1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934
|
/*
* Copyright (c) 2015, 2016, 2017 Nicira, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at:
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <config.h>
#include "bitmap.h"
#include "byte-order.h"
#include "hmapx.h"
#include "nx-match.h"
#include "openvswitch/dynamic-string.h"
#include "openvswitch/json.h"
#include "openvswitch/match.h"
#include "openvswitch/ofp-actions.h"
#include "openvswitch/shash.h"
#include "openvswitch/vlog.h"
#include "ovn-util.h"
#include "ovn/expr.h"
#include "ovn/lex.h"
#include "ovn/logical-fields.h"
#include "simap.h"
#include "sset.h"
#include "util.h"
VLOG_DEFINE_THIS_MODULE(expr);
static struct expr *parse_and_annotate(const char *s,
const struct shash *symtab,
struct sset *nesting,
char **errorp);
/* Returns the name of measurement level 'level'. */
const char *
expr_level_to_string(enum expr_level level)
{
switch (level) {
case EXPR_L_NOMINAL: return "nominal";
case EXPR_L_BOOLEAN: return "Boolean";
case EXPR_L_ORDINAL: return "ordinal";
default: OVS_NOT_REACHED();
}
}
/* Relational operators. */
/* Returns a string form of relational operator 'relop'. */
const char *
expr_relop_to_string(enum expr_relop relop)
{
switch (relop) {
case EXPR_R_EQ: return "==";
case EXPR_R_NE: return "!=";
case EXPR_R_LT: return "<";
case EXPR_R_LE: return "<=";
case EXPR_R_GT: return ">";
case EXPR_R_GE: return ">=";
default: OVS_NOT_REACHED();
}
}
bool
expr_relop_from_token(enum lex_type type, enum expr_relop *relop)
{
enum expr_relop r;
switch ((int) type) {
case LEX_T_EQ: r = EXPR_R_EQ; break;
case LEX_T_NE: r = EXPR_R_NE; break;
case LEX_T_LT: r = EXPR_R_LT; break;
case LEX_T_LE: r = EXPR_R_LE; break;
case LEX_T_GT: r = EXPR_R_GT; break;
case LEX_T_GE: r = EXPR_R_GE; break;
default: return false;
}
if (relop) {
*relop = r;
}
return true;
}
/* Returns the relational operator that 'relop' becomes if you turn the
* relation's operands around, e.g. EXPR_R_EQ does not change because "a == b"
* and "b == a" are equivalent, but EXPR_R_LE becomes EXPR_R_GE because "a <=
* b" is equivalent to "b >= a". */
static enum expr_relop
expr_relop_turn(enum expr_relop relop)
{
switch (relop) {
case EXPR_R_EQ: return EXPR_R_EQ;
case EXPR_R_NE: return EXPR_R_NE;
case EXPR_R_LT: return EXPR_R_GT;
case EXPR_R_LE: return EXPR_R_GE;
case EXPR_R_GT: return EXPR_R_LT;
case EXPR_R_GE: return EXPR_R_LE;
default: OVS_NOT_REACHED();
}
}
/* Returns the relational operator that is the opposite of 'relop'. */
static enum expr_relop
expr_relop_invert(enum expr_relop relop)
{
switch (relop) {
case EXPR_R_EQ: return EXPR_R_NE;
case EXPR_R_NE: return EXPR_R_EQ;
case EXPR_R_LT: return EXPR_R_GE;
case EXPR_R_LE: return EXPR_R_GT;
case EXPR_R_GT: return EXPR_R_LE;
case EXPR_R_GE: return EXPR_R_LT;
default: OVS_NOT_REACHED();
}
}
/* Checks whether 'relop' is true for strcmp()-like 3-way comparison result
* 'cmp'. */
static bool
expr_relop_test(enum expr_relop relop, int cmp)
{
switch (relop) {
case EXPR_R_EQ: return cmp == 0;
case EXPR_R_NE: return cmp != 0;
case EXPR_R_LT: return cmp < 0;
case EXPR_R_LE: return cmp <= 0;
case EXPR_R_GT: return cmp > 0;
case EXPR_R_GE: return cmp >= 0;
default: OVS_NOT_REACHED();
}
}
/* Constructing and manipulating expressions. */
/* Creates and returns a logical AND or OR expression (according to 'type',
* which must be EXPR_T_AND or EXPR_T_OR) that initially has no
* sub-expressions. (To satisfy the invariants for expressions, the caller
* must add at least two sub-expressions whose types are different from
* 'type'.) */
struct expr *
expr_create_andor(enum expr_type type)
{
struct expr *e = xzalloc(sizeof *e);
e->type = type;
ovs_list_init(&e->andor);
return e;
}
/* Returns a logical AND or OR expression (according to 'type', which must be
* EXPR_T_AND or EXPR_T_OR) whose sub-expressions are 'a' and 'b', with some
* flexibility:
*
* - If 'a' or 'b' is NULL, just returns the other one (which means that if
* that other one is not of the given 'type', then the returned
* expression is not either).
*
* - If 'a' or 'b', or both, have type 'type', then they are combined into
* a single node that satisfies the invariants for expressions. */
struct expr *
expr_combine(enum expr_type type, struct expr *a, struct expr *b)
{
if (!a) {
return b;
} else if (!b) {
return a;
} else if (a->type == type) {
if (b->type == type) {
ovs_list_splice(&a->andor, b->andor.next, &b->andor);
expr_destroy(b);
} else {
ovs_list_push_back(&a->andor, &b->node);
}
a->as_name = NULL;
return a;
} else if (b->type == type) {
ovs_list_push_front(&b->andor, &a->node);
b->as_name = NULL;
return b;
} else {
struct expr *e = expr_create_andor(type);
ovs_list_push_back(&e->andor, &a->node);
ovs_list_push_back(&e->andor, &b->node);
return e;
}
}
static void
expr_insert_andor(struct expr *andor, struct ovs_list *before,
struct expr *new)
{
if (new->type == andor->type) {
if (andor->type == EXPR_T_AND) {
/* Conjunction junction, what's your function? */
}
ovs_list_splice(before, new->andor.next, &new->andor);
expr_destroy(new);
} else {
ovs_list_insert(before, &new->node);
}
}
/* Returns an EXPR_T_BOOLEAN expression with value 'b'. */
struct expr *
expr_create_boolean(bool b)
{
struct expr *e = xzalloc(sizeof *e);
e->type = EXPR_T_BOOLEAN;
e->boolean = b;
return e;
}
static void
expr_not(struct expr *expr)
{
struct expr *sub;
switch (expr->type) {
case EXPR_T_CMP:
expr->cmp.relop = expr_relop_invert(expr->cmp.relop);
break;
case EXPR_T_AND:
case EXPR_T_OR:
LIST_FOR_EACH (sub, node, &expr->andor) {
expr_not(sub);
}
expr->type = expr->type == EXPR_T_AND ? EXPR_T_OR : EXPR_T_AND;
break;
case EXPR_T_BOOLEAN:
expr->boolean = !expr->boolean;
break;
case EXPR_T_CONDITION:
expr->cond.not = !expr->cond.not;
break;
default:
OVS_NOT_REACHED();
}
}
static struct expr *
expr_fix_andor(struct expr *expr, bool short_circuit)
{
struct expr *sub;
LIST_FOR_EACH_SAFE (sub, node, &expr->andor) {
if (sub->type == EXPR_T_BOOLEAN) {
if (sub->boolean == short_circuit) {
expr_destroy(expr);
return expr_create_boolean(short_circuit);
} else {
ovs_list_remove(&sub->node);
expr_destroy(sub);
}
}
}
if (ovs_list_is_short(&expr->andor)) {
if (ovs_list_is_empty(&expr->andor)) {
expr_destroy(expr);
return expr_create_boolean(!short_circuit);
} else {
sub = expr_from_node(ovs_list_pop_front(&expr->andor));
expr_destroy(expr);
return sub;
}
} else {
return expr;
}
}
/* Returns 'expr' modified so that top-level oddities are fixed up:
*
* - Eliminates any EXPR_T_BOOLEAN operands at the top level.
