code>ct_snat_in_czone</code> sends the packet through the common
            NAT zone to unSNAT any packet that was SNATed in the opposite
            direction.  The packet is automatically sent to the next tables as
            if followed by the <code>next;</code> action.   The next tables
            will see the changes in the packet caused by the connection
            tracker.
          </p>
          <p>
            <code>ct_snat_in_czone(<var>IP</var>)</code> sends the packet\
            through the common NAT zone to change the source IP address of
            the packet to the one provided inside the parenthesis and commits
            the connection.  The packet is then automatically sent to the next
            tables as if followed by <code>next;</code> action.  The next
            tables will see the changes in the packet caused by the connection
            tracker.
          </p>
        </dd>

        <dt><code>ct_clear;</code></dt>
        <dd>
          Clears connection tracking state.
        </dd>

        <dt><code>ct_commit_nat;</code></dt>
        <dd>
          <p>
            Applies NAT and commits the connection to the CT. Automatically
            moves on to the next table, as if followed by
            <code>next</code>.
            This is very useful for connections that are in related state for
            already existing connections and allows the NAT to be applied
            to them as well.
          </p>
        </dd>

        <dt><code>clone { <var>action</var>; </code>...<code> };</code></dt>
        <dd>
          Makes a copy of the packet being processed and executes each
          <code>action</code> on the copy.  Actions following the
          <var>clone</var> action, if any, apply to the original, unmodified
          packet.  This can be used as a way to ``save and restore'' the packet
          around a set of actions that may modify it and should not persist.
        </dd>

        <dt><code>arp { <var>action</var>; </code>...<code> };</code></dt>
        <dd>
          <p>
            Temporarily replaces the IPv4 packet being processed by an ARP
            packet and executes each nested <var>action</var> on the ARP
            packet.  Actions following the <var>arp</var> action, if any, apply
            to the original, unmodified packet.
          </p>

          <p>
            The ARP packet that this action operates on is initialized based on
            the IPv4 packet being processed, as follows.  These are default
            values that the nested actions will probably want to change:
          </p>

          <ul>
            <li><code>eth.src</code> unchanged</li>
            <li><code>eth.dst</code> unchanged</li>
            <li><code>eth.type = 0x0806</code></li>
            <li><code>arp.op = 1</code> (ARP request)</li>
            <li><code>arp.sha</code> copied from <code>eth.src</code></li>
            <li><code>arp.spa</code> copied from <code>ip4.src</code></li>
            <li><code>arp.tha = 00:00:00:00:00:00</code></li>
            <li><code>arp.tpa</code> copied from <code>ip4.dst</code></li>
          </ul>

          <p>
            The ARP packet has the same VLAN header, if any, as the IP packet
            it replaces.
          </p>

          <p><b>Prerequisite:</b> <code>ip4</code></p>
        </dd>

        <dt><code>get_arp(<var>P</var>, <var>A</var>);</code></dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 32-bit
            IP address field <var>A</var>.
          </p>

          <p>
            Looks up <var>A</var> in <var>P</var>'s mac binding table.
            If an entry is found, stores its Ethernet address in
            <code>eth.dst</code>, otherwise stores
            <code>00:00:00:00:00:00</code> in <code>eth.dst</code>.
          </p>

          <p><b>Example:</b> <code>get_arp(outport, ip4.dst);</code></p>
        </dd>

        <dt>
          <code>put_arp(<var>P</var>, <var>A</var>, <var>E</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 32-bit
            IP address field <var>A</var>, 48-bit Ethernet address field
            <var>E</var>.
          </p>

          <p>
            Adds or updates the entry for IP address <var>A</var> in
            logical port <var>P</var>'s mac binding table, setting its
            Ethernet address to <var>E</var>.
          </p>

          <p><b>Example:</b> <code>put_arp(inport, arp.spa, arp.sha);</code></p>
        </dd>

        <dt>
          <code><var>R</var> = lookup_arp(<var>P</var>, <var>A</var>, <var>M</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 32-bit
            IP address field <var>A</var>, 48-bit MAC address field
            <var>M</var>.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Looks up <var>A</var> and <var>M</var> in <var>P</var>'s mac
            binding table. If an entry is found, stores <code>1</code> in
            the 1-bit subfield <var>R</var>, else 0.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[0] = lookup_arp(inport, arp.spa, arp.sha);
            </code>
          </p>
        </dd>

        <dt>
          <code><var>R</var> = lookup_arp_ip(<var>P</var>, <var>A</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 32-bit
            IP address field <var>A</var>.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Looks up <var>A</var> in <var>P</var>'s mac binding table. If an
            entry is found, stores <code>1</code> in the 1-bit subfield
            <var>R</var>, else 0.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[0] = lookup_arp_ip(inport, arp.spa);
            </code>
          </p>
        </dd>

        <dt><code><var>P</var> = get_fdb(<var>A</var>);</code></dt>

        <dd>
          <p>
            <b>Parameters</b>:48-bit MAC address field <var>A</var>.
          </p>

          <p>
            Looks up <var>A</var> in fdb table. If an entry is found, stores
            the logical port key to the out parameter <code>P</code>.
          </p>

          <p><b>Example:</b> <code>outport = get_fdb(eth.src);</code></p>
        </dd>

        <dt>
          <code>put_fdb(<var>P</var>, <var>A</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 48-bit
            MAC address field <var>A</var>.
          </p>

          <p>
            Adds or updates the entry for Ethernet address <var>A</var> in
            fdb table, setting its logical port key to <var>P</var>.
          </p>

          <p><b>Example:</b> <code>put_fdb(inport, arp.spa);</code></p>
        </dd>

        <dt>
          <code><var>R</var> = lookup_fdb(<var>P</var>, <var>A</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: 48-bit MAC address field <var>M</var>,
            logical port string field <var>P</var>.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Looks up <var>A</var> in fdb table. If an entry is found
            and the the logical port key is <var>P</var>, <code>P</code>,
            stores <code>1</code> in the 1-bit subfield
            <var>R</var>, else 0.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[0] = lookup_fdb(inport, eth.src);
            </code>
          </p>
        </dd>

        <dt><code>nd_ns { <var>action</var>; </code>...<code> };</code></dt>
        <dd>
          <p>
            Temporarily replaces the IPv6 packet being processed by an IPv6
            Neighbor Solicitation packet and executes each nested
            <var>action</var> on the IPv6 NS packet.  Actions following the
            <var>nd_ns</var> action, if any, apply to the original, unmodified
            packet.
          </p>

          <p>
            The IPv6 NS packet that this action operates on is initialized
            based on the IPv6 packet being processed, as follows.  These are
            default values that the nested actions will probably want to
            change:
          </p>

          <ul>
            <li><code>eth.src</code> unchanged</li>
            <li><code>eth.dst</code> set to IPv6 multicast MAC address</li>
            <li><code>eth.type = 0x86dd</code></li>
            <li><code>ip6.src</code> copied from <code>ip6.src</code></li>
            <li>
              <code>ip6.dst</code> set to IPv6 Solicited-Node multicast address
            </li>
            <li><code>icmp6.type = 135</code> (Neighbor Solicitation)</li>
            <li><code>nd.target</code> copied from <code>ip6.dst</code></li>
          </ul>

          <p>
            The IPv6 NS packet has the same VLAN header, if any, as the IP
            packet it replaces.
          </p>

          <p><b>Prerequisite:</b> <code>ip6</code></p>
        </dd>

        <dt>
          <code>nd_na { <var>action</var>; </code>...<code> };</code>
        </dt>

        <dd>
          <p>
            Temporarily replaces the IPv6 neighbor solicitation packet
            being processed by an IPv6 neighbor advertisement (NA)
            packet and executes each nested <var>action</var> on the NA
            packet.  Actions following the <code>nd_na</code> action,
            if any, apply to the original, unmodified packet.
          </p>

          <p>
            The NA packet that this action operates on is initialized based on
            the IPv6 packet being processed, as follows. These are default
            values that the nested actions will probably want to change:
          </p>

          <ul>
            <li><code>eth.dst</code> exchanged with <code>eth.src</code></li>
            <li><code>eth.type = 0x86dd</code></li>
            <li><code>ip6.dst</code> copied from <code>ip6.src</code></li>
            <li><code>ip6.src</code> copied from <code>nd.target</code></li>
            <li><code>icmp6.type = 136</code> (Neighbor Advertisement)</li>
            <li><code>nd.target</code> unchanged</li>
            <li><code>nd.sll = 00:00:00:00:00:00</code></li>
            <li><code>nd.tll</code> copied from <code>eth.dst</code></li>
          </ul>

          <p>
            The ND packet has the same VLAN header, if any, as the IPv6 packet
            it replaces.
          </p>

          <p>
            <b>Prerequisite:</b> <code>nd_ns</code>
          </p>
        </dd>

        <dt>
          <code>nd_na_router { <var>action</var>; </code>...<code> };</code>
        </dt>

        <dd>
          <p>
            Temporarily replaces the IPv6 neighbor solicitation packet
            being processed by an IPv6 neighbor advertisement (NA)
            packet, sets ND_NSO_ROUTER in the RSO flags and executes each
            nested <var>action</var> on the NA packet.  Actions following
            the <code>nd_na_router</code> action, if any, apply to the
            original, unmodified packet.
          </p>

          <p>
            The NA packet that this action operates on is initialized based on
            the IPv6 packet being processed, as follows. These are default
            values that the nested actions will probably want to change:
          </p>

          <ul>
            <li><code>eth.dst</code> exchanged with <code>eth.src</code></li>
            <li><code>eth.type = 0x86dd</code></li>
            <li><code>ip6.dst</code> copied from <code>ip6.src</code></li>
            <li><code>ip6.src</code> copied from <code>nd.target</code></li>
            <li><code>icmp6.type = 136</code> (Neighbor Advertisement)</li>
            <li><code>nd.target</code> unchanged</li>
            <li><code>nd.sll = 00:00:00:00:00:00</code></li>
            <li><code>nd.tll</code> copied from <code>eth.dst</code></li>
          </ul>

          <p>
            The ND packet has the same VLAN header, if any, as the IPv6 packet
            it replaces.
          </p>

          <p>
            <b>Prerequisite:</b> <code>nd_ns</code>
          </p>
        </dd>

        <dt><code>get_nd(<var>P</var>, <var>A</var>);</code></dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 128-bit
            IPv6 address field <var>A</var>.
          </p>

          <p>
            Looks up <var>A</var> in <var>P</var>'s mac binding table.
            If an entry is found, stores its Ethernet address in
            <code>eth.dst</code>, otherwise stores
            <code>00:00:00:00:00:00</code> in <code>eth.dst</code>.
          </p>

          <p><b>Example:</b> <code>get_nd(outport, ip6.dst);</code></p>
        </dd>

        <dt>
          <code>put_nd(<var>P</var>, <var>A</var>, <var>E</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>,
            128-bit IPv6 address field <var>A</var>, 48-bit Ethernet
            address field <var>E</var>.
          </p>

          <p>
            Adds or updates the entry for IPv6 address <var>A</var> in
            logical port <var>P</var>'s mac binding table, setting its
            Ethernet address to <var>E</var>.
          </p>

          <p><b>Example:</b> <code>put_nd(inport, nd.target, nd.tll);</code></p>
        </dd>

        <dt><code><var>R</var> = lookup_nd(<var>P</var>, <var>A</var>, <var>M</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 128-bit
            IP address field <var>A</var>, 48-bit MAC address field
            <var>M</var>.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Looks up <var>A</var> and <var>M</var> in <var>P</var>'s mac
            binding table. If an entry is found, stores <code>1</code> in
            the 1-bit subfield <var>R</var>, else 0.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[0] = lookup_nd(inport, ip6.src, eth.src);
            </code>
          </p>
        </dd>

        <dt><code><var>R</var> = lookup_nd_ip(<var>P</var>, <var>A</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>, 128-bit
            IP address field <var>A</var>.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Looks up <var>A</var> in <var>P</var>'s mac binding table. If an
            entry is found, stores <code>1</code> in the 1-bit subfield
            <var>R</var>, else 0.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[0] = lookup_nd_ip(inport, ip6.src);
            </code>
          </p>
        </dd>

        <dt>
          <code><var>R</var> = put_dhcp_opts(<var>D1</var> = <var>V1</var>, <var>D2</var> = <var>V2</var>, ..., <var>Dn</var> = <var>Vn</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: one or more DHCP option/value pairs, which must
            include an <code>offerip</code> option (with code 0).
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Valid only in the ingress pipeline.
          </p>

          <p>
            When this action is applied to a DHCP request packet (DHCPDISCOVER
            or DHCPREQUEST), it changes the packet into a DHCP reply (DHCPOFFER
            or DHCPACK, respectively), replaces the options by those specified
            as parameters, and stores 1 in <var>R</var>.
          </p>

          <p>
            When this action is applied to a non-DHCP packet or a DHCP packet
            that is not DHCPDISCOVER or DHCPREQUEST, it leaves the packet
            unchanged and stores 0 in <var>R</var>.
          </p>

          <p>
            The contents of the <ref table="DHCP_Option"/> table control the
            DHCP option names and values that this action supports.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[0] = put_dhcp_opts(offerip = 10.0.0.2, router = 10.0.0.1,
              netmask = 255.255.255.0, dns_server = {8.8.8.8, 7.7.7.7});
            </code>
          </p>
        </dd>