*
* - Replaces one-operand EXPR_T_AND or EXPR_T_OR by its subexpression. */
static struct expr *
expr_fix(struct expr *expr)
{
switch (expr->type) {
case EXPR_T_CMP:
return expr;
case EXPR_T_AND:
return expr_fix_andor(expr, false);
case EXPR_T_OR:
return expr_fix_andor(expr, true);
case EXPR_T_BOOLEAN:
return expr;
case EXPR_T_CONDITION:
return expr;
default:
OVS_NOT_REACHED();
}
}
/* Formatting. */
/* Searches bits [0,width) in 'sv' for a contiguous sequence of 1-bits. If one
* such sequence exists, stores the index of the first 1-bit into '*startp' and
* the number of 1-bits into '*n_bitsp'. Stores 0 into both variables if no
* such sequence, or more than one, exists. */
static void
find_bitwise_range(const union mf_subvalue *sv, int width,
int *startp, int *n_bitsp)
{
unsigned int start = bitwise_scan(sv, sizeof *sv, true, 0, width);
if (start < width) {
unsigned int end = bitwise_scan(sv, sizeof *sv, false, start, width);
if (end >= width
|| bitwise_scan(sv, sizeof *sv, true, end, width) >= width) {
*startp = start;
*n_bitsp = end - start;
return;
}
}
*startp = *n_bitsp = 0;
}
static void
expr_format_cmp(const struct expr *e, struct ds *s)
{
/* The common case is numerical comparisons.
* Handle string comparisons as a special case. */
if (!e->cmp.symbol->width) {
ds_put_format(s, "%s %s ", e->cmp.symbol->name,
expr_relop_to_string(e->cmp.relop));
json_string_escape(e->cmp.string, s);
return;
}
int ofs, n;
find_bitwise_range(&e->cmp.mask, e->cmp.symbol->width, &ofs, &n);
if (n == 1 && (e->cmp.relop == EXPR_R_EQ || e->cmp.relop == EXPR_R_NE)) {
bool positive;
positive = bitwise_get_bit(&e->cmp.value, sizeof e->cmp.value, ofs);
positive ^= e->cmp.relop == EXPR_R_NE;
if (!positive) {
ds_put_char(s, '!');
}
ds_put_cstr(s, e->cmp.symbol->name);
if (e->cmp.symbol->width > 1) {
ds_put_format(s, "[%d]", ofs);
}
return;
}
ds_put_cstr(s, e->cmp.symbol->name);
if (n > 0 && n < e->cmp.symbol->width) {
if (n > 1) {
ds_put_format(s, "[%d..%d]", ofs, ofs + n - 1);
} else {
ds_put_format(s, "[%d]", ofs);
}
}
ds_put_format(s, " %s ", expr_relop_to_string(e->cmp.relop));
if (n) {
union mf_subvalue value;
memset(&value, 0, sizeof value);
bitwise_copy(&e->cmp.value, sizeof e->cmp.value, ofs,
&value, sizeof value, 0,
n);
mf_format_subvalue(&value, s);
} else {
mf_format_subvalue(&e->cmp.value, s);
ds_put_char(s, '/');
mf_format_subvalue(&e->cmp.mask, s);
}
}
static void
expr_format_andor(const struct expr *e, const char *op, struct ds *s)
{
struct expr *sub;
int i = 0;
LIST_FOR_EACH (sub, node, &e->andor) {
if (i++) {
ds_put_format(s, " %s ", op);
}
if (sub->type == EXPR_T_AND || sub->type == EXPR_T_OR) {
ds_put_char(s, '(');
expr_format(sub, s);
ds_put_char(s, ')');
} else {
expr_format(sub, s);
}
}
}
static void
expr_format_condition(const struct expr *e, struct ds *s)
{
if (e->cond.not) {
ds_put_char(s, '!');
}
switch (e->cond.type) {
case EXPR_COND_CHASSIS_RESIDENT:
ds_put_format(s, "is_chassis_resident(");
json_string_escape(e->cond.string, s);
ds_put_char(s, ')');
break;
}
}
/* Appends a string form of 'e' to 's'. The string form is acceptable for
* parsing back into an equivalent expression. */
void
expr_format(const struct expr *e, struct ds *s)
{
switch (e->type) {
case EXPR_T_CMP:
expr_format_cmp(e, s);
break;
case EXPR_T_AND:
expr_format_andor(e, "&&", s);
break;
case EXPR_T_OR:
expr_format_andor(e, "||", s);
break;
case EXPR_T_BOOLEAN:
ds_put_char(s, e->boolean ? '1' : '0');
break;
case EXPR_T_CONDITION:
expr_format_condition(e, s);
break;
}
}
/* Prints a string form of 'e' on stdout, followed by a new-line. */
void
expr_print(const struct expr *e)
{
struct ds output;
ds_init(&output);
expr_format(e, &output);
puts(ds_cstr(&output));
ds_destroy(&output);
}
/* Expr Size. */
size_t
expr_size(const struct expr *expr) {
size_t total_sz = sizeof *expr;
const struct expr *subexpr;
switch (expr->type) {
case EXPR_T_CMP:
return total_sz + (expr->cmp.symbol->width
? 0
: strlen(expr->cmp.string));
case EXPR_T_AND:
case EXPR_T_OR:
LIST_FOR_EACH (subexpr, node, &expr->andor) {
total_sz += expr_size(subexpr);
}
return total_sz;
case EXPR_T_BOOLEAN:
return total_sz;
case EXPR_T_CONDITION:
return total_sz + strlen(expr->cond.string);
default:
OVS_NOT_REACHED();
}
}
/* Parsing. */
#define MAX_PAREN_DEPTH 100
/* Context maintained during expr_parse(). */
struct expr_context {
struct lexer *lexer; /* Lexer for pulling more tokens. */
const struct shash *symtab; /* Symbol table. */
const struct shash *addr_sets; /* Address set table. */
const struct shash *port_groups; /* Port group table. */
struct shash *addr_sets_ref; /* The set of address set referenced. */
struct sset *port_groups_ref; /* The set of port groups referenced. */
int64_t dp_id; /* The tunnel_key of the datapath for
which we're parsing the current
expression. */
bool not; /* True inside odd number of NOT operators. */
unsigned int paren_depth; /* Depth of nested parentheses. */
};
struct expr *expr_parse__(struct expr_context *);
static void expr_not(struct expr *);
static bool parse_field(struct expr_context *, struct expr_field *);
static struct expr *
make_cmp__(const struct expr_field *f, enum expr_relop r,
const struct expr_constant *c)
{
struct expr *e = xzalloc(sizeof *e);
e->type = EXPR_T_CMP;
e->cmp.symbol = f->symbol;
e->cmp.relop = r;
e->as_name = c->as_name;
if (f->symbol->width) {
bitwise_copy(&c->value, sizeof c->value, 0,
&e->cmp.value, sizeof e->cmp.value, f->ofs,
f->n_bits);
if (c->masked) {
bitwise_copy(&c->mask, sizeof c->mask, 0,
&e->cmp.mask, sizeof e->cmp.mask, f->ofs,
f->n_bits);
} else {
bitwise_one(&e->cmp.mask, sizeof e->cmp.mask, f->ofs,
f->n_bits);
}
} else {
e->cmp.string = xstrdup(c->string);
}
return e;
}
/* Returns the minimum reasonable width for integer constant 'c'. */
static int
expr_constant_width(const struct expr_constant *c)
{
if (c->masked) {
return mf_subvalue_width(&c->mask);
}
switch (c->format) {
case LEX_F_DECIMAL:
case LEX_F_HEXADECIMAL:
return mf_subvalue_width(&c->value);
case LEX_F_IPV4:
return 32;
case LEX_F_IPV6:
return 128;
case LEX_F_ETHERNET:
return 48;
default:
OVS_NOT_REACHED();
}
}
static bool