        <dt>
          <code><var>R</var> = put_dhcpv6_opts(<var>D1</var> = <var>V1</var>, <var>D2</var> = <var>V2</var>, ..., <var>Dn</var> = <var>Vn</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: one or more DHCPv6 option/value pairs.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Valid only in the ingress pipeline.
          </p>

          <p>
            When this action is applied to a DHCPv6 request packet, it changes
            the packet into a DHCPv6 reply, replaces the options by those
            specified as parameters, and stores 1 in <var>R</var>.
          </p>

          <p>
            When this action is applied to a non-DHCPv6 packet or an invalid
            DHCPv6 request packet , it leaves the packet unchanged and stores
            0 in <var>R</var>.
          </p>

          <p>
            The contents of the <ref table="DHCPv6_Options"/> table control the
            DHCPv6 option names and values that this action supports.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[3] = put_dhcpv6_opts(ia_addr = aef0::4, server_id = 00:00:00:00:10:02,
              dns_server={ae70::1,ae70::2});
            </code>
          </p>
        </dd>

        <dt>
          <code>set_queue(<var>queue_number</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: Queue number <var>queue_number</var>, in the range 0 to 61440.
          </p>

          <p>
            This is a logical equivalent of the OpenFlow <code>set_queue</code>
            action.  It affects packets that egress a hypervisor through a
            physical interface.  For nonzero <var>queue_number</var>, it
            configures packet queuing to match the settings configured for the
            <ref table="Port_Binding"/> with
            <code>options:qdisc_queue_id</code> matching
            <var>queue_number</var>.  When <var>queue_number</var> is zero, it
            resets queuing to the default strategy.
          </p>

          <p><b>Example:</b> <code>set_queue(10);</code></p>
        </dd>

        <dt><code>ct_lb;</code></dt>
        <dt><code>ct_lb(backends=<var>ip</var>[:<var>port</var>][,...][; hash_fields=<var>field1</var>,<var>field2</var>,...][; ct_flag]);</code></dt>
        <dd>
          <p>
            With arguments, <code>ct_lb</code> commits the packet
            to the connection tracking table and DNATs the packet's destination
            IP address (and port) to the IP address or addresses (and optional
            ports) specified in the <code>backends</code>.  If multiple
            comma-separated IP addresses are specified, each is given equal
            weight for picking the DNAT address. By default,
            <code>dp_hash</code> is used as the OpenFlow group selection
            method, but if <code>hash_fields</code> is specified,
            <code>hash</code> is used as the selection method, and the fields
            listed are used as the hash fields. The <code>ct_flag</code>
            field represents one of supported flag: <code>skip_snat</code> or
            <code>force_snat</code>, this flag will be stored in
            <code>ct_label</code> register.
          </p>
          <p>
            Without arguments, <code>ct_lb</code> sends the packet to the
            connection tracking table to NAT the packets.  If the packet is
            part of an established connection that was previously committed to
            the connection tracker via <code>ct_lb(</code>...<code>)</code>, it
            will automatically get DNATed to the same IP address as the first
            packet in that connection.
          </p>
          <p>
            Processing automatically moves on to the next table,
            as if <code>next;</code> were specified, and later tables act on
            the packet as modified by the connection tracker.  Connection
            tracking state is scoped by the logical port when the action is
            used in a flow for a logical switch, so overlapping
            addresses may be used.  Connection tracking state is scoped by the
            logical topology when the action is used in a flow for a router.
          </p>
        </dd>

        <dt><code>ct_lb_mark;</code></dt>
        <dt><code>ct_lb_mark(backends=<var>ip</var>[:<var>port</var>][,...][; hash_fields=<var>field1</var>,<var>field2</var>,...][; ct_flag]);</code></dt>
        <dd>
          <p>
              Same as <code>ct_lb</code>, except that it internally uses ct_mark
              to store the NAT flag, while <code>ct_lb</code> uses ct_label for
              the same purpose.
          </p>
        </dd>

        <dt>
          <code><var>R</var> = dns_lookup();</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: No parameters.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Valid only in the ingress pipeline.
          </p>

          <p>
            When this action is applied to a valid DNS request (a UDP packet
            typically directed to port 53), it attempts to resolve the query
            using the contents of the <ref table="DNS"/> table.  If it is
            successful, it changes the packet into a DNS reply and stores 1 in
            <var>R</var>.  If the action is applied to a non-DNS packet, an
            invalid DNS request packet, or a valid DNS request for which the
            <ref table="DNS"/> table does not supply an answer, it leaves the
            packet unchanged and stores 0 in <var>R</var>.
          </p>

          <p>
            Regardless of success, the action does not make any of the changes
            to the flow that are necessary to direct the packet back to the
            requester.  The logical pipeline can implement this behavior with
            matches and actions in later tables.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[3] = dns_lookup();
            </code>
          </p>

          <p>
            <b>Prerequisite:</b> <code>udp</code>
          </p>
        </dd>

        <dt>
          <code><var>R</var> = put_nd_ra_opts(<var>D1</var> = <var>V1</var>, <var>D2</var> = <var>V2</var>, ..., <var>Dn</var> = <var>Vn</var>);</code>
        </dt>

        <dd>
          <p>
            <b>Parameters</b>: The following IPv6 ND Router Advertisement
               option/value pairs as defined in RFC 4861.

            <ul>
              <li>
                <code>addr_mode</code>
                <p>
                  Mandatory parameter which specifies the address mode flag to
                  be set in the RA flag options field. The value of this option
                  is a string and the following values can be defined -
                  "slaac", "dhcpv6_stateful" and "dhcpv6_stateless".
                </p>
              </li>

              <li>
                <code>slla</code>
                <p>
                  Mandatory parameter which specifies the link-layer address of
                  the interface from which the Router Advertisement is sent.
                </p>
              </li>

              <li>
                <code>mtu</code>
                <p>
                  Optional parameter which specifies the MTU.
                </p>
              </li>

              <li>
                <code>prefix</code>
                <p>
                  Optional parameter which should be specified if the addr_mode
                  is "slaac" or "dhcpv6_stateless". The value should be an IPv6
                  prefix which will be used for stateless IPv6 address
                  configuration. This option can be defined multiple times.
                </p>
              </li>
            </ul>
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            Valid only in the ingress pipeline.
          </p>

          <p>
            When this action is applied to an IPv6 Router solicitation request
            packet, it changes the packet into an IPv6 Router Advertisement
            reply and adds the options specified in the parameters, and stores
            1 in <var>R</var>.
          </p>

          <p>
            When this action is applied to a non-IPv6 Router solicitation
            packet or an invalid IPv6 request packet , it leaves the packet
            unchanged and stores 0 in <var>R</var>.
          </p>

          <p>
            <b>Example:</b>
            <code>
              reg0[3] = put_nd_ra_opts(addr_mode = "slaac",
              slla = 00:00:00:00:10:02, prefix = aef0::/64, mtu = 1450);
            </code>
          </p>
        </dd>

        <dt><code>set_meter(<var>rate</var>);</code></dt>
        <dt><code>set_meter(<var>rate</var>, <var>burst</var>);</code></dt>
        <dd>
          <p>
            <b>Parameters</b>: rate limit int field <var>rate</var> in kbps,
            burst rate limits int field <var>burst</var> in kbps.
          </p>

          <p>
            This action sets the rate limit for a flow.
          </p>

          <p><b>Example:</b> <code>set_meter(100, 1000);</code></p>
        </dd>

        <dt><code><var>R</var> = check_pkt_larger(<var>L</var>)</code></dt>
        <dd>
          <p>
            <b>Parameters</b>: packet length <var>L</var> to check for
            in bytes.
          </p>

          <p>
            <b>Result</b>: stored to a 1-bit subfield <var>R</var>.
          </p>

          <p>
            This is a logical equivalent of the OpenFlow
            <code>check_pkt_larger</code> action. If the packet is larger
            than the length specified in <var>L</var>, it stores 1 in the
            subfield <var>R</var>.
          </p>

          <p><b>Example: </b><code>reg0[6] = check_pkt_larger(1000);</code></p>
        </dd>
      </dl>

      <dl>
        <dt>
          <code>log(<var>key</var>=<var>value</var>, </code>...<code>);</code>
        </dt>

        <dd>
          <p>
            Causes <code>ovn-controller</code> to log the packet on the chassis
            that processes it.  Packet logging currently uses the same logging
            mechanism as other Open vSwitch and OVN messages, which means that
            whether and where log messages appear depends on the local logging
            configuration that can be configured with <code>ovs-appctl</code>,
            etc.
          </p>
          <p>
            The <code>log</code> action takes zero or more of the following
            key-value pair arguments that control what is logged:
          </p>
          <dl>
            <dt><code>name=</code><var>string</var></dt>
            <dd>
              An optional name for the ACL.  The <var>string</var> is
              currently limited to 64 bytes.
            </dd>
            <dt><code>severity=</code><var>level</var></dt>
            <dd>
              Indicates the severity of the event.  The <var>level</var> is one
              of following (from more to less serious): <code>alert</code>,
              <code>warning</code>, <code>notice</code>, <code>info</code>, or
              <code>debug</code>.  If a severity is not provided, the default
              is <code>info</code>.
            </dd>
            <dt><code>verdict=</code><var>value</var></dt>
            <dd>
              The verdict for packets matching the flow.  The value must be one
              of <code>allow</code>, <code>deny</code>, or <code>reject</code>.
            </dd>
            <dt><code>meter=</code><var>string</var></dt>
            <dd>
              An optional rate-limiting meter to be applied to the logs.
              The <var>string</var> should reference a
              <ref column="name" table="Meter"/> entry from the
              <ref table="Meter"/> table.  The only meter
              <ref column="action" table="meter"/> that is appropriate
              is <code>drop</code>.
            </dd>
          </dl>
        </dd>

        <dt><code>fwd_group(liveness=<var>bool</var>, childports=<var>port</var>, ...);</code></dt>
        <dd>
          <p>
            <b>Parameters</b>: optional <code>liveness</code>, either
            <code>true</code> or <code>false</code>, defaulting to false;
            <code>childports</code>, a comma-delimited list of strings denoting
            logical ports to load balance across.
          </p>

          <p>
            Load balance traffic to one or more child ports in a logical
            switch. <code>ovn-controller</code> translates the
            <code>fwd_group</code> into an OpenFlow group with one bucket for
            each child port. If <code>liveness=true</code> is specified, it
            also integrates the bucket selection with BFD status on the tunnel
            interface corresponding to child port.
          </p>

          <p><b>Example:</b> <code>fwd_group(liveness=true, childports="p1",
          "p2");</code></p>
        </dd>
      </dl>

      <dl>
        <dt><code>icmp4 { <var>action</var>; </code>...<code> };</code></dt>
        <dt>
          <code>icmp4_error { <var>action</var>; </code>...<code> };</code>
        </dt>
        <dd>
          <p>
            Temporarily replaces the IPv4 packet being processed by an ICMPv4
            packet and executes each nested <var>action</var> on the ICMPv4
            packet.  Actions following these actions, if any,
            apply to the original, unmodified packet.
          </p>

          <p>
            The ICMPv4 packet that these actions operates on is initialized
            based on the IPv4 packet being processed, as follows.  These are
            default values that the nested actions will probably want to
            change. Ethernet and IPv4 fields not listed here are not changed:
          </p>

          <ul>
            <li><code>ip.proto = 1</code> (ICMPv4)</li>
            <li><code>ip.frag = 0</code> (not a fragment)</li>
            <li><code>ip.ttl = 255</code></li>
            <li><code>icmp4.type = 3</code> (destination unreachable)</li>
            <li><code>icmp4.code = 1</code> (host unreachable)</li>
          </ul>

          <p>
              <code>icmp4_error</code> action is expected to be used to
              generate an ICMPv4 packet in response to an error in original
              IP packet. When this action generates the ICMPv4 packet, it
              also copies the original IP datagram following the ICMPv4 header
              as per RFC 1122: 3.2.2.
          </p>
          <p><b>Prerequisite:</b> <code>ip4</code></p>
        </dd>

        <dt><code>icmp6 { <var>action</var>; </code>...<code> };</code></dt>
        <dt>
          <code>icmp6_error { <var>action</var>; </code>...<code> };</code>
        </dt>
        <dd>
          <p>
            Temporarily replaces the IPv6 packet being processed by an ICMPv6
            packet and executes each nested <var>action</var> on the ICMPv6
            packet. Actions following the <var>icmp6</var> action, if any,
            apply to the original, unmodified packet.
          </p>

          <p>
            The ICMPv6 packet that this action operates on is initialized based
            on the IPv6 packet being processed, as follows. These are default
            values that the nested actions will probably want to change.
            Ethernet and IPv6 fields not listed here are not changed:
          </p>

          <ul>
            <li><code>ip.proto = 58</code> (ICMPv6)</li>
            <li><code>ip.ttl = 255</code></li>
            <li><code>icmp6.type = 1</code> (destination unreachable)</li>
            <li><code>icmp6.code = 1</code> (administratively prohibited)</li>
          </ul>

          <p>
              <code>icmp6_error</code> action is expected to be used to
              generate an ICMPv6 packet in response to an error in original
              IPv6 packet.
          </p>
          <p><b>Prerequisite:</b> <code>ip6</code></p>
        </dd>

        <dt><code>tcp_reset;</code></dt>
        <dd>
          <p>
            This action transforms the current TCP packet according to the
            following pseudocode:
          </p>

          <pre>
if (tcp.ack) {
        tcp.seq = tcp.ack;
} else {
        tcp.ack = tcp.seq + length(tcp.payload);
        tcp.seq = 0;
}
tcp.flags = RST;
</pre>

          <p>
            Then, the action drops all TCP options and payload data, and
            updates the TCP checksum. IP ttl is set to 255.
          </p>

          <p><b>Prerequisite:</b> <code>tcp</code></p>
        </dd>

        <dt><code>reject { <var>action</var>; </code>...<code> };</code></dt>
        <dd>
          <p>
            If the original packet is IPv4 or IPv6 TCP packet, it replaces it
            with IPv4 or IPv6 TCP RST packet and executes the inner actions.
            Otherwise it replaces it with an ICMPv4 or ICMPv6 packet and
            executes the inner actions.
          </p>

          <p>
            The inner actions should not attempt to swap eth source with eth
            destination and IP source with IP destination as this action
            implicitly does that.
          </p>
        </dd>

        <dt><code>trigger_event;</code></dt>
        <dd>
          <p>
            This action is used to allow ovs-vswitchd to report CMS related
            events writing them in <ref table="Controller_Event"/> table.
            It is possible to associate a meter to a each event in order to
            not overload pinctrl thread under heavy load; each meter is
            identified though a defined naming convention. Supported events:
          </p>

          <ul>
            <li>
              <p>
                <dfn>empty_lb_backends</dfn>. This event is raised if a
                received packet is destined for a load balancer VIP that has
                no configured backend destinations. For this event, the event
                info includes the load balancer VIP, the load balancer UUID,
                and the transport protocol.
                Associated meter: <code>event-elb</code>
              </p>
            </li>
          </ul>
        </dd>
        <dt><code>igmp;</code></dt>
        <dd>
          <p>
            This action sends the packet to <code>ovn-controller</code> for
            multicast snooping.
          </p>
          <p><b>Prerequisite:</b> <code>igmp</code></p>
        </dd>

        <dt><code>bind_vport(<var>V</var>, <var>P</var>);</code></dt>
        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>V</var>
            of type <code>virtual</code>, logical port string field
            <var>P</var>.
          </p>

          <p>
            Binds the virtual logical port <var>V</var> and sets the
            <ref table="Port_Binding" column="chassis"/> column and
            <ref table="Port_Binding" column="virtual_parent"/> of
            the table <ref table="Port_Binding"/>.
            <ref table="Port_Binding" column="virtual_parent"/> is
            set to <var>P</var>.
          </p>
        </dd>

        <dt><code>handle_svc_check(<var>P</var>);</code></dt>
        <dd>
          <p>
            <b>Parameters</b>: logical port string field <var>P</var>.
          </p>

          <p>
            Handles the service monitor reply received from the VIF of
            the logical port <var>P</var>. <code>ovn-controller</code>
            periodically sends out the service monitor packets for the
            services configured in the <ref table="Service_Monitor"/>
            table and this action updates the status of those services.
          </p>

          <p><b>Example:</b> <code>handle_svc_check(inport);</code></p>
        </dd>

        <dt><code>handle_dhcpv6_reply;</code></dt>
        <dd>
          <p>
            Handle DHCPv6 prefix delegation advertisements/replies from
            a IPv6 delegation server. <code>ovn-controller</code> will
            add an entry <code>ipv6_ra_pd_list</code> in the
            <ref table="Port_Binding" column="options"/> table for each
            prefix received from the delegation server
          </p>
        </dd>

        <dt><code><var>R</var> = select(<var>N1</var>[=<var>W1</var>], <var>N2</var>[=<var>W2</var>], ...);</code></dt>
        <dd>
          <p>
            <b>Parameters</b>: Integer <var>N1</var>, <var>N2</var>..., with
            optional weight <var>W1</var>, <var>W2</var>, ...
          </p>

          <p>
            <b>Result</b>: stored to a logical field or subfield <var>R</var>.
          </p>

          <p>
            Select from a list of integers <var>N1</var>, <var>N2</var>...,
            each within the range 0 ~ 65535, and store the selected one in the
            field <var>R</var>.  There must be 2 or more integers listed, each
            with an optional weight, which is an integer within the range 1 ~
            65535.  If weight is not specified, it defaults to 100. The
            selection method is based on the 5-tuple hash of packet header.
          </p>

          <p>
            Processing automatically moves on to the next table, as if
            <code>next;</code> were specified.  The <code>select</code> action
            must be put as the last action of the logical flow when there are
            multiple actions (actions put after <code>select</code> will not
            take effect).
          </p>

          <p>
            <b>Example:</b> <code>reg8[16..31] = select(1=20, 2=30, 3=50);</code>
          </p>
        </dd>

        <dt><code>handle_dhcpv6_reply;</code></dt>
        <dd>
          <p>
            This action is used to parse DHCPv6 replies from IPv6
            Delegation Router and managed IPv6 Prefix delegation state machine
          </p>
        </dd>

        <dt><code><var>R</var> = chk_lb_hairpin();</code></dt>
        <dd>
          <p>
            This action checks if the packet under consideration was destined
            to a load balancer VIP and it is hairpinned, i.e., after load
            balancing the destination IP matches the source IP. If it is so,
            then the 1-bit destination register <var>R</var> is set to 1.
          </p>
        </dd>

        <dt><code><var>R</var> = chk_lb_hairpin_reply();</code></dt>
        <dd>
          <p>
            This action checks if the packet under consideration is from
            one of the backend IP of a load balancer VIP and the destination IP
            is the load balancer VIP. If it is so, then the 1-bit destination
            register <var>R</var> is set to 1.
          </p>
        </dd>

        <dt><code><var>R</var> = ct_snat_to_vip;</code></dt>
        <dd>
          <p>
            This action sends the packet through the SNAT zone to change the
            source IP address of the packet to the load balancer VIP if the
            original destination IP was load balancer VIP and commits the
            connection. This action applies successfully only for the
            hairpinned traffic i.e if the action <code>chk_lb_hairpin</code>
            returned success. This action doesn't take any arguments and it
            determines the SNAT IP internally.

            The packet is not automatically sent to the next table. The caller
            has to execute the <code>next;</code> action explicitly after this
            action to advance the packet to the next stage.
          </p>
        </dd>

        <dt><code><var>R</var> = check_in_port_sec();</code></dt>
        <dd>
          <p>
            This action checks if the packet under consideration passes the
            inport port security checks.  If the packet fails the port security
            checks, then <code>1</code> is stored in the destination register
            <var>R</var>.  Else 0 is stored.  The port security values to check
            are retrieved from the the <code>inport</code> logical port.
          </p>

          <p>
            This action should be used in the ingress logical switch pipeline.

          </p>
          <p>
            <b>Example:</b> <code>reg8[0..7] = check_in_port_sec();</code>
          </p>
        </dd>

        <dt><code><var>R</var> = check_out_port_sec();</code></dt>
        <dd>
          <p>
            This action checks if the packet under consideration passes the
            outport port security checks.  If the packet fails the port
            security checks, then <code>1</code> is stored in the destination
            register <var>R</var>.  Else 0 is stored.  The port security
            values to check are retrieved from the the <code>outport</code>
            logical port.
          </p>

          <p>
            This action should be used in the egress logical switch pipeline.

          </p>
          <p>
            <b>Example:</b> <code>reg8[0..7] = check_out_port_sec();</code>
          </p>
        </dd>

        <dt><code>commit_ecmp_nh(<var>ipv6</var>);</code></dt>
        <dd>
          <p>
              <b>Parameters</b>: IPv4/IPv6 traffic.
          </p>

          <p>
            This action translates to an openflow "learn" action that inserts
            two new flows in tables 76 and 77.
          </p>

          <ul>
            <li>
              Match on the the 5-tuple and the expected next-hop mac address
              in table 76: <code>nw_src=ip0</code>, <code>nw_dst=ip1</code>,
              <code>ip_proto</code>,<code>tp_src=l4_port0</code>,
              <code>tp_dst=l4_port1</code>,<code>dl_src=ethaddr</code> and
              set <code>reg9[5]</code>.
            </li>
            <li>
              Match on the 5-tuple in table 77: <code>nw_src=ip1</code>,
              <code>nw_dst=ip0</code>, <code>ip_proto</code>,
              <code>tp_src=l4_port1</code>, <code>tp_dst=l4_port0</code>
              and set <code>reg9[5]</code> to 1
            </li>
          </ul>

          <p>
            This action is applied if the packet arrives via ECMP route or
            if it is routed via an ECMP route
          </p>
        </dd>

        <dt><code><var>R</var> = check_ecmp_nh_mac();</code></dt>
        <dd>
          <p>
            This action checks if the packet under consideration matches
            any flow in table 76. If it is so, then the 1-bit destination
            register <var>R</var> is set to 1.
          </p>
        </dd>

        <dt><code><var>R</var> = check_ecmp_nh();</code></dt>
        <dd>
          <p>
            This action checks if the packet under consideration matches
            the any flow in table 77. If it is so, then the 1-bit destination
            register <var>R</var> is set to 1.
          </p>
        </dd>

        <dt>
          <code>
            commit_lb_aff(<var>vip</var>, <var>backend</var>,
            <var>proto</var>, <var>timeout</var>);
          </code>
        </dt>
        <dd>
          <p>
            <b>Parameters</b>: load-balancer virtual ip:port <var>vip</var>,
            load-balancer backend ip:port <var>backend</var>, load-balancer
            protocol <var>proto</var>, affinity timeout <var>timeout</var>.
          </p>

          <p>
            This action translates to an openflow "learn" action that inserts
            a new flow in table 78.
          </p>

          <ul>
            <li>
              Match on the 4-tuple in table 78: <code>nw_src=ip client</code>,
              <code>nw_dst=vip ip</code>, <code>ip_proto</code>,
              <code>tp_dst=vip port</code> and set <code>reg9[6]</code> to 1,
              <code>reg4</code> and <code>reg8</code> to backend ip and port
              respectively. For IPv6 register <code>xxreg1</code> is used to
              store the backend ip.
            </li>
          </ul>

          <p>
            This action is applied for new connections received by a specific
            load-balacer with affinity timeout configured.
          </p>
        </dd>

        <dt><code><var>R</var> = chk_lb_aff();</code></dt>
        <dd>
          <p>
            This action checks if the packet under consideration matches any
            flow in table 78. If it is so, then the 1-bit destination
            register <var>R</var> is set to 1.
          </p>
        </dd>

        <dt><code>sample(probability=<var>packets</var>, ...)</code></dt>
        <dd>
          <p>
            This action causes the matched traffic to be sampled using
            IPFIX protocol. More information about how per-flow IPFIX sampling
            works in OVS can be found in <code>ovs-actions</code>(7) and
            <code>ovs-vswitchd.conf.db</code>(5).
          </p>

          <p>
            In order to reliably identify each sampled packet when it is
            received by the IPFIX collector, this action sets the content of
            the <code>ObservationDomainID</code> and
            <code>ObservationPointID</code> IPFIX fields (see argument
            description below).
          </p>

          <p>
            The following key-value arguments are supported:
          </p>

          <dl>
            <dt><code>probability=</code><var>packets</var></dt>
            <dd>
              The number of sampled packets out of 65535. It must be greater or
              equal to 1.
            </dd>
            <dt><code>collector_set=</code><var>id</var></dt>
            <dd>
              The unsigned 32-bit integer identifier of the sample collector to
              send sampled packets to. It must match the value configured in
              the <code>Flow_Sample_Collector_Set</code> Table in OVS.
              Defaults to 0.
            </dd>
            <dt><code>obs_domain=</code><var>id</var></dt>
            <dd>
              An unsigned 8-bit integer that identifies the sampling
              application. It will be placed in the 8 most significant bits of
              the <code>ObservationDomainID</code> field of IPFIX samples.
              The 24 less significant bits will be automatically filled in with
              the datapath key. Defaults to 0.
            </dd>
            <dt><code>obs_point=</code><var>id</var></dt>
            <dd>
              An unsigned 32-bit integer to be used as
              <code>ObsservationPointID</code> or the string
              <code>@cookie</code> to indicate that the first 32 bits of the
              <code>Logical_Flow</code>'s UUID shall be used instead.
            </dd>
          </dl>
        </dd>
      </dl>
    </column>

    <column name="tags">
      Key-value pairs that provide additional information to help
      ovn-controller processing the logical flow. Below are the tags used
      by ovn-controller.

      <dl>
        <dt>in_out_port</dt>
        <dd>
          In the logical flow's "match" column, if a logical port P is
          compared with "inport" and the logical flow is on a logical switch
          ingress pipeline, or if P is compared with "outport" and the
          logical flow is on a logical switch egress pipeline, and the
          expression is combined with other expressions (if any) using the
          operator &amp;&amp;, then the port P should be added as the value in
          this tag. If there are multiple logical ports meeting this criteria,
          one of them can be added. ovn-controller uses this information to
          skip parsing flows that are not needed on the chassis. Failing to add
          the tag will affect efficiency, while adding wrong value will affect
          correctness.
        </dd>
      </dl>
    </column>

    <column name="controller_meter">
      The name of the meter in table <ref table="Meter"/> to be used for
      all packets that the logical flow might send to
      <code>ovn-controller</code>.
    </column>

    <column name="external_ids" key="stage-name">
      Human-readable name for this flow's stage in the pipeline.
    </column>

    <column name="external_ids" key="stage-hint" type='{"type": "uuid"}'>
      UUID of a <ref db="OVN_Northbound"/> record that caused this logical flow
      to be created.  Currently used only for attribute of logical flows to
      northbound <ref db="OVN_Northbound" table="ACL"/> records.
    </column>

    <column name="external_ids" key="source">
      Source file and line number of the code that added this flow to the
      pipeline.
    </column>

    <group title="Common Columns">
      The overall purpose of these columns is described under <code>Common
      Columns</code> at the beginning of this document.