type_check(struct expr_context *ctx, const struct expr_field *f,
struct expr_constant_set *cs)
{
if (cs->type != (f->symbol->width ? EXPR_C_INTEGER : EXPR_C_STRING)) {
lexer_error(ctx->lexer,
"%s field %s is not compatible with %s constant.",
f->symbol->width ? "Integer" : "String",
f->symbol->name,
cs->type == EXPR_C_INTEGER ? "integer" : "string");
return false;
}
if (f->symbol->width) {
for (size_t i = 0; i < cs->n_values; i++) {
int w = expr_constant_width(&cs->values[i]);
if (w > f->symbol->width) {
lexer_error(ctx->lexer,
"%d-bit constant is not compatible with %d-bit "
"field %s.", w, f->symbol->width, f->symbol->name);
return false;
}
}
}
return true;
}
static struct expr *
make_cmp(struct expr_context *ctx,
const struct expr_field *f, enum expr_relop r,
struct expr_constant_set *cs)
{
struct expr *e = NULL;
if (!type_check(ctx, f, cs)) {
goto exit;
}
if (r != EXPR_R_EQ && r != EXPR_R_NE) {
if (cs->in_curlies) {
lexer_error(ctx->lexer, "Only == and != operators may be used "
"with value sets.");
goto exit;
}
if (f->symbol->level == EXPR_L_NOMINAL ||
f->symbol->level == EXPR_L_BOOLEAN) {
lexer_error(ctx->lexer, "Only == and != operators may be used "
"with %s field %s.",
expr_level_to_string(f->symbol->level),
f->symbol->name);
goto exit;
}
if (!cs->n_values) {
lexer_error(ctx->lexer, "Only == and != operators may be used "
"to compare a field against an empty value set.");
goto exit;
}
if (cs->values[0].masked) {
lexer_error(ctx->lexer, "Only == and != operators may be used "
"with masked constants. Consider using subfields "
"instead (e.g. eth.src[0..15] > 0x1111 in place of "
"eth.src > 00:00:00:00:11:11/00:00:00:00:ff:ff).");
goto exit;
}
}
if (f->symbol->level == EXPR_L_NOMINAL) {
if (f->symbol->predicate) {
ovs_assert(f->symbol->width > 0);
for (size_t i = 0; i < cs->n_values; i++) {
const union mf_subvalue *value = &cs->values[i].value;
bool positive = (value->integer & htonll(1)) != 0;
positive ^= r == EXPR_R_NE;
positive ^= ctx->not;
if (!positive) {
const char *name = f->symbol->name;
lexer_error(ctx->lexer,
"Nominal predicate %s may only be tested "
"positively, e.g. `%s' or `%s == 1' but not "
"`!%s' or `%s == 0'.",
name, name, name, name, name);
goto exit;
}
}
} else if (r != (ctx->not ? EXPR_R_NE : EXPR_R_EQ)) {
lexer_error(ctx->lexer, "Nominal field %s may only be tested for "
"equality (taking enclosing `!' operators into "
"account).", f->symbol->name);
goto exit;
}
}
if (!cs->n_values) {
e = expr_create_boolean(r == EXPR_R_NE);
goto exit;
}
e = make_cmp__(f, r, &cs->values[0]);
for (size_t i = 1; i < cs->n_values; i++) {
e = expr_combine(r == EXPR_R_EQ ? EXPR_T_OR : EXPR_T_AND,
e, make_cmp__(f, r, &cs->values[i]));
}
exit:
expr_constant_set_destroy(cs);
return e;
}
static bool
parse_field(struct expr_context *ctx, struct expr_field *f)
{
const struct expr_symbol *symbol;
if (ctx->lexer->token.type != LEX_T_ID) {
lexer_syntax_error(ctx->lexer, "expecting field name");
return false;
}
symbol = ctx->symtab
? shash_find_data(ctx->symtab, ctx->lexer->token.s)
: NULL;
if (!symbol) {
lexer_syntax_error(ctx->lexer, "expecting field name");
return false;
}
lexer_get(ctx->lexer);
f->symbol = symbol;
if (lexer_match(ctx->lexer, LEX_T_LSQUARE)) {
int low, high;
if (!symbol->width) {
lexer_error(ctx->lexer,
"Cannot select subfield of string field %s.",
symbol->name);
return false;
}
if (!lexer_force_int(ctx->lexer, &low)) {
return false;
}
if (lexer_match(ctx->lexer, LEX_T_ELLIPSIS)) {
if (!lexer_force_int(ctx->lexer, &high)) {
return false;
}
} else {
high = low;
}
if (!lexer_force_match(ctx->lexer, LEX_T_RSQUARE)) {
return false;
}
if (low > high) {
lexer_error(ctx->lexer, "Invalid bit range %d to %d.", low, high);
return false;
} else if (high >= symbol->width) {
lexer_error(ctx->lexer,
"Cannot select bits %d to %d of %d-bit field %s.",
low, high, symbol->width, symbol->name);
return false;
} else if (symbol->level == EXPR_L_NOMINAL
&& (low != 0 || high != symbol->width - 1)) {
lexer_error(ctx->lexer,
"Cannot select subfield of nominal field %s.",
symbol->name);
return false;
}
f->ofs = low;
f->n_bits = high - low + 1;
} else {
f->ofs = 0;
f->n_bits = symbol->width;
}
return true;
}
static bool
parse_relop(struct expr_context *ctx, enum expr_relop *relop)
{
if (expr_relop_from_token(ctx->lexer->token.type, relop)) {
lexer_get(ctx->lexer);
return true;
} else {
lexer_syntax_error(ctx->lexer, "expecting relational operator");
return false;
}
}
static bool
assign_constant_set_type(struct expr_context *ctx,
struct expr_constant_set *cs,
enum expr_constant_type type)
{
if (!cs->n_values || cs->type == type) {
cs->type = type;
return true;
} else {
lexer_syntax_error(ctx->lexer, "expecting %s",
cs->type == EXPR_C_INTEGER ? "integer" : "string");
return false;
}
}
static bool
parse_addr_sets(struct expr_context *ctx, struct expr_constant_set *cs,
size_t *allocated_values)
{
if (ctx->addr_sets_ref) {
size_t *ref_count = shash_find_data(ctx->addr_sets_ref,
ctx->lexer->token.s);
if (!ref_count) {
ref_count = xmalloc(sizeof *ref_count);
*ref_count = 1;
shash_add(ctx->addr_sets_ref, ctx->lexer->token.s, ref_count);
} else {
(*ref_count)++;
}
}
struct shash_node *node = ctx->addr_sets
? shash_find(ctx->addr_sets, ctx->lexer->token.s)
: NULL;
if (!node) {
lexer_syntax_error(ctx->lexer, "expecting address set name");
return false;
}
if (!assign_constant_set_type(ctx, cs, EXPR_C_INTEGER)) {
return false;
}
struct expr_constant_set *addr_sets = node->data;
size_t n_values = cs->n_values + addr_sets->n_values;
if (n_values >= *allocated_values) {
cs->values = xrealloc(cs->values, n_values * sizeof *cs->values);
*allocated_values = n_values;
}
for (size_t i = 0; i < addr_sets->n_values; i++) {
struct expr_constant *c = &cs->values[cs->n_values++];
*c = addr_sets->values[i];
c->as_name = node->name;
}
return true;
}
static bool
parse_port_group(struct expr_context *ctx, struct expr_constant_set *cs,
size_t *allocated_values)
{
struct ds sb_name = DS_EMPTY_INITIALIZER;
get_sb_port_group_name(ctx->lexer->token.s, ctx->dp_id, &sb_name);
if (ctx->port_groups_ref) {
sset_add(ctx->port_groups_ref, ds_cstr(&sb_name));
}
struct expr_constant_set *port_group = NULL;
if (ctx->port_groups) {
port_group = shash_find_data(ctx->port_groups, ds_cstr(&sb_name));
}
ds_destroy(&sb_name);
if (!port_group) {
lexer_syntax_error(ctx->lexer, "expecting port group name");
return false;
}
if (!assign_constant_set_type(ctx, cs, EXPR_C_STRING)) {
return false;
}
size_t n_values = cs->n_values + port_group->n_values;
if (n_values >= *allocated_values) {
cs->values = xrealloc(cs->values, n_values * sizeof *cs->values);
*allocated_values = n_values;
}
for (size_t i = 0; i < port_group->n_values; i++) {
struct expr_constant *c = &cs->values[cs->n_values++];
c->string = xstrdup(port_group->values[i].string);
c->as_name = NULL;
}
return true;
}
static bool
parse_constant(struct expr_context *ctx, struct expr_constant_set *cs,
size_t *allocated_values)
{
if (cs->n_values >= *allocated_values) {
cs->values = x2nrealloc(cs->values, allocated_values,
sizeof *cs->values);
}
if (ctx->lexer->token.type == LEX_T_TEMPLATE) {
lexer_error(ctx->lexer, "Unexpanded template.");
return false;
} else if (ctx->lexer->token.type == LEX_T_STRING) {
if (!assign_constant_set_type(ctx, cs, EXPR_C_STRING)) {
return false;
}
struct expr_constant *c = &cs->values[cs->n_values++];
c->string = xstrdup(ctx->lexer->token.s);
c->as_name = NULL;
lexer_get(ctx->lexer);
return true;
} else if (ctx->lexer->token.type == LEX_T_INTEGER ||
ctx->lexer->token.type == LEX_T_MASKED_INTEGER) {
if (!assign_constant_set_type(ctx, cs, EXPR_C_INTEGER)) {
return false;
}
struct expr_constant *c = &cs->values[cs->n_values++];
c->value = ctx->lexer->token.value;
c->format = ctx->lexer->token.format;
c->masked = ctx->lexer->token.type == LEX_T_MASKED_INTEGER;
if (c->masked) {
c->mask = ctx->lexer->token.mask;
}
c->as_name = NULL;
lexer_get(ctx->lexer);
return true;
} else if (ctx->lexer->token.type == LEX_T_MACRO) {
if (!parse_addr_sets(ctx, cs, allocated_values)) {
return false;
}
lexer_get(ctx->lexer);
return true;
} else if (ctx->lexer->token.type == LEX_T_PORT_GROUP) {
if (!parse_port_group(ctx, cs, allocated_values)) {
return false;
}
lexer_get(ctx->lexer);
return true;
} else {
lexer_syntax_error(ctx->lexer, "expecting constant");
return false;
}
}
/* Parses a single or {}-enclosed set of integer or string constants into 'cs',
* which the caller need not have initialized. Returns true on success, in
* which case the caller owns 'cs', false on failure, in which case 'cs' is
* indeterminate. */
static bool
parse_constant_set(struct expr_context *ctx, struct expr_constant_set *cs)
{
size_t allocated_values = 0;
bool ok;
memset(cs, 0, sizeof *cs);
if (lexer_match(ctx->lexer, LEX_T_LCURLY)) {
ok = true;
cs->in_curlies = true;
do {
if (!parse_constant(ctx, cs, &allocated_values)) {
ok = false;
break;
}
lexer_match(ctx->lexer, LEX_T_COMMA);
} while (!lexer_match(ctx->lexer, LEX_T_RCURLY));
} else {
ok = parse_constant(ctx, cs, &allocated_values);
}
if (!ok) {
expr_constant_set_destroy(cs);
}
return ok;
}
/* Parses from 'lexer' a single integer or string constant compatible with the
* type of 'f' into 'c'.
*
* Returns true if successful, false if an error occurred. Upon return,
* returns true if and only if lexer->error is NULL. On failure, 'c' is
* indeterminate. */
bool
expr_constant_parse(struct lexer *lexer, const struct expr_field *f,
struct expr_constant *c)
{
if (lexer->error) {
return false;
}
struct expr_context ctx = {
.lexer = lexer,
};
struct expr_constant_set cs;
memset(&cs, 0, sizeof cs);
size_t allocated_values = 0;
if (parse_constant(&ctx, &cs, &allocated_values)
&& type_check(&ctx, f, &cs)) {
*c = cs.values[0];
cs.n_values = 0;
}
expr_constant_set_destroy(&cs);
return !lexer->error;
}
/* Appends to 's' a re-parseable representation of constant 'c' with the given
* 'type'. */
void
expr_constant_format(const struct expr_constant *c,
enum expr_constant_type type, struct ds *s)
{
if (type == EXPR_C_STRING) {
json_string_escape(c->string, s);
} else {
struct lex_token token;
token.type = c->masked ? LEX_T_MASKED_INTEGER : LEX_T_INTEGER;
token.s = NULL;
token.format = c->format;
token.value = c->value;
if (c->masked) {
token.mask = c->mask;
}
lex_token_format(&token, s);
}
}
/* Frees the contents of 'c', which has the specified 'type'.
*
* Does not free(c). */
void
expr_constant_destroy(const struct expr_constant *c,
enum expr_constant_type type)
{
if (c && type == EXPR_C_STRING) {
free(c->string);
}
}
/* Parses from 'lexer' a single or {}-enclosed set of at least one integer or
* string constants into 'cs', which the caller need not have initialized.
*
* Returns true if successful, false if an error occurred. Upon return,
* returns true if and only if lexer->error is NULL. On failure, 'cs' is
* indeterminate. */
bool
expr_constant_set_parse(struct lexer *lexer, struct expr_constant_set *cs)
{
if (!lexer->error) {
struct expr_context ctx = { .lexer = lexer };
parse_constant_set(&ctx, cs);
}
return !lexer->error;
}
/* Appends to 's' a re-parseable representation of 'cs'. */
void
expr_constant_set_format(const struct expr_constant_set *cs, struct ds *s)
{
bool curlies = cs->in_curlies || cs->n_values != 1;
if (curlies) {
ds_put_char(s, '{');
}
for (const struct expr_constant *c = cs->values;
c < &cs->values[cs->n_values]; c++) {
if (c != cs->values) {
ds_put_cstr(s, ", ");
}
expr_constant_format(c, cs->type, s);
}
if (curlies) {
ds_put_char(s, '}');
}
}
void
expr_constant_set_destroy(struct expr_constant_set *cs)
{
if (cs) {
if (cs->type == EXPR_C_STRING) {
for (size_t i = 0; i < cs->n_values; i++) {
free(cs->values[i].string);
}
}
free(cs->values);
}
}
static int
compare_expr_constant_integer_cb(const void *a_, const void *b_)
{
const struct expr_constant *a = a_;
const struct expr_constant *b = b_;
int d = memcmp(&a->value, &b->value, sizeof a->value);
if (d) {
return d;
}
if (!a->masked && !b->masked) {
return 0;
} else if (a->masked && !b->masked) {
return -1;
} else if (!a->masked && b->masked) {
return 1;
}
return memcmp(&a->mask, &b->mask, sizeof a->mask);
}
/* Create an integer type constant set. The 'values' must be strings that
* can be converted to integers or masked integers, such as IP addresses.