      <column name="external_ids"/>
    </group>
  </table>

  <table name="Logical_DP_Group" title="Logical Datapath Groups">
    <p>
      Each row in this table represents a group of logical datapaths referenced
      by the <ref column="logical_dp_group" table="Logical_Flow"/> column
      in the <ref table="Logical_Flow"/> table.
    </p>

    <column name="datapaths">
      <p>
        List of <ref table="Datapath_Binding"/> entries.
      </p>
    </column>
  </table>

  <table name="Multicast_Group" title="Logical Port Multicast Groups">
    <p>
      The rows in this table define multicast groups of logical ports.
      Multicast groups allow a single packet transmitted over a tunnel to a
      hypervisor to be delivered to multiple VMs on that hypervisor, which
      uses bandwidth more efficiently.
    </p>

    <p>
      Each row in this table defines a logical multicast group numbered <ref
      column="tunnel_key"/> within <ref column="datapath"/>, whose logical
      ports are listed in the <ref column="ports"/> column.
    </p>

    <column name="datapath">
      The logical datapath in which the multicast group resides.
    </column>

    <column name="tunnel_key">
      The value used to designate this logical egress port in tunnel
      encapsulations.  An index forces the key to be unique within the <ref
      column="datapath"/>.  The unusual range ensures that multicast group IDs
      do not overlap with logical port IDs.
    </column>

    <column name="name">
      <p>
        The logical multicast group's name.  An index forces the name to be
        unique within the <ref column="datapath"/>.  Logical flows in the
        ingress pipeline may output to the group just as for individual logical
        ports, by assigning the group's name to <code>outport</code> and
        executing an <code>output</code> action.
      </p>

      <p>
        Multicast group names and logical port names share a single namespace
        and thus should not overlap (but the database schema cannot enforce
        this).  To try to avoid conflicts, <code>ovn-northd</code> uses names
        that begin with <code>_MC_</code>.
      </p>
    </column>

    <column name="ports">
      The logical ports included in the multicast group.  All of these ports
      must be in the <ref column="datapath"/> logical datapath (but the
      database schema cannot enforce this).
    </column>
  </table>

  <table name="Mirror" title="Mirror Entry">
    <p>
      Each row in this table represents a mirror that can be used for
      port mirroring. These mirrors are referenced by the
      <ref column="mirror_rules" table="Port_Binding"/> column in
      the <ref table="Port_Binding"/> table.
    </p>

    <column name="name">
      <p>
        Represents the name of the mirror.
      </p>
    </column>

    <column name="filter">
      <p>
        The value of this field represents selection criteria of the mirror.
      </p>
    </column>

    <column name="sink">
      <p>
        The value of this field represents the destination/sink of the mirror.
      </p>
    </column>

    <column name="type">
      <p>
        The value of this field represents the type of the tunnel used for
        sending the mirrored packets
      </p>
    </column>

    <column name="index">
      <p>
        The value of this field represents the key/idx depending on the
        tunnel type configured
      </p>
    </column>

    <column name="external_ids">
      See <em>External IDs</em> at the beginning of this document.
    </column>
  </table>

  <table name="Meter" title="Meter entry">
    <p>
      Each row in this table represents a meter that can be used for QoS or
      rate-limiting.
    </p>

    <column name="name">
      <p>
        A name for this meter.
      </p>

      <p>
        Names that begin with "__" (two underscores) are reserved for
        OVN internal use and should not be added manually.
      </p>
    </column>

    <column name="unit">
      <p>
        The unit for <ref column="rate" table="Meter_Band"/> and
        <ref column="burst_rate" table="Meter_Band"/> parameters in
        the <ref column="bands"/> entry.  <code>kbps</code> specifies
        kilobits per second, and <code>pktps</code> specifies packets
        per second.
      </p>
    </column>

    <column name="bands">
      <p>
        The bands associated with this meter.  Each band specifies a
        rate above which the band is to take the action
        <code>action</code>.  If multiple bands' rates are exceeded,
        then the band with the highest rate among the exceeded bands is
        selected.
      </p>
    </column>
  </table>

  <table name="Meter_Band" title="Band for meter entries">
    <p>
      Each row in this table represents a meter band which specifies the
      rate above which the configured action should be applied.  These bands
      are referenced by the <ref column="bands" table="Meter"/> column in
      the <ref table="Meter"/> table.
    </p>

    <column name="action">
      <p>
        The action to execute when this band matches.  The only supported
        action is <code>drop</code>.
      </p>
    </column>

    <column name="rate">
      <p>
        The rate limit for this band, in kilobits per second or bits per
        second, depending on whether the parent <ref table="Meter"/>
        entry's <ref column="unit" table="Meter"/> column specified
        <code>kbps</code> or <code>pktps</code>.
      </p>
    </column>

    <column name="burst_size">
      <p>
        The maximum burst allowed for the band in kilobits or packets,
        depending on whether <code>kbps</code> or <code>pktps</code> was
        selected in the parent <ref table="Meter"/> entry's
        <ref column="unit" table="Meter"/> column.  If the size is zero,
        the switch is free to select some reasonable value depending on
        its configuration.
      </p>
    </column>
  </table>

  <table name="Datapath_Binding" title="Physical-Logical Datapath Bindings">
    <p>
      Each row in this table represents a logical datapath, which implements a
      logical pipeline among the ports in the <ref table="Port_Binding"/> table
      associated with it.  In practice, the pipeline in a given logical
      datapath implements either a logical switch or a logical router.
    </p>

    <p>
      The main purpose of a row in this table is provide a physical binding for
      a logical datapath.  A logical datapath does not have a physical
      location, so its physical binding information is limited: just <ref
      column="tunnel_key"/>.  The rest of the data in this table does not
      affect packet forwarding.
    </p>

    <column name="tunnel_key">
      The tunnel key value to which the logical datapath is bound.
      The <code>Tunnel Encapsulation</code> section in
      <code>ovn-architecture</code>(7) describes how tunnel keys are
      constructed for each supported encapsulation.
    </column>

    <column name="load_balancers">
      <p>
        Not used anymore; kept for backwards compatibility of the schema.
      </p>
    </column>

    <group title="OVN_Northbound Relationship">
      <p>
        Each row in <ref table="Datapath_Binding"/> is associated with some
        logical datapath.  <code>ovn-northd</code> uses these keys to track the
        association of a logical datapath with concepts in the <ref
        db="OVN_Northbound"/> database.
      </p>

      <column name="external_ids" key="logical-switch" type='{"type": "uuid"}'>
        For a logical datapath that represents a logical switch,
        <code>ovn-northd</code> stores in this key the UUID of the
        corresponding <ref table="Logical_Switch" db="OVN_Northbound"/> row in
        the <ref db="OVN_Northbound"/> database.
      </column>

      <column name="external_ids" key="logical-router" type='{"type": "uuid"}'>
        For a logical datapath that represents a logical router,
        <code>ovn-northd</code> stores in this key the UUID of the
        corresponding <ref table="Logical_Router" db="OVN_Northbound"/> row in
        the <ref db="OVN_Northbound"/> database.
      </column>

      <column name="external_ids" key="interconn-ts" type='{"type": "string"}'>
        For a logical datapath that represents a logical switch that represents
        a transit switch for interconnection, <code>ovn-northd</code> stores in
        this key the value of the same <code>interconn-ts</code> key of the <ref
        column="external_ids" table="Logical_Switch" db="OVN_Northbound"/>
        column of the corresponding <ref table="Logical_Switch"
        db="OVN_Northbound"/> row in the <ref db="OVN_Northbound"/> database.
      </column>

      <group title="Naming">
        <p>
          <code>ovn-northd</code> copies these from the name fields in the <ref
          db="OVN_Northbound"/> database, either from <ref
          table="Logical_Router" db="OVN_Northbound" column="name"/> and <ref
          table="Logical_Router" db="OVN_Northbound" column="external_ids"
          key="neutron:router_name"/> in the <ref table="Logical_Router"
          db="OVN_Northbound"/> table or from <ref table="Logical_Switch"
          db="OVN_Northbound" column="name"/> and <ref table="Logical_Switch"
          db="OVN_Northbound" column="external_ids"
          key="neutron:network_name"/> in the <ref table="Logical_Switch"
          db="OVN_Northbound"/> table.
        </p>

        <column name="external_ids" key="name">
          A name for the logical datapath.
        </column>

        <column name="external_ids" key="name2">
          Another name for the logical datapath.
        </column>
      </group>
    </group>

    <group title="Common Columns">
      The overall purpose of these columns is described under <code>Common
      Columns</code> at the beginning of this document.

      <column name="external_ids"/>
    </group>
  </table>

  <table name="Port_Binding" title="Physical-Logical Port Bindings">
    <p>
      Each row in this table binds a logical port to a realization.  For most
      logical ports, this means binding to some physical location, for example
      by binding a logical port to a VIF that belongs to a VM running on a
      particular hypervisor.  Other logical ports, such as logical patch ports,
      can be realized without a specific physical location, but their bindings
      are still expressed through rows in this table.
    </p>

    <p>
      For every <code>Logical_Switch_Port</code> record in
      <code>OVN_Northbound</code> database, <code>ovn-northd</code>
      creates a record in this table.  <code>ovn-northd</code> populates
      and maintains every column except the <code>chassis</code> and
      <code>virtual_parent</code> columns, which it leaves empty in new records.
    </p>

    <p>
      <code>ovn-controller</code>/<code>ovn-controller-vtep</code>
      populates the <code>chassis</code> column for the records that
      identify the logical ports that are located on its hypervisor/gateway,
      which <code>ovn-controller</code>/<code>ovn-controller-vtep</code> in
      turn finds out by monitoring the local hypervisor's Open_vSwitch
      database, which identifies logical ports via the conventions described
      in <code>IntegrationGuide.rst</code>.  (The exceptions are for
      <code>Port_Binding</code> records with <code>type</code> of
      <code>l3gateway</code>, whose locations are identified by
      <code>ovn-northd</code> via the <code>options:l3gateway-chassis</code>
      column in this table.  <code>ovn-controller</code> is still responsible
      to populate the <code>chassis</code> column.)
    </p>

    <p>
      <code>ovn-controller</code> also populates the
      <code>virtual_parent</code> column of records whose <code>type</code> is
      <code>virtual</code>.
    </p>

    <p>
      When a chassis shuts down gracefully, it should clean up the
      <code>chassis</code> column that it previously had populated.
      (This is not critical because resources hosted on the chassis are equally
      unreachable regardless of whether their rows are present.)  To handle the
      case where a VM is shut down abruptly on one chassis, then brought up
      again on a different one,
      <code>ovn-controller</code>/<code>ovn-controller-vtep</code> must
      overwrite the <code>chassis</code> column with new information.
    </p>

    <group title="Core Features">
      <column name="datapath">
        The logical datapath to which the logical port belongs.
      </column>

      <column name="logical_port">
        A logical port.  For a logical switch port, this is taken from <ref
        table="Logical_Switch_Port" column="name" db="OVN_Northbound"/> in the
        OVN_Northbound database's <ref table="Logical_Switch_Port"
        db="OVN_Northbound"/> table.  For a logical router port, this is taken
        from <ref table="Logical_Router_Port" column="name"
        db="OVN_Northbound"/> in the OVN_Northbound database's <ref
        table="Logical_Router_port" db="OVN_Northbound"/> table.  (This means
        that logical switch ports and router port names must not share names in
        an OVN deployment.) OVN does not prescribe a particular format for the
        logical port ID.
      </column>

      <column name="encap">
        Points to preferred encapsulation configuration to transmit
        logical dataplane packets to this chassis. The entry is reference to
        a <ref table="Encap"/> record.
      </column>

      <column name="additional_encap">
        Points to preferred encapsulation configuration to transmit
        logical dataplane packets to this additional chassis. The entry is
        reference to a <ref table="Encap"/> record.