* Values that can't be converted are skipped. */
struct expr_constant_set *
expr_constant_set_create_integers(const char *const *values, size_t n_values)
{
struct expr_constant_set *cs = xzalloc(sizeof *cs);
cs->in_curlies = true;
cs->n_values = 0;
cs->values = xmalloc(n_values * sizeof *cs->values);
cs->type = EXPR_C_INTEGER;
for (size_t i = 0; i < n_values; i++) {
/* Use the lexer to convert each constant set into the proper
* integer format. */
struct lexer lex;
lexer_init(&lex, values[i]);
lexer_get(&lex);
if (lex.token.type != LEX_T_INTEGER
&& lex.token.type != LEX_T_MASKED_INTEGER) {
VLOG_WARN("Invalid constant set entry: '%s', token type: %d",
values[i], lex.token.type);
} else {
struct expr_constant *c = &cs->values[cs->n_values++];
c->value = lex.token.value;
c->format = lex.token.format;
c->masked = lex.token.type == LEX_T_MASKED_INTEGER;
if (c->masked) {
c->mask = lex.token.mask;
}
}
lexer_destroy(&lex);
}
/* Sort the result, so that it is efficient to generate diffs in the
* function expr_constant_set_diff */
qsort(cs->values, cs->n_values, sizeof *cs->values,
compare_expr_constant_integer_cb);
return cs;
}
static void
expr_constant_set_add_value(struct expr_constant_set **p_cs,
struct expr_constant *c, size_t *allocated)
{
struct expr_constant_set *cs = *p_cs;
if (!cs) {
cs = xzalloc(sizeof *cs);
*p_cs = cs;
}
if (cs->n_values >= *allocated) {
cs->values = x2nrealloc(cs->values, allocated,
sizeof *cs->values);
}
cs->values[cs->n_values++] = *c;
}
/* Find the differences between old and new. Both old and new must be integer
* type and must be sorted (which is true if they are generated by
* expr_constant_set_create_integers() or expr_const_sets_add_integers().
*
* The differences, added and deleted elements, are stored in p_diff_added and
* p_diff_deleted respectively. Caller takes the ownership of these.
*
* *p_diff_added and *p_diff_deleted can be NULL, if no such elements found. */
void
expr_constant_set_integers_diff(struct expr_constant_set *old,
struct expr_constant_set *new,
struct expr_constant_set **p_diff_added,
struct expr_constant_set **p_diff_deleted)
{
struct expr_constant_set *diff_added = NULL;
struct expr_constant_set *diff_deleted = NULL;
size_t oi, ni, added_n_allocated, deleted_n_allocated;
added_n_allocated = deleted_n_allocated = 0;
for (oi = ni = 0; oi < old->n_values && ni < new->n_values;) {
int d = compare_expr_constant_integer_cb(&old->values[oi],
&new->values[ni]);
if (d < 0) {
expr_constant_set_add_value(&diff_deleted, &old->values[oi],
&deleted_n_allocated);
oi++;
} else if (d > 0) {
expr_constant_set_add_value(&diff_added, &new->values[ni],
&added_n_allocated);
ni++;
} else {
oi++; ni++;
}
}
for (; oi < old->n_values; oi++) {
expr_constant_set_add_value(&diff_deleted, &old->values[oi],
&deleted_n_allocated);
}
for (; ni < new->n_values; ni++) {
expr_constant_set_add_value(&diff_added, &new->values[ni],
&added_n_allocated);
}
*p_diff_added = diff_added;
*p_diff_deleted = diff_deleted;
}
/* Adds an constant set named 'name' to 'const_sets', replacing any existing
* constant set entry with the given name. */
void
expr_const_sets_add(struct shash *const_sets, const char *name,
struct expr_constant_set *cs)
{
expr_const_sets_remove(const_sets, name);
shash_add(const_sets, name, cs);
}
/* Adds an constant set named 'name' to 'const_sets', replacing any existing
* constant set entry with the given name. The 'values' must be strings that
* can be converted to integers or masked integers, such as IP addresses.
* Values that can't be converted are skipped. */
void
expr_const_sets_add_integers(struct shash *const_sets, const char *name,
const char *const *values, size_t n_values)
{
struct expr_constant_set *cs = expr_constant_set_create_integers(values,
n_values);
expr_const_sets_add(const_sets, name, cs);
}
/* Adds an constant set named 'name' to 'const_sets', replacing any existing
* constant set entry with the given name. Unlike expr_const_sets_add_integers,
* the 'values' will not be converted but stored as is.
* 'filter', if not NULL, specifies a set of eligible values that are allowed
* to be added from 'values'. */
void
expr_const_sets_add_strings(struct shash *const_sets, const char *name,
const char *const *values, size_t n_values,
const struct sset *filter)
{
struct expr_constant_set *cs = xzalloc(sizeof *cs);
cs->in_curlies = true;
cs->n_values = 0;
cs->values = xmalloc(n_values * sizeof *cs->values);
cs->type = EXPR_C_STRING;
for (size_t i = 0; i < n_values; i++) {
if (filter && !sset_find(filter, values[i])) {
static struct vlog_rate_limit rl = VLOG_RATE_LIMIT_INIT(100, 10);
VLOG_DBG_RL(&rl, "Skip constant set entry '%s' for '%s'",
values[i], name);
continue;
}
struct expr_constant *c = &cs->values[cs->n_values++];
c->string = xstrdup(values[i]);
}
expr_const_sets_add(const_sets, name, cs);
}
void
expr_const_sets_remove(struct shash *const_sets, const char *name)
{
struct expr_constant_set *cs = shash_find_and_delete(const_sets, name);
if (cs) {
expr_constant_set_destroy(cs);
free(cs);
}
}
/* Destroy all contents of 'const_sets'. */
void
expr_const_sets_destroy(struct shash *const_sets)
{
struct shash_node *node;
SHASH_FOR_EACH_SAFE (node, const_sets) {
struct expr_constant_set *cs = node->data;
shash_delete(const_sets, node);
expr_constant_set_destroy(cs);
free(cs);
}
}
static struct expr *
parse_chassis_resident(struct expr_context *ctx)
{
if (ctx->lexer->token.type != LEX_T_STRING) {
lexer_syntax_error(ctx->lexer, "expecting string");
return NULL;
}
struct expr *e = xzalloc(sizeof *e);
e->type = EXPR_T_CONDITION;
e->cond.type = EXPR_COND_CHASSIS_RESIDENT;
e->cond.not = false;
e->cond.string = xstrdup(ctx->lexer->token.s);
lexer_get(ctx->lexer);
if (!lexer_force_match(ctx->lexer, LEX_T_RPAREN)) {
expr_destroy(e);
return NULL;
}
return e;
}
static struct expr *
expr_parse_primary(struct expr_context *ctx, bool *atomic)
{
*atomic = false;
if (lexer_match(ctx->lexer, LEX_T_LPAREN)) {
if (ctx->paren_depth >= MAX_PAREN_DEPTH) {
lexer_error(ctx->lexer, "Parentheses nested too deeply.");
return NULL;
}
ctx->paren_depth++;
struct expr *e = expr_parse__(ctx);
ctx->paren_depth--;
if (!lexer_force_match(ctx->lexer, LEX_T_RPAREN)) {
expr_destroy(e);
return NULL;
}
*atomic = true;
return e;
}
if (ctx->lexer->token.type == LEX_T_TEMPLATE) {
lexer_error(ctx->lexer, "Unexpanded template.");
return NULL;
} else if (ctx->lexer->token.type == LEX_T_ID) {
struct expr_field f;
enum expr_relop r;
struct expr_constant_set c;
if (lexer_lookahead(ctx->lexer) == LEX_T_LPAREN) {
if (lexer_match_id(ctx->lexer, "is_chassis_resident")) {
lexer_get(ctx->lexer); /* Skip "(". */
*atomic = true;
return parse_chassis_resident(ctx);
}
lexer_error(ctx->lexer, "parsing function name");
return NULL;
}
if (!parse_field(ctx, &f)) {
return NULL;
}
if (!expr_relop_from_token(ctx->lexer->token.type, &r)) {
if (!f.n_bits || ctx->lexer->token.type == LEX_T_EQUALS) {
lexer_syntax_error(ctx->lexer,
"expecting relational operator");
return NULL;
} else if (f.n_bits > 1 && !ctx->not) {
lexer_error(ctx->lexer,
"Explicit `!= 0' is required for inequality "
"test of multibit field against 0.");
return NULL;
}
*atomic = true;
struct expr_constant *cst = xzalloc(sizeof *cst);
cst->format = LEX_F_HEXADECIMAL;
cst->masked = false;
c.type = EXPR_C_INTEGER;
c.values = cst;
c.n_values = 1;
c.in_curlies = false;
return make_cmp(ctx, &f, EXPR_R_NE, &c);
} else if (parse_relop(ctx, &r) && parse_constant_set(ctx, &c)) {
return make_cmp(ctx, &f, r, &c);
} else {
return NULL;
}
} else {
struct expr_constant_set c1;
if (!parse_constant_set(ctx, &c1)) {
return NULL;
}
if (!expr_relop_from_token(ctx->lexer->token.type, NULL)
&& c1.n_values == 1
&& c1.type == EXPR_C_INTEGER
&& c1.values[0].format == LEX_F_DECIMAL
&& !c1.values[0].masked
&& !c1.in_curlies) {
uint64_t x = ntohll(c1.values[0].value.integer);
if (x <= 1) {
*atomic = true;
expr_constant_set_destroy(&c1);
return expr_create_boolean(x);
}
}
enum expr_relop r1;
struct expr_field f;
if (!parse_relop(ctx, &r1) || !parse_field(ctx, &f)) {
expr_constant_set_destroy(&c1);
return NULL;
}
if (!expr_relop_from_token(ctx->lexer->token.type, NULL)) {
return make_cmp(ctx, &f, expr_relop_turn(r1), &c1);
}
enum expr_relop r2;
struct expr_constant_set c2;
if (!parse_relop(ctx, &r2) || !parse_constant_set(ctx, &c2)) {
expr_constant_set_destroy(&c1);
return NULL;
} else {
/* Reject "1 == field == 2", "1 < field > 2", and so on. */
if (!(((r1 == EXPR_R_LT || r1 == EXPR_R_LE) &&
(r2 == EXPR_R_LT || r2 == EXPR_R_LE)) ||
((r1 == EXPR_R_GT || r1 == EXPR_R_GE) &&
(r2 == EXPR_R_GT || r2 == EXPR_R_GE)))) {
lexer_error(ctx->lexer, "Range expressions must have the "
"form `x < field < y' or `x > field > y', with "
"each `<' optionally replaced by `<=' or `>' by "
"`>=').");
expr_constant_set_destroy(&c1);
expr_constant_set_destroy(&c2);
return NULL;
}
struct expr *e1 = make_cmp(ctx, &f, expr_relop_turn(r1), &c1);
struct expr *e2 = make_cmp(ctx, &f, r2, &c2);
if (ctx->lexer->error) {
expr_destroy(e1);
expr_destroy(e2);
return NULL;
}
return expr_combine(EXPR_T_AND, e1, e2);
}
}
}
static struct expr *
expr_parse_not(struct expr_context *ctx)
{
bool atomic;
if (lexer_match(ctx->lexer, LEX_T_LOG_NOT)) {
ctx->not = !ctx->not;
struct expr *expr = expr_parse_primary(ctx, &atomic);
ctx->not = !ctx->not;
if (expr) {
if (!atomic) {
lexer_error(ctx->lexer,
"Missing parentheses around operand of !.");
expr_destroy(expr);
return NULL;
}
expr_not(expr);
}
return expr;
} else {
return expr_parse_primary(ctx, &atomic);
}
}
struct expr *
expr_parse__(struct expr_context *ctx)
{
struct expr *e = expr_parse_not(ctx);
if (!e) {
return NULL;
}
enum lex_type lex_type = ctx->lexer->token.type;
if (lex_type == LEX_T_LOG_AND || lex_type == LEX_T_LOG_OR) {
enum expr_type expr_type
= lex_type == LEX_T_LOG_AND ? EXPR_T_AND : EXPR_T_OR;
lexer_get(ctx->lexer);
do {
struct expr *e2 = expr_parse_not(ctx);
if (!e2) {
expr_destroy(e);
return NULL;
}
e = expr_combine(expr_type, e, e2);
} while (lexer_match(ctx->lexer, lex_type));
if (ctx->lexer->token.type == LEX_T_LOG_AND
|| ctx->lexer->token.type == LEX_T_LOG_OR) {
expr_destroy(e);
lexer_error(ctx->lexer,
"&& and || must be parenthesized when used together.");
return NULL;
}
}
return e;
}
/* Parses an expression from 'lexer' using the symbols in 'symtab' and
* address set table in 'addr_sets' and 'port_groups'. If successful, returns
* the new expression; on failure, returns NULL. Returns nonnull if and only
* if lexer->error is NULL. */
struct expr *
expr_parse(struct lexer *lexer, const struct shash *symtab,
const struct shash *addr_sets,
const struct shash *port_groups,
struct shash *addr_sets_ref,
struct sset *port_groups_ref,
int64_t dp_id)
{
struct expr_context ctx = { .lexer = lexer,
.symtab = symtab,
.addr_sets = addr_sets,
.port_groups = port_groups,
.addr_sets_ref = addr_sets_ref,
.port_groups_ref = port_groups_ref,
.dp_id = dp_id };
return lexer->error ? NULL : expr_parse__(&ctx);
}
/* Parses the expression in 's' using the symbols in 'symtab' and
* address set table in 'addr_sets' and 'port_groups'. If successful, returns
* the new expression and sets '*errorp' to NULL. On failure, returns NULL
* and sets '*errorp' to an explanatory error message. The caller must
* eventually free the returned expression (with expr_destroy()) or
* error (with free()). */
struct expr *
expr_parse_string(const char *s, const struct shash *symtab,
const struct shash *addr_sets,
const struct shash *port_groups,
struct shash *addr_sets_ref,
struct sset *port_groups_ref,
int64_t dp_id,
char **errorp)
{
struct lexer lexer;
lexer_init(&lexer, s);
lexer_get(&lexer);
struct expr *expr = expr_parse(&lexer, symtab, addr_sets, port_groups,
addr_sets_ref, port_groups_ref, dp_id);
lexer_force_end(&lexer);
*errorp = lexer_steal_error(&lexer);
if (*errorp) {
expr_destroy(expr);
expr = NULL;
}
lexer_destroy(&lexer);
return expr;
}
/* Parses a field or subfield from 'lexer' into 'field', obtaining field names
* from 'symtab'. Returns true if successful, false if an error occurred.