        See also <ref column="additional_chassis"/>.
      </column>

      <column name="chassis">
        The meaning of this column depends on the value of the <ref column="type"/>
        column.  This is the meaning for each <ref column="type"/>

        <dl>
          <dt>(empty string)</dt>
          <dd>
            The physical location of the logical port.  To successfully identify a
            chassis, this column must be a <ref table="Chassis"/> record.  This is
            populated by <code>ovn-controller</code>.
          </dd>

          <dt>vtep</dt>
          <dd>
            The physical location of the hardware_vtep gateway.  To successfully
            identify a chassis, this column must be a <ref table="Chassis"/> record.
            This is populated by <code>ovn-controller-vtep</code>.
          </dd>

          <dt>localnet</dt>
          <dd>
            Always empty.  A localnet port is realized on every chassis that has
            connectivity to the corresponding physical network.
          </dd>

          <dt>localport</dt>
          <dd>
            Always empty.  A localport port is present on every chassis.
          </dd>

          <dt>l3gateway</dt>
          <dd>
            The physical location of the L3 gateway.  To successfully identify a
            chassis, this column must be a <ref table="Chassis"/> record.  This is
            populated by <code>ovn-controller</code> based on the value of
            the <code>options:l3gateway-chassis</code> column in this table.
          </dd>

          <dt>l2gateway</dt>
          <dd>
            The physical location of this L2 gateway.  To successfully identify a
            chassis, this column must be a <ref table="Chassis"/> record.
            This is populated by <code>ovn-controller</code> based on the value
            of the <code>options:l2gateway-chassis</code> column in this table.
          </dd>
        </dl>

      </column>

      <column name="additional_chassis">
        The meaning of this column is the same as for the
        <ref column="chassis"/>. The column is used to track an additional
        physical location of the logical port. Used with regular (empty
        <ref column="type"/>) port bindings.
      </column>

      <column name="gateway_chassis">
        <p>
          A list of <ref table="Gateway_Chassis"/>.
        </p>
        <p>
          This should only be populated for ports with
          <ref column="type"/> set to <code>chassisredirect</code>.
          This column defines the list of chassis used as gateways where
          traffic will be redirected through.
        </p>
      </column>

      <column name="ha_chassis_group">
        <p>
          This should only be populated for ports with
          <ref column="type"/> set to <code>chassisredirect</code>.
          This column defines the HA chassis group with a list of
          HA chassis used as gateways where traffic will be redirected
          through.
        </p>
      </column>

      <column name="up">
        <p>
          This is set to <code>true</code> whenever all OVS flows
          required by this Port_Binding have been installed.  This is
          populated by <code>ovn-controller</code>.
        </p>
      </column>

      <column name="tunnel_key">
        <p>
          A number that represents the logical port in the key (e.g. STT key or
          Geneve TLV) field carried within tunnel protocol packets.
        </p>

        <p>
          The tunnel ID must be unique within the scope of a logical datapath.
        </p>
      </column>

      <column name="mac">
        This column is a misnomer as it may contain MAC addresses and IP
        addresses. It is copied from the <code>addresses</code> column in the
        <code>Logical_Switch_Port</code> table in the Northbound database. It
        follows the same format as that column.
      </column>

      <column name="port_security">
        <p>
          This column controls the addresses from which the host attached to
          the logical port (``the host'') is allowed to send packets and to
          which it is allowed to receive packets.  If this column is empty,
          all addresses are permitted.
        </p>

        <p>
          It is copied from the <code>port_security</code> column in the
          <code>Logical_Switch_Port</code> table in the Northbound database. It
          follows the same format as that column.
        </p>
      </column>

      <column name="type">
        <p>
          A type for this logical port.  Logical ports can be used to model other
          types of connectivity into an OVN logical switch.  The following types
          are defined:
        </p>

        <dl>
          <dt>(empty string)</dt>
          <dd>VM (or VIF) interface.</dd>

          <dt><code>patch</code></dt>
          <dd>
            One of a pair of logical ports that act as if connected by a patch
            cable.  Useful for connecting two logical datapaths, e.g. to connect
            a logical router to a logical switch or to another logical router.
          </dd>

          <dt><code>l3gateway</code></dt>
          <dd>
            One of a pair of logical ports that act as if connected by a patch
            cable across multiple chassis.  Useful for connecting a logical
            switch with a Gateway router (which is only resident on a
            particular chassis).
          </dd>

          <dt><code>localnet</code></dt>
          <dd>
            A connection to a locally accessible network from
            <code>ovn-controller</code> instances that have a corresponding
            bridge mapping.  A logical switch can have multiple
            <code>localnet</code> ports attached.  This type is used to model
            direct connectivity to existing networks.  In this case, each
            chassis should have a mapping for one of the physical networks
            only.  Note: nothing said above implies that a chassis cannot be
            plugged to multiple physical networks as long as they belong to
            different switches.
          </dd>

          <dt><code>localport</code></dt>
          <dd>
            A connection to a local VIF. Traffic that arrives on a
            <code>localport</code> is never forwarded over a tunnel to another
            chassis. These ports are present on every chassis and have the same
            address in all of them. This is used to model connectivity to local
            services that run on every hypervisor.
          </dd>

          <dt><code>l2gateway</code></dt>
          <dd>
            An L2 connection to a physical network.  The chassis this
            <ref table="Port_Binding"/> is bound to will serve as
            an L2 gateway to the network named by
            <ref column="options" table="Port_Binding"/>:<code>network_name</code>.
          </dd>

          <dt><code>vtep</code></dt>
          <dd>
            A port to a logical switch on a VTEP gateway chassis.  In order to
            get this port correctly recognized by the OVN controller, the <ref
            column="options"
            table="Port_Binding"/>:<code>vtep-physical-switch</code> and <ref
            column="options"
            table="Port_Binding"/>:<code>vtep-logical-switch</code> must also
            be defined.
          </dd>

          <dt><code>chassisredirect</code></dt>
          <dd>
            A logical port that represents a particular instance, bound
            to a specific chassis, of an otherwise distributed parent
            port (e.g. of type <code>patch</code>).  A
            <code>chassisredirect</code> port should never be used as an
            <code>inport</code>.  When an ingress pipeline sets the
            <code>outport</code>, it may set the value to a logical port
            of type <code>chassisredirect</code>.  This will cause the
            packet to be directed to a specific chassis to carry out the
            egress pipeline.  At the beginning of the egress pipeline,
            the <code>outport</code> will be reset to the value of the
            distributed port.
          </dd>

          <dt><code>virtual</code></dt>
          <dd>
            Represents a logical port with an <code>virtual ip</code>.
            This <code>virtual ip</code> can be configured on a
            logical port (which is referred as virtual parent).
          </dd>
        </dl>
      </column>
      <column name="requested_chassis">
        This column exists so that the ovn-controller can effectively monitor
        all <ref table="Port_Binding"/> records destined for it, and is a
        supplement to the <ref
        table="Port_Binding"
        column="options"
        key="requested-chassis"/> option.  The option is still required so that
        the ovn-controller can check the CMS intent when the chassis pointed
        to does not currently exist, which for example occurs when the
        ovn-controller is stopped without passing the --restart argument.

        This column must be a
        <ref table="Chassis"/> record.  This is populated by
        <code>ovn-northd</code> when the <ref
        table="Logical_Switch_Port"
        column="options"
        key="requested-chassis"
        db="OVN_Northbound"/>
        is defined and contains a string matching the name or hostname of an
        existing chassis.

        See also
        <ref table="Port_Binding" column="requested_additional_chassis"/>.
      </column>
      <column name="requested_additional_chassis">
        This column exists so that the ovn-controller can effectively monitor
        all <ref table="Port_Binding"/> records destined for it, and is a
        supplement to the <ref
        table="Port_Binding"
        column="options"
        key="requested-chassis"/> option when multiple chassis are listed.

        This column must be a list of
        <ref table="Chassis"/> records.  This is populated by
        <code>ovn-northd</code> when the <ref
        table="Logical_Switch_Port"
        column="options"
        key="requested-chassis"
        db="OVN_Northbound"/>
        is defined as a list of chassis names or hostnames.

        See also <ref table="Port_Binding" column="requested_chassis"/>.
      </column>
    </group>

    <column name="mirror_rules">
        Mirror rules that apply to the port binding.
        Please see the <ref table="Mirror"/> table.
    </column>

    <group title="Patch Options">
      <p>
        These options apply to logical ports with <ref column="type"/> of
        <code>patch</code>.
      </p>

      <column name="options" key="peer">
        The <ref column="logical_port"/> in the <ref table="Port_Binding"/>
        record for the other side of the patch.  The named <ref
        column="logical_port"/> must specify this <ref column="logical_port"/>
        in its own <code>peer</code> option.  That is, the two patch logical
        ports must have reversed <ref column="logical_port"/> and
        <code>peer</code> values.
      </column>

      <column name="nat_addresses">
        MAC address followed by a list of SNAT and DNAT external IP
        addresses, followed by
        <code>is_chassis_resident("<var>lport</var>")</code>, where
        <var>lport</var> is the name of a logical port on the same chassis
        where the corresponding NAT rules are applied.  This is used to
        send gratuitous ARPs for SNAT and DNAT external IP addresses via
        <code>localnet</code>, from the chassis where <var>lport</var>
        resides.  Example: <code>80:fa:5b:06:72:b7 158.36.44.22
        158.36.44.24 is_chassis_resident("foo1")</code>.  This would result
        in generation of gratuitous ARPs for IP addresses 158.36.44.22 and
        158.36.44.24 with a MAC address of 80:fa:5b:06:72:b7 from the chassis
        where the logical port "foo1" resides.
      </column>
    </group>

    <group title="L3 Gateway Options">
      <p>
        These options apply to logical ports with <ref column="type"/> of
        <code>l3gateway</code>.
      </p>

      <column name="options" key="peer">
        The <ref column="logical_port"/> in the <ref table="Port_Binding"/>
        record for the other side of the 'l3gateway' port.  The named <ref
        column="logical_port"/> must specify this <ref column="logical_port"/>
        in its own <code>peer</code> option.  That is, the two 'l3gateway'
        logical ports must have reversed <ref column="logical_port"/> and
        <code>peer</code> values.
      </column>

      <column name="options" key="l3gateway-chassis">
        The <code>chassis</code> in which the port resides.
      </column>

      <column name="nat_addresses">
        MAC address of the <code>l3gateway</code> port followed by a list of
        SNAT and DNAT external IP addresses.  This is used to send gratuitous
        ARPs for SNAT and DNAT external IP addresses via <code>localnet</code>.
        Example: <code>80:fa:5b:06:72:b7 158.36.44.22 158.36.44.24</code>.
        This would result in generation of gratuitous ARPs for IP addresses
        158.36.44.22 and 158.36.44.24 with a MAC address of 80:fa:5b:06:72:b7.
        This is used in OVS version 2.8 and later versions.
      </column>
    </group>

    <group title="Localnet Options">
      <p>
        These options apply to logical ports with <ref column="type"/> of
        <code>localnet</code>.
      </p>

      <column name="options" key="network_name">
        Required.  <code>ovn-controller</code> uses the configuration entry
        <code>ovn-bridge-mappings</code> to determine how to connect to this
        network.  <code>ovn-bridge-mappings</code> is a list of network names
        mapped to a local OVS bridge that provides access to that network.  An
        example of configuring <code>ovn-bridge-mappings</code> would be:

        <pre>$ ovs-vsctl set open . external-ids:ovn-bridge-mappings=physnet1:br-eth0,physnet2:br-eth1</pre>

        <p>
          When a logical switch has a <code>localnet</code> port attached,
          every chassis that may have a local vif attached to that logical
          switch must have a bridge mapping configured to reach that
          <code>localnet</code>.  Traffic that arrives on a
          <code>localnet</code> port is never forwarded over a tunnel to
          another chassis.  If there are multiple <code>localnet</code>
          ports in a logical switch, each chassis should only have a single
          bridge mapping for one of the physical networks.  Note: In case of
          multiple <code>localnet</code> ports, to provide interconnectivity
          between all VIFs located on different chassis with different fabric
          connectivity, the fabric should implement some form of routing
          between the segments.
        </p>
      </column>

      <column name="tag">
        If set, indicates that the port represents a connection to a specific
        VLAN on a locally accessible network. The VLAN ID is used to match
        incoming traffic and is also added to outgoing traffic.
      </column>
    </group>

    <group title="L2 Gateway Options">
      <p>
        These options apply to logical ports with <ref column="type"/> of
        <code>l2gateway</code>.
      </p>

      <column name="options" key="network_name">
        Required.  <code>ovn-controller</code> uses the configuration entry
        <code>ovn-bridge-mappings</code> to determine how to connect to this
        network.  <code>ovn-bridge-mappings</code> is a list of network names
        mapped to a local OVS bridge that provides access to that network.  An
        example of configuring <code>ovn-bridge-mappings</code> would be:

        <pre>$ ovs-vsctl set open . external-ids:ovn-bridge-mappings=physnet1:br-eth0,physnet2:br-eth1</pre>

        <p>
          When a logical switch has a <code>l2gateway</code> port attached,
          the chassis that the <code>l2gateway</code> port is bound to
          must have a bridge mapping configured to reach the network
          identified by <code>network_name</code>.
        </p>
      </column>

      <column name="options" key="l2gateway-chassis">
        Required. The <code>chassis</code> in which the port resides.
      </column>

      <column name="tag">
        If set, indicates that the gateway is connected to a specific
        VLAN on the physical network. The VLAN ID is used to match
        incoming traffic and is also added to outgoing traffic.
      </column>
    </group>

    <group title="VTEP Options">
      <p>
        These options apply to logical ports with <ref column="type"/> of
        <code>vtep</code>.
      </p>

      <column name="options" key="vtep-physical-switch">
        Required. The name of the VTEP gateway.
      </column>

      <column name="options" key="vtep-logical-switch">
        Required.  A logical switch name connected by the VTEP gateway.  Must
        be set when <ref column="type"/> is <code>vtep</code>.
      </column>
    </group>

    <group title="VMI (or VIF) Options">
      <p>
        These options apply to logical ports with <ref column="type"/> having
        (empty string)
      </p>

      <column name="options" key="requested-chassis">
        <p>
          If set, identifies a specific chassis (by name or hostname) that
          is allowed to bind this port. Using this option will prevent
          thrashing between two chassis trying to bind the same port during
          a live migration. It can also prevent similar thrashing due to a
          mis-configuration, if a port is accidentally created on more than
          one chassis.
        </p>

        <p>
          If set to a comma separated list, the first entry identifies the main
          chassis and the rest are one or more additional chassis that are
          allowed to bind the same port.
        </p>

        <p>
          When multiple chassis are set for the port, and the logical switch
          is connected to an external network through a <code>localnet</code>
          port, tunneling is enforced for the port to guarantee delivery of
          packets directed to the port to all its locations. This has MTU
          implications because the network used for tunneling must have MTU
          larger than <code>localnet</code> for stable connectivity.
        </p>
      </column>

      <column name="options" key="activation-strategy">
        If used with multiple chassis set in <ref column="requested-chassis"/>,
        specifies an activation strategy for all additional chassis. By
        default, no activation strategy is used, meaning additional port
        locations are immediately available for use. When set to "rarp", the
        port is blocked for ingress and egress communication until a RARP
        packet is sent from a new location. The "rarp" strategy is useful
        in live migration scenarios for virtual machines.
      </column>

      <column name="options" key="additional-chassis-activated">
        When <ref column="activation-strategy"/> is set, this option indicates
        that the port was activated using the strategy specified.
      </column>

      <column name="options" key="iface-id-ver">
        If set, this port will be bound by <code>ovn-controller</code>
        only if this same key and value is configured in the
        <ref table="Interface" column="external_ids" db="Open_vSwitch"/>
        column in the Open_vSwitch database's
        <ref table="Interface" db="Open_vSwitch"/> table.
      </column>

      <column name="options" key="qos_min_rate">
        If set, indicates the minimum guaranteed rate available for data sent
        from this interface, in bit/s.
      </column>

      <column name="options" key="qos_max_rate">
        If set, indicates the maximum rate for data sent from this interface,
        in bit/s. The traffic will be shaped according to this limit.
      </column>

      <column name="options" key="qos_burst">
        If set, indicates the maximum burst size for data sent from this
        interface, in bits.
      </column>

      <column name="options" key="qdisc_queue_id"
              type='{"type": "integer", "minInteger": 1, "maxInteger": 61440}'>
        Indicates the queue number on the physical device. This is same as the
        <code>queue_id</code> used in OpenFlow in <code>struct
        ofp_action_enqueue</code>.
      </column>
    </group>

    <group title="Distributed Gateway Port Options">
      <p>
        These options apply to the distributed parent ports of logical ports
        with <ref column="type"/> of <code>chasssisredirect</code>.
      </p>

      <column name="options" key="chassis-redirect-port">
        The name of the chassis redirect port derived from this port if this
        port is a distributed parent of a chassis redirect port.
      </column>
    </group>

    <group title="Chassis Redirect Options">
      <p>
        These options apply to logical ports with <ref column="type"/>
        of <code>chassisredirect</code>.
      </p>

      <column name="options" key="distributed-port">
        The name of the distributed port for which this
        <code>chassisredirect</code> port represents a particular instance.
      </column>

      <column name="options" key="redirect-type">
        The value is copied from the column
        <ref table="Logical_Router_Port" column="options" db="OVN_Northbound"/>
        in the OVN_Northbound database's
        <ref table="Logical_Router_Port" db="OVN_Northbound"/> table for the
        distributed parent of this port.
      </column>

      <column name="options" key="always-redirect">
        A boolean option that is set to true if the distributed parent of this
        chassis redirect port does not need distributed processing.
      </column>
    </group>

    <group title="Nested Containers">
      <p>
        These columns support containers nested within a VM.  Specifically,
        they are used when <ref column="type"/> is empty and <ref
        column="logical_port"/> identifies the interface of a container spawned
        inside a VM.  They are empty for containers or VMs that run directly on
        a hypervisor.
      </p>

      <column name="parent_port">
        This is taken from
        <ref table="Logical_Switch_Port" column="parent_name"
        db="OVN_Northbound"/> in the OVN_Northbound database's
        <ref table="Logical_Switch_Port" db="OVN_Northbound"/> table.
      </column>

      <column name="tag">
        <p>
          Identifies the VLAN tag in the network traffic associated with that
          container's network interface.
        </p>

        <p>
          This column is used for a different purpose when <ref column="type"/>
          is <code>localnet</code> (see <code>Localnet Options</code>, above)
          or <code>l2gateway</code> (see <code>L2 Gateway Options</code>, above).
        </p>
      </column>
    </group>

    <group title="Virtual ports">
      <column name="virtual_parent">
        <p>
          This column is set by <code>ovn-controller</code> with one of the
          value from the
          <ref table="Logical_Switch_Port" column="options:virtual-parents"
          db="OVN_Northbound"/> in the OVN_Northbound database's
          <ref table="Logical_Switch_Port" db="OVN_Northbound"/> table
          when the OVN action <code>bind_vport</code> is executed.
          <code>ovn-controller</code> also sets the
          <ref column="chassis"/> column when it executes this action
          with its chassis id.
        </p>

        <p>
          <code>ovn-controller</code> sets this column only if the
          <ref column="type"/> is "virtual".
        </p>
      </column>
    </group>

    <group title="Naming">
      <column name="external_ids" key="name">
        <p>
          For a logical switch port, <code>ovn-northd</code> copies this from
          <ref table="Logical_Switch_Port" db="OVN_Northbound"
          column="external_ids" key="neutron:port_name"/> in the <ref
          table="Logical_Switch_Port" db="OVN_Northbound"/> table in the
          OVN_Northbound database, if it is a nonempty string.
        </p>

        <p>
          For a logical switch port, <code>ovn-northd</code> does not currently
          set this key.
        </p>
      </column>
    </group>

    <group title="Common Columns">
      <column name="external_ids">
        <p>
          See <em>External IDs</em> at the beginning of this document.
        </p>

        <p>
          The <code>ovn-northd</code> program populates this column with
          all entries into the <ref column="external_ids"/> column of the
          <ref table="Logical_Switch_Port"/> and
          <ref table="Logical_Router_Port"/> tables of the
          <ref db="OVN_Northbound"/> database.
        </p>
      </column>
    </group>
  </table>

  <table name="MAC_Binding" title="IP to MAC bindings">
    <p>
      Each row in this table specifies a binding from an IP address to an
      Ethernet address that has been discovered through ARP (for IPv4) or
      neighbor discovery (for IPv6).  This table is primarily used to discover
      bindings on physical networks, because IP-to-MAC bindings for virtual
      machines are usually populated statically into the <ref
      table="Port_Binding"/> table.
    </p>

    <p>
      This table expresses a functional relationship: <ref
      table="MAC_Binding"/>(<ref column="logical_port"/>, <ref column="ip"/>) =
      <ref column="mac"/>.
    </p>

    <p>
      In outline, the lifetime of a logical router's MAC binding looks like
      this:
    </p>

    <ol>
      <li>
        On hypervisor 1, a logical router determines that a packet should be
        forwarded to IP address <var>A</var> on one of its router ports.  It
        uses its logical flow table to determine that <var>A</var> lacks a
        static IP-to-MAC binding and the <code>get_arp</code> action to
        determine that it lacks a dynamic IP-to-MAC binding.
      </li>

      <li>
        Using an OVN logical <code>arp</code> action, the logical router
        generates and sends a broadcast ARP request to the router port.  It
        drops the IP packet.
      </li>

      <li>
        The logical switch attached to the router port delivers the ARP request
        to all of its ports.  (It might make sense to deliver it only to ports
        that have no static IP-to-MAC bindings, but this could also be
        surprising behavior.)
      </li>

      <li>
        A host or VM on hypervisor 2 (which might be the same as hypervisor 1)
        attached to the logical switch owns the IP address in question.  It
        composes an ARP reply and unicasts it to the logical router port's
        Ethernet address.
      </li>

      <li>
        The logical switch delivers the ARP reply to the logical router port.
      </li>

      <li>
        The logical router flow table executes a <code>put_arp</code> action.
        To record the IP-to-MAC binding, <code>ovn-controller</code> adds a row
        to the <ref table="MAC_Binding"/> table.
      </li>

      <li>
        On hypervisor 1, <code>ovn-controller</code> receives the updated <ref
        table="MAC_Binding"/> table from the OVN southbound database.  The next
        packet destined to <var>A</var> through the logical router is sent
        directly to the bound Ethernet address.
      </li>
    </ol>

    <column name="logical_port">
      The logical port on which the binding was discovered.
    </column>

    <column name="ip">
      The bound IP address.
    </column>

    <column name="mac">
      The Ethernet address to which the IP is bound.
    </column>

    <column name="timestamp">
      The timestamp in msec when the MAC binding was added or updated.
      Records that existed before this column will have 0.
    </column>

    <column name="datapath">
      The logical datapath to which the logical port belongs.
    </column>
  </table>

  <table name="DHCP_Options" title="DHCP Options supported by native OVN DHCP">
    <p>
      Each row in this table stores the DHCP Options supported by native OVN
      DHCP. <code>ovn-northd</code> populates this table with the supported
      DHCP options. <code>ovn-controller</code> looks up this table to get the
      DHCP codes of the DHCP options defined in the "put_dhcp_opts" action.
      Please refer to the RFC 2132 <code>"https://tools.ietf.org/html/rfc2132"</code>
      for the possible list of DHCP options that can be defined here.
    </p>

    <column name="name">
      <p>
        Name of the DHCP option.
      </p>

      <p>
        Example. name="router"
      </p>
    </column>

    <column name="code">
      <p>
        DHCP option code for the DHCP option as defined in the RFC 2132.
      </p>

      <p>
        Example. code=3
      </p>
    </column>

    <column name="type">
      <p>
        Data type of the DHCP option code.
      </p>

      <dl>
        <dt><code>value: bool</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is a bool.
          </p>

          <p>
            Example. "name=ip_forward_enable", "code=19", "type=bool".
          </p>

          <p>
            put_dhcp_opts(..., ip_forward_enable = 1,...)
          </p>
        </dd>

        <dt><code>value: uint8</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is an unsigned
            int8 (8 bits)
          </p>

          <p>
            Example. "name=default_ttl", "code=23", "type=uint8".
          </p>

          <p>
            put_dhcp_opts(..., default_ttl = 50,...)
          </p>
        </dd>

        <dt><code>value: uint16</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is an unsigned
            int16 (16 bits).
          </p>

          <p>
            Example. "name=mtu", "code=26", "type=uint16".
          </p>

          <p>
            put_dhcp_opts(..., mtu = 1450,...)
          </p>
        </dd>

        <dt><code>value: uint32</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is an unsigned
            int32 (32 bits).
          </p>

          <p>
            Example. "name=lease_time", "code=51", "type=uint32".
          </p>

          <p>
            put_dhcp_opts(..., lease_time = 86400,...)
          </p>
        </dd>

        <dt><code>value: ipv4</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is an IPv4
            address or addresses.
          </p>

          <p>
            Example. "name=router", "code=3", "type=ipv4".
          </p>

          <p>
            put_dhcp_opts(..., router = 10.0.0.1,...)
          </p>

          <p>
            Example. "name=dns_server", "code=6", "type=ipv4".
          </p>

          <p>
            put_dhcp_opts(..., dns_server = {8.8.8.8 7.7.7.7},...)
          </p>
        </dd>

        <dt><code>value: static_routes</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option contains a pair of
            IPv4 route and next hop addresses.
          </p>

          <p>
            Example. "name=classless_static_route", "code=121", "type=static_routes".
          </p>

          <p>
            put_dhcp_opts(..., classless_static_route = {30.0.0.0/24,10.0.0.4,0.0.0.0/0,10.0.0.1}...)
          </p>
        </dd>

        <dt><code>value: str</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is a string.
          </p>

          <p>
            Example. "name=host_name", "code=12", "type=str".
          </p>
        </dd>

        <dt><code>value: host_id</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is a host_id.
            It can either be a host_name or an IP address.
          </p>

          <p>
            Example. "name=tftp_server", "code=66", "type=host_id".
          </p>
        </dd>

        <dt><code>value: domains</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCP option is a domain name
            or a comma separated list of domain names.
          </p>

          <p>
            Example. "name=domain_search_list", "code=119", "type=domains".
          </p>
        </dd>
      </dl>
    </column>
  </table>

  <table name="DHCPv6_Options" title="DHCPv6 Options supported by native OVN DHCPv6">
    <p>
      Each row in this table stores the DHCPv6 Options supported by native OVN
      DHCPv6. <code>ovn-northd</code> populates this table with the supported
      DHCPv6 options. <code>ovn-controller</code> looks up this table to get
      the DHCPv6 codes of the DHCPv6 options defined in the
      <code>put_dhcpv6_opts</code> action. Please refer to RFC 3315 and RFC
      3646 for the list of DHCPv6 options that can be defined here.
    </p>

    <column name="name">
      <p>
        Name of the DHCPv6 option.
      </p>

      <p>
        Example. name="ia_addr"
      </p>
    </column>

    <column name="code">
      <p>
        DHCPv6 option code for the DHCPv6 option as defined in the appropriate
        RFC.
      </p>

      <p>
        Example. code=3
      </p>
    </column>

    <column name="type">
      <p>
        Data type of the DHCPv6 option code.
      </p>

      <dl>
        <dt><code>value: ipv6</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCPv6 option is an IPv6
            address(es).
          </p>

          <p>
            Example. "name=ia_addr", "code=5", "type=ipv6".
          </p>

          <p>
            put_dhcpv6_opts(..., ia_addr = ae70::4,...)
          </p>
        </dd>