* Upon return, returns true if and only if lexer->error is NULL. */
bool
expr_field_parse(struct lexer *lexer, const struct shash *symtab,
struct expr_field *field, struct expr **prereqsp)
{
struct expr_context ctx = { .lexer = lexer, .symtab = symtab };
if (parse_field(&ctx, field) && field->symbol->predicate) {
lexer_error(lexer, "Predicate symbol %s used where lvalue required.",
field->symbol->name);
}
if (!lexer->error) {
const struct expr_symbol *symbol = field->symbol;
while (symbol) {
if (symbol->prereqs) {
char *error;
struct sset nesting = SSET_INITIALIZER(&nesting);
struct expr *e = parse_and_annotate(symbol->prereqs, symtab,
&nesting, &error);
sset_destroy(&nesting);
if (error) {
lexer_error(lexer, "%s", error);
free(error);
break;
}
*prereqsp = expr_combine(EXPR_T_AND, *prereqsp, e);
}
if (!symbol->parent) {
break;
}
symbol = symbol->parent;
}
}
if (!lexer->error) {
return true;
}
memset(field, 0, sizeof *field);
return false;
}
/* Appends to 's' a re-parseable representation of 'field'. */
void
expr_field_format(const struct expr_field *field, struct ds *s)
{
ds_put_cstr(s, field->symbol->name);
if (field->ofs || field->n_bits != field->symbol->width) {
if (field->n_bits != 1) {
ds_put_format(s, "[%d..%d]",
field->ofs, field->ofs + field->n_bits - 1);
} else {
ds_put_format(s, "[%d]", field->ofs);
}
}
}
void
expr_symbol_format(const struct expr_symbol *symbol, struct ds *s)
{
ds_put_format(s, "%s = ", symbol->name);
if (symbol->parent) {
struct expr_field f = { symbol->parent,
symbol->parent_ofs,
symbol->width };
expr_field_format(&f, s);
} else if (symbol->predicate) {
ds_put_cstr(s, symbol->predicate);
} else if (symbol->ovn_field) {
ds_put_cstr(s, symbol->name);
} else {
nx_format_field_name(symbol->field->id, OFP15_VERSION, s);
}
}
static struct expr_symbol *
add_symbol(struct shash *symtab, const char *name, int width,
const char *prereqs, enum expr_level level,
bool must_crossproduct, enum expr_write_scope rw)
{
struct expr_symbol *symbol = xzalloc(sizeof *symbol);
symbol->name = xstrdup(name);
symbol->prereqs = prereqs && prereqs[0] ? xstrdup(prereqs) : NULL;
symbol->width = width;
symbol->level = level;
symbol->must_crossproduct = must_crossproduct;
symbol->rw = rw;
shash_add_assert(symtab, symbol->name, symbol);
return symbol;
}
/* Adds field 'id' to symbol table 'symtab' under the given 'name'. Whenever
* 'name' is referenced, expression annotation (see expr_annotate()) will
* ensure that 'prereqs' are also true. If 'must_crossproduct' is true, then
* conversion to flows will never attempt to use the field as a conjunctive
* match dimension (see "Crossproducting" in the large comment on struct
* expr_symbol in expr.h for an example).
*
* A given field 'id' must only be used for a single symbol in a symbol table.
* Use subfields to duplicate or subset a field (you can even make a subfield
* include all the bits of the "parent" field if you like). */
struct expr_symbol *
expr_symtab_add_field_scoped(struct shash *symtab, const char *name,
enum mf_field_id id, const char *prereqs,
bool must_crossproduct,
enum expr_write_scope scope)
{
const struct mf_field *field = mf_from_id(id);
struct expr_symbol *symbol;
symbol = add_symbol(symtab, name, field->n_bits, prereqs,
(field->maskable == MFM_FULLY
? EXPR_L_ORDINAL
: EXPR_L_NOMINAL),
must_crossproduct,
field->writable ? scope : 0);
symbol->field = field;
return symbol;
}
static bool
parse_field_from_string(const char *s, const struct shash *symtab,
struct expr_field *field, char **errorp)
{
struct lexer lexer;
lexer_init(&lexer, s);
lexer_get(&lexer);
struct expr_context ctx = { .lexer = &lexer, .symtab = symtab };
parse_field(&ctx, field);
lexer_force_end(&lexer);
*errorp = lexer_steal_error(&lexer);
lexer_destroy(&lexer);
return !*errorp;
}
/* Adds 'name' as a subfield of a larger field in 'symtab'. Whenever
* 'name' is referenced, expression annotation (see expr_annotate()) will
* ensure that 'prereqs' are also true.
*
* 'subfield' must describe the subfield as a string, e.g. "vlan.tci[0..11]"
* for the low 12 bits of a larger field named "vlan.tci". */
struct expr_symbol *
expr_symtab_add_subfield_scoped(struct shash *symtab, const char *name,
const char *prereqs, const char *subfield,
enum expr_write_scope scope)
{
struct expr_symbol *symbol;
struct expr_field f;
char *error;
if (!parse_field_from_string(subfield, symtab, &f, &error)) {
VLOG_WARN("%s: error parsing %s subfield (%s)", subfield, name, error);
free(error);
return NULL;
}
enum expr_level level = f.symbol->level;
if (level != EXPR_L_ORDINAL) {
VLOG_WARN("can't define %s as subfield of %s field %s",
name, expr_level_to_string(level), f.symbol->name);
}
symbol = add_symbol(symtab, name, f.n_bits, prereqs, level, false,
f.symbol->rw ? scope : 0);
symbol->parent = f.symbol;
symbol->parent_ofs = f.ofs;
return symbol;
}
/* Adds a string-valued symbol named 'name' to 'symtab' with the specified
* 'prereqs'. */
struct expr_symbol *
expr_symtab_add_string_scoped(struct shash *symtab, const char *name,
enum mf_field_id id, const char *prereqs,
enum expr_write_scope scope)
{
const struct mf_field *field = mf_from_id(id);
struct expr_symbol *symbol;
symbol = add_symbol(symtab, name, 0, prereqs, EXPR_L_NOMINAL, false,
field->writable ? scope : 0);
symbol->field = field;
return symbol;
}
static enum expr_level
expr_get_level(const struct expr *expr)
{
const struct expr *sub;
enum expr_level level = EXPR_L_ORDINAL;
switch (expr->type) {
case EXPR_T_CMP:
return (expr->cmp.symbol->level == EXPR_L_NOMINAL
? EXPR_L_NOMINAL
: EXPR_L_BOOLEAN);
case EXPR_T_AND:
case EXPR_T_OR:
LIST_FOR_EACH (sub, node, &expr->andor) {
enum expr_level sub_level = expr_get_level(sub);
level = MIN(level, sub_level);
}
return level;
case EXPR_T_BOOLEAN:
case EXPR_T_CONDITION:
return EXPR_L_BOOLEAN;
default:
OVS_NOT_REACHED();
}
}
static enum expr_level
expr_parse_level(const char *s, const struct shash *symtab, char **errorp)
{
struct expr *expr = expr_parse_string(s, symtab, NULL, NULL, NULL, NULL, 0,
errorp);
enum expr_level level = expr ? expr_get_level(expr) : EXPR_L_NOMINAL;
expr_destroy(expr);
return level;
}
/* Adds a predicate symbol, whose value is the given Boolean 'expression',
* named 'name' to 'symtab'. For example, "ip4 && ip4.proto == 6" might be an
* appropriate predicate named "tcp4". */
struct expr_symbol *
expr_symtab_add_predicate(struct shash *symtab, const char *name,
const char *expansion)
{