        <dt><code>value: str</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCPv6 option is a string.
          </p>

          <p>
            Example. "name=domain_search", "code=24", "type=str".
          </p>

          <p>
            put_dhcpv6_opts(..., domain_search = ovn.domain,...)
          </p>
        </dd>

        <dt><code>value: mac</code></dt>
        <dd>
          <p>
            This indicates that the value of the DHCPv6 option is a MAC address.
          </p>

          <p>
            Example. "name=server_id", "code=2", "type=mac".
          </p>

          <p>
            put_dhcpv6_opts(..., server_id = 01:02:03:04L05:06,...)
          </p>
        </dd>
      </dl>
    </column>
  </table>
  <table name="Connection" title="OVSDB client connections.">
    <p>
      Configuration for a database connection to an Open vSwitch database
      (OVSDB) client.
    </p>

    <p>
      This table primarily configures the Open vSwitch database server
      (<code>ovsdb-server</code>).
    </p>

    <p>
      The Open vSwitch database server can initiate and maintain active
      connections to remote clients.  It can also listen for database
      connections.
    </p>

    <group title="Core Features">
      <column name="target">
        <p>Connection methods for clients.</p>
        <p>
          The following connection methods are currently supported:
        </p>
        <dl>
          <dt><code>ssl:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
          <dd>
            <p>
              The specified SSL <var>port</var> on the given <var>host</var>,
              which can either be a DNS name (if built with unbound library) or
              an IP address.  A valid SSL configuration must be provided when
              this form is used, this configuration can be specified via
              command-line options or the <ref table="SSL"/> table.
            </p>
            <p>
              If <var>port</var> is not specified, it defaults to 6640.
            </p>
            <p>
              SSL support is an optional feature that is not always
              built as part of Open vSwitch.
            </p>
          </dd>

          <dt><code>tcp:<var>host</var></code>[<code>:<var>port</var></code>]</dt>
          <dd>
            <p>
              The specified TCP <var>port</var> on the given <var>host</var>,
              which can either be a DNS name (if built with unbound library) or
              an IP address (IPv4 or IPv6).  If <var>host</var> is an IPv6
              address, wrap it in square brackets, e.g. <code>tcp:[::1]:6640</code>.
            </p>
            <p>
              If <var>port</var> is not specified, it defaults to 6640.
            </p>
          </dd>
          <dt><code>pssl:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
          <dd>
            <p>
              Listens for SSL connections on the specified TCP <var>port</var>.
              Specify 0 for <var>port</var> to have the kernel automatically
              choose an available port.  If <var>host</var>, which can either
              be a DNS name (if built with unbound library) or an IP address,
              is specified, then connections are restricted to the resolved or
              specified local IP address (either IPv4 or IPv6 address).  If
              <var>host</var> is an IPv6 address, wrap in square brackets,
              e.g. <code>pssl:6640:[::1]</code>.  If <var>host</var> is not
              specified then it listens only on IPv4 (but not IPv6) addresses.
              A valid SSL configuration must be provided when this form is used,
              this can be specified either via command-line options or the
              <ref table="SSL"/> table.
            </p>
            <p>
              If <var>port</var> is not specified, it defaults to 6640.
            </p>
            <p>
              SSL support is an optional feature that is not always built as
              part of Open vSwitch.
            </p>
          </dd>
          <dt><code>ptcp:</code>[<var>port</var>][<code>:<var>host</var></code>]</dt>
          <dd>
            <p>
              Listens for connections on the specified TCP <var>port</var>.
              Specify 0 for <var>port</var> to have the kernel automatically
              choose an available port.  If <var>host</var>, which can either
              be a DNS name (if built with unbound library) or an IP address,
              is specified, then connections are restricted to the resolved or
              specified local IP address (either IPv4 or IPv6 address).  If
              <var>host</var> is an IPv6 address, wrap it in square brackets,
              e.g. <code>ptcp:6640:[::1]</code>.  If <var>host</var> is not
              specified then it listens only on IPv4 addresses.
            </p>
            <p>
              If <var>port</var> is not specified, it defaults to 6640.
            </p>
          </dd>
        </dl>
        <p>When multiple clients are configured, the <ref column="target"/>
        values must be unique.  Duplicate <ref column="target"/> values yield
        unspecified results.</p>
      </column>

      <column name="read_only">
        <code>true</code> to restrict these connections to read-only
        transactions, <code>false</code> to allow them to modify the database.
      </column>
      <column name="role">
        String containing role name for this connection entry.
      </column>
    </group>

    <group title="Client Failure Detection and Handling">
      <column name="max_backoff">
        Maximum number of milliseconds to wait between connection attempts.
        Default is implementation-specific.
      </column>

      <column name="inactivity_probe">
        Maximum number of milliseconds of idle time on connection to the client
        before sending an inactivity probe message.  If Open vSwitch does not
        communicate with the client for the specified number of seconds, it
        will send a probe.  If a response is not received for the same
        additional amount of time, Open vSwitch assumes the connection has been
        broken and attempts to reconnect.  Default is implementation-specific.
        A value of 0 disables inactivity probes.
      </column>
    </group>

    <group title="Status">
      <p>
        Key-value pair of <ref column="is_connected"/> is always updated.
        Other key-value pairs in the status columns may be updated depends
        on the <ref column="target"/> type.
      </p>

      <p>
        When <ref column="target"/> specifies a connection method that
        listens for inbound connections (e.g. <code>ptcp:</code> or
        <code>punix:</code>), both <ref column="n_connections"/> and
        <ref column="is_connected"/> may also be updated while the
        remaining key-value pairs are omitted.
      </p>

      <p>
        On the other hand, when <ref column="target"/> specifies an
        outbound connection, all key-value pairs may be updated, except
        the above-mentioned two key-value pairs associated with inbound
        connection targets. They are omitted.
      </p>

      <column name="is_connected">
        <code>true</code> if currently connected to this client,
        <code>false</code> otherwise.
      </column>

      <column name="status" key="last_error">
        A human-readable description of the last error on the connection
        to the manager; i.e. <code>strerror(errno)</code>.  This key
        will exist only if an error has occurred.
      </column>

      <column name="status" key="state"
              type='{"type": "string", "enum": ["set", ["VOID", "BACKOFF", "CONNECTING", "ACTIVE", "IDLE"]]}'>
        <p>
          The state of the connection to the manager:
        </p>
        <dl>
          <dt><code>VOID</code></dt>
          <dd>Connection is disabled.</dd>

          <dt><code>BACKOFF</code></dt>
          <dd>Attempting to reconnect at an increasing period.</dd>

          <dt><code>CONNECTING</code></dt>
          <dd>Attempting to connect.</dd>

          <dt><code>ACTIVE</code></dt>
          <dd>Connected, remote host responsive.</dd>

          <dt><code>IDLE</code></dt>
          <dd>Connection is idle.  Waiting for response to keep-alive.</dd>
        </dl>
        <p>
          These values may change in the future.  They are provided only for
          human consumption.
        </p>
      </column>

      <column name="status" key="sec_since_connect"
              type='{"type": "integer", "minInteger": 0}'>
        The amount of time since this client last successfully connected
        to the database (in seconds). Value is empty if client has never
        successfully been connected.
      </column>

      <column name="status" key="sec_since_disconnect"
              type='{"type": "integer", "minInteger": 0}'>
        The amount of time since this client last disconnected from the
        database (in seconds). Value is empty if client has never
        disconnected.
      </column>

      <column name="status" key="locks_held">
        Space-separated list of the names of OVSDB locks that the connection
        holds.  Omitted if the connection does not hold any locks.
      </column>

      <column name="status" key="locks_waiting">
        Space-separated list of the names of OVSDB locks that the connection is
        currently waiting to acquire.  Omitted if the connection is not waiting
        for any locks.
      </column>

      <column name="status" key="locks_lost">
        Space-separated list of the names of OVSDB locks that the connection
        has had stolen by another OVSDB client.  Omitted if no locks have been
        stolen from this connection.
      </column>

      <column name="status" key="n_connections"
              type='{"type": "integer", "minInteger": 2}'>
        When <ref column="target"/> specifies a connection method that
        listens for inbound connections (e.g. <code>ptcp:</code> or
        <code>pssl:</code>) and more than one connection is actually active,
        the value is the number of active connections.  Otherwise, this
        key-value pair is omitted.
      </column>

      <column name="status" key="bound_port" type='{"type": "integer"}'>
        When <ref column="target"/> is <code>ptcp:</code> or
        <code>pssl:</code>, this is the TCP port on which the OVSDB server is
        listening.  (This is particularly useful when <ref
        column="target"/> specifies a port of 0, allowing the kernel to
        choose any available port.)
      </column>
    </group>

    <group title="Common Columns">
      The overall purpose of these columns is described under <code>Common
      Columns</code> at the beginning of this document.

      <column name="external_ids"/>
      <column name="other_config"/>
    </group>
  </table>
  <table name="SSL">
    SSL configuration for ovn-sb database access.

    <column name="private_key">
      Name of a PEM file containing the private key used as the switch's
      identity for SSL connections to the controller.
    </column>

    <column name="certificate">
      Name of a PEM file containing a certificate, signed by the
      certificate authority (CA) used by the controller and manager,
      that certifies the switch's private key, identifying a trustworthy
      switch.
    </column>

    <column name="ca_cert">
      Name of a PEM file containing the CA certificate used to verify
      that the switch is connected to a trustworthy controller.
    </column>

    <column name="bootstrap_ca_cert">
      If set to <code>true</code>, then Open vSwitch will attempt to
      obtain the CA certificate from the controller on its first SSL
      connection and save it to the named PEM file. If it is successful,
      it will immediately drop the connection and reconnect, and from then
      on all SSL connections must be authenticated by a certificate signed
      by the CA certificate thus obtained.  <em>This option exposes the
      SSL connection to a man-in-the-middle attack obtaining the initial
      CA certificate.</em>  It may still be useful for bootstrapping.
    </column>

    <column name="ssl_protocols">
      List of SSL protocols to be enabled for SSL connections. The default
      when this option is omitted is <code>TLSv1,TLSv1.1,TLSv1.2</code>.
    </column>

    <column name="ssl_ciphers">
      List of ciphers (in OpenSSL cipher string format) to be supported
      for SSL connections. The default when this option is omitted is
      <code>HIGH:!aNULL:!MD5</code>.
    </column>

    <group title="Common Columns">
      The overall purpose of these columns is described under <code>Common
      Columns</code> at the beginning of this document.

      <column name="external_ids"/>
    </group>
  </table>
  <table name="DNS" title="Native DNS resolution">
    <p>
      Each row in this table stores the DNS records. The OVN action
      <code>dns_lookup</code> uses this table for DNS resolution.
    </p>

    <column name="records">
      Key-value pair of DNS records with <code>DNS query name</code> as the key
      and a string of IP address(es) separated by comma or space as the
      value. ovn-northd stores the DNS query name in all lowercase in order to
      facilitate case-insensitive lookups.

      <p><b>Example: </b> "vm1.ovn.org" = "10.0.0.4 aef0::4"</p>
    </column>

    <column name="datapaths">
      The DNS records defined in the column <ref column="records"/> will be
      applied only to the DNS queries originating from the datapaths defined
      in this column.
    </column>

    <group title="Common Columns">
      <column name="external_ids">
        See <em>External IDs</em> at the beginning of this document.
      </column>
    </group>
  </table>

  <table name="RBAC_Role">
    Role table for role-based access controls.

    <column name="name">
        The role name, corresponding to the <code>role</code>
        column in the <code>Connection</code> table.
    </column>

    <column name="permissions">
        A mapping of table names to rows in the
        <code>RBAC_Permission</code> table.
    </column>
  </table>
  <table name="RBAC_Permission">
    Permissions table for role-based access controls.

    <column name="table">
      Name of table to which this row applies.
    </column>

    <column name="authorization">
        Set of strings identifying columns and column:key pairs to be compared
        with client ID. At least one match is required in order to be
        authorized.  A zero-length string is treated as a special value
        indicating all clients should be considered authorized.
    </column>

    <column name="insert_delete">
        When "true", row insertions and authorized row
        deletions are permitted.
    </column>
    <column name="update">
        Set of strings identifying columns and column:key pairs that authorized
        clients are allowed to modify.
    </column>
  </table>
  <table name="Gateway_Chassis">
    <p>
      Association of <ref table="Port_Binding"/> rows of
      <ref table="Port_Binding" column="type"/> <code>chassisredirect</code> to
      a <ref table="Chassis"/>. The traffic going out through a specific
      <code>chassisredirect</code> port will be redirected to a chassis,
      or a set of them in high availability configurations.
    </p>

    <column name="name">
      <p>
        Name of the <ref table="Gateway_Chassis"/>.
      </p>
      <p>
        A suggested, but not required naming convention is
        <code>${port_name}_${chassis_name}</code>.
      </p>
    </column>

    <column name="chassis">
      The <ref table="Chassis"/> to which we send the traffic.
    </column>

    <column name="priority">
      This is the priority the specific <ref table="Chassis"/> among all
      Gateway_Chassis belonging to the same <ref table="Port_Binding"/>.
    </column>

    <column name="options">
      Reserved for future use.
    </column>

    <group title="Common Columns">
      The overall purpose of these columns is described under <code>Common
      Columns</code> at the beginning of this document.

      <column name="external_ids"/>
    </group>
  </table>

  <table name="HA_Chassis">
    <column name="chassis">
      <p>
        The <ref table="Chassis"/> which provides the HA functionality.
        </p>
    </column>

    <column name="priority">
      <p>
        Priority of the HA chassis. Chassis with highest priority will be
        the master in the HA chassis group.
      </p>
    </column>

    <group title="Common Columns">
      <column name="external_ids">
        See <em>External IDs</em> at the beginning of this document.
      </column>
    </group>
  </table>

  <table name="HA_Chassis_Group">
    <p>
      Table representing a group of chassis which can provide High availability
      services. Each chassis in the group is represented by the table
      <ref table="HA_Chassis"/>. The HA chassis with highest priority will
      be the master of this group. If the master chassis failover is detected,
      the HA chassis with the next higher priority takes over the
      responsibility of providing the HA. If <ref db="OVN_Southbound"
      table="Port_Binding" column="ha_chassis_group"/> column of the table
      <ref db="OVN_Southbound" table="Port_Binding"/> references this table,
      then this HA chassis group provides the gateway functionality and
      redirects the gateway traffic to the master of this group.
    </p>
    <column name="name">
      Name of the <ref table="HA_Chassis_Group"/>. Name should be unique.
    </column>

    <column name="ha_chassis">
      A list of <ref table="HA_Chassis"/> which belongs to this group.
    </column>

    <column name="ref_chassis">
      The set of <ref table="Chassis"/> that reference this HA chassis group.
      To determine the correct <ref table="Chassis"/>, find the
      <code>chassisredirect</code> type <ref table="Port_Binding"/> that
      references this <ref table="HA_Chassis_Group"/>.  This <ref
      table="Port_Binding"/> is derived from some particular logical router.
      Starting from that LR, find the set of all logical switches and routers
      connected to it, directly or indirectly, across router ports that link
      one LRP to another or to a LSP.  For each LSP in these logical switches,
      find the corresponding <ref table="Port_Binding"/> and add its bound <ref
      table="Chassis"/> (if any) to <ref column="ref_chassis"/>.
    </column>

    <group title="Common Columns">
      <column name="external_ids">
        See <em>External IDs</em> at the beginning of this document.
      </column>
    </group>
  </table>
  <table name="Controller_Event" title="Controller Event table">
    <p>
      Database table used by <code>ovn-controller</code> to report CMS
      related events. Please note there is no guarantee a given event is
      written exactly once in the db. It is CMS responsibility to squash
      duplicated lines or to filter out duplicated events
    </p>
    <column name="event_type">
      Event type occurred
    </column>
    <column name="event_info">
    <p>
      Key-value pairs used to specify event info to the CMS.
      Possible values are:
    </p>
      <ul>
        <li>
         <code>vip</code>: VIP reported for the <code>empty_lb_backends</code>
         event
        </li>
        <li>
          <code>protocol</code>: Transport protocol reported for the
          <code>empty_lb_backends</code> event
        </li>
        <li>
          <code>load_balancer</code>: UUID of the load balancer reported for
          the <code>empty_lb_backends</code> event
        </li>
      </ul>
    </column>
    <column name="chassis">
      This column is a <ref table="Chassis"/> record to identify the chassis
      that has managed a given event.
    </column>
    <column name="seq_num">
      Event sequence number. Global counter for controller generated events.
      It can be used by the CMS to detect possible duplication of the same
      event.
    </column>
  </table>
  <table name="IP_Multicast">
    <p>
      IP Multicast configuration options. For now only applicable to IGMP.
    </p>

    <column name="datapath">
      <ref table="Datapath_Binding"/> entry for which these configuration
      options are defined.
    </column>
    <column name="enabled">
      Enables/disables multicast snooping. Default: disabled.
    </column>
    <column name="querier">
      Enables/disables multicast querying. If
      <ref table="IP_Multicast" column="enabled"/> then multicast querying is
      enabled by default.
    </column>
    <column name="table_size">
      Limits the number of multicast groups that can be learned. Default:
      2048 groups per datapath.
    </column>
    <column name="idle_timeout">
      Configures the idle timeout (in seconds) for IP multicast groups if
      multicast snooping is enabled. Default: 300 seconds.
    </column>
    <column name="query_interval">
      Configures the interval (in seconds) for sending multicast queries if
      snooping and querier are enabled.
      Default: <ref table="IP_Multicast" column="idle_timeout"/>/2 seconds.
    </column>
    <column name="seq_no">
      <code>ovn-controller</code> reads this value and flushes all learned
      multicast groups when it detects that <code>seq_no</code> was changed.
    </column>

    <group title="Querier configuration options">
      The <code>ovn-controller</code> process that runs on OVN hypervisor
      nodes uses the following columns to determine field values in IGMP/MLD
      queries that it originates:
      <column name="eth_src">
        Source Ethernet address.
      </column>
      <column name="ip4_src">
        Source IPv4 address.
      </column>
      <column name="ip6_src">
        Source IPv6 address.
      </column>
      <column name="query_max_resp">
        Value (in seconds) to be used as "max-response" field in multicast
        queries. Default: 1 second.
      </column>
    </group>
  </table>
  <table name="IGMP_Group">
    <p>
      Contains learned IGMP groups indexed by address/datapath/chassis.
    </p>

    <column name="address">
      Destination IPv4 address for the IGMP group.
    </column>

    <column name="datapath">
      Datapath to which this IGMP group belongs.
    </column>

    <column name="chassis">
      Chassis to which this IGMP group belongs.
    </column>

    <column name="ports">
      The destination port bindings for this IGMP group.
    </column>
  </table>

  <table name="Service_Monitor">
    <p>
      Each row in this table configures monitoring a service for its liveness.
      The service can be an IPv4 TCP or UDP
      service. <code>ovn-controller</code> periodically sends out service
      monitor packets and updates the status of the service. Service monitoring
      for IPv6 services is not supported.
    </p>

    <p>
      <code>ovn-northd</code> uses this feature to implement the load balancer
      health check feature offered to the CMS through the northbound database.
    </p>

    <group title="Configuration">
      <p>
        <code>ovn-northd</code> sets these columns and values to configure the
        service monitor.
      </p>

      <column name="ip">
        IP of the service to be monitored. Only IPv4 is supported.
      </column>

      <column name="protocol">
        The protocol of the service.
      </column>

      <column name="port">
        The TCP or UDP port of the service.
      </column>

      <column name="logical_port">
        The VIF of the logical port on which the service is running. The
        <code>ovn-controller</code> that binds this <code>logical_port</code>
        monitors the service by sending periodic monitor packets.
      </column>

      <column name="src_mac">
        Source Ethernet address to use in the service monitor packet.
      </column>

      <column name="src_ip">
        Source IPv4 address to use in the service monitor packet.
      </column>

      <column name="options" key="interval" type='{"type": "integer"}'>
        The interval, in seconds, between service monitor checks.
      </column>

      <column name="options" key="timeout" type='{"type": "integer"}'>
        The time, in seconds, after which the service monitor check times
        out.
      </column>

      <column name="options" key="success_count" type='{"type": "integer"}'>
        The number of successful checks after which the service is
        considered <code>online</code>.
      </column>

      <column name="options" key="failure_count" type='{"type": "integer"}'>
        The number of failure checks after which the service is considered
        <code>offline</code>.
      </column>
    </group>

    <group title="Status Reporting">
      <p>
        The <code>ovn-controller</code> on the chassis that hosts the <ref
        column="logical_port"/> updates this column to report the service's
        status.
      </p>
      
      <column name="status">
        <p>
          For TCP service, <code>ovn-controller</code> sends a SYN to the
          service and expects an ACK response to consider the service to be
          <code>online</code>.
        </p>

        <p>
          For UDP service, <code>ovn-controller</code> sends a UDP packet to
          the service and doesn't expect any reply.  If it receives an ICMP
          reply, then it considers the service to be <code>offline</code>.
        </p>
      </column>
    </group>

    <group title="Common Columns">
      <column name="external_ids">
        See <em>External IDs</em> at the beginning of this document.
      </column>
    </group>
  </table>

  <table name="Load_Balancer">
    <p>
      Each row represents a load balancer.
    </p>

    <column name="name">
      A name for the load balancer.  This name has no special meaning or
      purpose other than to provide convenience for human interaction with
      the ovn-nb database.
    </column>

    <column name="vips">
      A map of virtual IP addresses (and an optional port number with
      <code>:</code> as a separator) associated with this load balancer and
      their corresponding endpoint IP addresses (and optional port numbers
      with <code>:</code> as separators) separated by commas.
    </column>

    <column name="protocol">
      <p>
        Valid protocols are <code>tcp</code>, <code>udp</code>, or
        <code>sctp</code>.  This column is useful when a port number is
        provided as part of the <code>vips</code> column.  If this column is
        empty and a port number is provided as part of <code>vips</code>
        column, OVN assumes the protocol to be <code>tcp</code>.
      </p>
    </column>

    <column name="datapaths">
      Datapaths to which this load balancer applies to.
    </column>

    <column name="datapath_group">
      The group of datapaths to which this load balancer applies to.  This
      means that the same load balancer applies to all datapaths in a group.
    </column>

    <group title="Load_Balancer options">
    <column name="options" key="hairpin_snat_ip">
      IP to be used as source IP for packets that have been hair-pinned after
      load balancing.  This value is automatically populated by
      <code>ovn-northd</code>.
    </column>
    <column name="options" key="hairpin_orig_tuple" type='{"type": "boolean"}'>
      This value is automatically set to <code>true</code> by
      <code>ovn-northd</code> when original destination IP and transport port
      of the load balanced packets are stored in registers
      <code>reg1, reg2, xxreg1</code>.
    </column>
    </group>

    <group title="Common Columns">
      <column name="external_ids">
        See <em>External IDs</em> at the beginning of this document.
      </column>
    </group>
  </table>

  <table name="BFD">
    <p>
      Contains BFD parameter for ovn-controller bfd configuration.
    </p>

    <group title="Configuration">
      <column name="src_port">
        udp source port used in bfd control packets.
        The source port MUST be in the range 49152 through 65535
        (RFC5881 section 4).
      </column>

      <column name="disc">
        A unique, nonzero discriminator value generated by the transmitting
        system, used to demultiplex multiple BFD sessions between the same pair
        of systems.
      </column>

      <column name="logical_port">
        OVN logical port when BFD engine is running.
      </column>

      <column name="dst_ip">
        BFD peer IP address.
      </column>

      <column name="min_tx">
        This is the minimum interval, in milliseconds, that the local
        system would like to use when transmitting BFD Control packets,
        less any jitter applied. The value zero is reserved.
      </column>

      <column name="min_rx">
        This is the minimum interval, in milliseconds, between received
        BFD Control packets that this system is capable of supporting,
        less any jitter applied by the sender. If this value is zero,
        the transmitting system does not want the remote system to send
        any periodic BFD Control packets.
      </column>

      <column name="detect_mult">
        Detection time multiplier.  The negotiated transmit interval,
        multiplied by this value, provides the Detection Time for the
        receiving system in Asynchronous mode.
      </column>

      <column name="options">
        Reserved for future use.
      </column>

      <column name="external_ids">
        See <em>External IDs</em> at the beginning of this document.
      </column>
    </group>

    <group title="Status Reporting">
      <column name="status">
        <p>
          BFD port logical states. Possible values are:
          <ul>
            <li>
              <code>admin_down</code>
            </li>
            <li>
              <code>down</code>
            </li>
            <li>
              <code>init</code>
            </li>
            <li>
              <code>up</code>
            </li>
          </ul>
        </p>
      </column>
    </group>
  </table>

  <table name="FDB" title="Port to MAC bindings">
    <p>
      This table is primarily used to learn the MACs observed on a VIF
      (or a localnet port with 'localnet_learn_fdb' enabled)
      which belongs to a <code>Logical_Switch_Port</code> record in
      <code>OVN_Northbound</code> whose port security is disabled
      and 'unknown' address set.  If port security is disabled on a
      <code>Logical_Switch_Port</code> record, OVN should allow traffic
      with any source mac from the VIF.  This table will be used to deliver
      a packet to the VIF, If a packet's <code>eth.dst</code> is learnt.
    </p>

    <column name="mac">
      The learnt mac address.
    </column>

    <column name="dp_key">
      The key of the datapath on which this FDB was learnt.
    </column>

    <column name="port_key">
      The key of the port binding on which this FDB was learnt.
    </column>
  </table>

  <table name="Static_MAC_Binding" title="IP to MAC bindings">
    <p>
      Each record represents a Static_MAC_Binding entry for a logical router.
    </p>


    <column name="logical_port">
        The logical router port for the binding.
    </column>

    <column name="ip">
      The bound IP address.
    </column>

    <column name="mac">
      The Ethernet address to which the IP is bound.
    </column>

    <column name="override_dynamic_mac">
      Override dynamically learnt MACs.
    </column>

    <column name="datapath">
      The logical datapath to which the logical router port belongs.
    </column>
  </table>

  <table name="Chassis_Template_Var">
    <p>
      Each record represents the set of template variable instantiations
      for a given chassis and is populated by <code>ovn-northd</code>
      from the contents of the <code>OVN_Northbound.Chassis_Template_Var</code>
      table.
    </p>
    <column name="chassis">
      The chassis this set of variable values applies to.
    </column>
    <column name="variables">
      The set of variable values for a given chassis.
    </column>
  </table>
</database>