struct expr_symbol *symbol;
enum expr_level level;
char *error;
level = expr_parse_level(expansion, symtab, &error);
if (error) {
VLOG_WARN("%s: error parsing %s expansion (%s)",
expansion, name, error);
free(error);
return NULL;
}
symbol = add_symbol(symtab, name, 1, NULL, level, false, 0);
symbol->predicate = xstrdup(expansion);
return symbol;
}
struct expr_symbol *
expr_symtab_add_ovn_field(struct shash *symtab, const char *name,
enum ovn_field_id id)
{
const struct ovn_field *ovn_field = ovn_field_from_id(id);
struct expr_symbol *symbol;
symbol = add_symbol(symtab, name, ovn_field->n_bits, NULL,
EXPR_L_NOMINAL, false, UINT32_MAX);
symbol->ovn_field = ovn_field;
return symbol;
}
/* Destroys 'symtab' and all of its symbols. */
void
expr_symtab_destroy(struct shash *symtab)
{
struct shash_node *node;
SHASH_FOR_EACH_SAFE (node, symtab) {
struct expr_symbol *symbol = node->data;
shash_delete(symtab, node);
free(symbol->name);
free(symbol->prereqs);
free(symbol->predicate);
free(symbol);
}
}
/* Cloning. */
static struct expr *
expr_clone_cmp(struct expr *expr)
{
struct expr *new = xmemdup(expr, sizeof *expr);
if (!new->cmp.symbol->width) {
new->cmp.string = xstrdup(new->cmp.string);
}
return new;
}
static struct expr *
expr_clone_andor(struct expr *expr)
{
struct expr *new = expr_create_andor(expr->type);
struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
struct expr *new_sub = expr_clone(sub);
ovs_list_push_back(&new->andor, &new_sub->node);
}
return new;
}
static struct expr *
expr_clone_condition(struct expr *expr)
{
struct expr *new = xmemdup(expr, sizeof *expr);
new->cond.string = xstrdup(new->cond.string);
return new;
}
/* Returns a clone of 'expr'. This is a "deep copy": neither the returned
* expression nor any of its substructure will be shared with 'expr'. */
struct expr *
expr_clone(struct expr *expr)
{
switch (expr->type) {
case EXPR_T_CMP:
return expr_clone_cmp(expr);
case EXPR_T_AND:
case EXPR_T_OR:
return expr_clone_andor(expr);
case EXPR_T_BOOLEAN:
return expr_create_boolean(expr->boolean);
case EXPR_T_CONDITION:
return expr_clone_condition(expr);
}
OVS_NOT_REACHED();
}
/* Destroys 'expr' and all of the sub-expressions it references. */
void
expr_destroy(struct expr *expr)
{
if (!expr) {
return;
}
struct expr *sub;
switch (expr->type) {
case EXPR_T_CMP:
if (!expr->cmp.symbol->width) {
free(expr->cmp.string);
}
break;
case EXPR_T_AND:
case EXPR_T_OR:
LIST_FOR_EACH_SAFE (sub, node, &expr->andor) {
ovs_list_remove(&sub->node);
expr_destroy(sub);
}
break;
case EXPR_T_BOOLEAN:
break;
case EXPR_T_CONDITION:
free(expr->cond.string);
break;
}
free(expr);
}
/* Annotation. */
static struct expr *expr_annotate_(struct expr *, const struct shash *symtab,
struct sset *nesting, char **errorp);
static struct expr *
parse_and_annotate(const char *s, const struct shash *symtab,
struct sset *nesting, char **errorp)
{
char *error;
struct expr *expr;
expr = expr_parse_string(s, symtab, NULL, NULL, NULL, NULL, 0, &error);
if (expr) {
expr = expr_annotate_(expr, symtab, nesting, &error);
}
if (expr) {
*errorp = NULL;
} else {
*errorp = xasprintf("Error parsing expression `%s' encountered as "
"prerequisite or predicate of initial expression: "
"%s", s, error);
free(error);
}
return expr;
}
static struct expr *
expr_annotate_cmp(struct expr *expr, const struct shash *symtab,
bool append_prereqs, struct sset *nesting, char **errorp)
{
const struct expr_symbol *symbol = expr->cmp.symbol;
struct sset_node *nested_node = sset_add(nesting, symbol->name);
if (!nested_node) {
*errorp = xasprintf("Recursive expansion of symbol `%s'.",
symbol->name);
expr_destroy(expr);
return NULL;
}
struct expr *prereqs = NULL;
if (append_prereqs && symbol->prereqs) {
prereqs = parse_and_annotate(symbol->prereqs, symtab, nesting, errorp);
if (!prereqs) {
goto error;
}
}
if (symbol->parent) {
expr->cmp.symbol = symbol->parent;
mf_subvalue_shift(&expr->cmp.value, symbol->parent_ofs);
mf_subvalue_shift(&expr->cmp.mask, symbol->parent_ofs);
} else if (symbol->predicate) {
struct expr *predicate;
predicate = parse_and_annotate(symbol->predicate, symtab,
nesting, errorp);
if (!predicate) {
goto error;
}
bool positive = (expr->cmp.value.integer & htonll(1)) != 0;
positive ^= expr->cmp.relop == EXPR_R_NE;
if (!positive) {
expr_not(predicate);
}
expr_destroy(expr);
expr = predicate;
}
*errorp = NULL;
sset_delete(nesting, nested_node);
return prereqs ? expr_combine(EXPR_T_AND, expr, prereqs) : expr;
error:
expr_destroy(expr);
expr_destroy(prereqs);
sset_delete(nesting, nested_node);
return NULL;
}
/* Append (logical AND) prerequisites for given symbol to the expression. */
static struct expr *
expr_append_prereqs(struct expr *expr, const struct expr_symbol *symbol,
const struct shash *symtab, struct sset *nesting,
char **errorp)
{
struct expr *prereqs = NULL;
if (symbol->prereqs) {
prereqs = parse_and_annotate(symbol->prereqs, symtab, nesting, errorp);
if (!prereqs) {
expr_destroy(expr);
return NULL;
}
}
return prereqs ? expr_combine(EXPR_T_AND, expr, prereqs) : expr;
}
static const struct expr_symbol *expr_get_unique_symbol(
const struct expr *expr);
/* Ordinarily, annotation adds prerequisites to the expression, and that's what
* this function does if 'append_prereqs' is true. If 'append_prereqs' is
* false, this function ignores prerequisites (in which case the caller must
* have arranged to deal with them). */
static struct expr *
expr_annotate__(struct expr *expr, const struct shash *symtab,
bool append_prereqs, struct sset *nesting, char **errorp)
{
switch (expr->type) {
case EXPR_T_CMP:
return expr_annotate_cmp(expr, symtab, append_prereqs, nesting,
errorp);
case EXPR_T_AND:
case EXPR_T_OR: {
struct expr *sub, *next;
/* Detect whether every term in 'expr' mentions the same symbol. If
* so, then suppress prerequisites for that symbol for those terms and
* instead apply them once at our higher level.
*
* If 'append_prereqs' is false, though, we're not supposed to handle
* prereqs at all (because our caller is already doing it). */
if (append_prereqs) {
const struct expr_symbol *sym = expr_get_unique_symbol(expr);
if (sym) {
append_prereqs = false;
expr = expr_append_prereqs(expr, sym, symtab, nesting, errorp);
if (!expr) {
return NULL;
}
}
}
LIST_FOR_EACH_SAFE (sub, next, node, &expr->andor) {
ovs_list_remove(&sub->node);
struct expr *new_sub = expr_annotate__(sub, symtab, append_prereqs,
nesting, errorp);
if (!new_sub) {
expr_destroy(expr);
return NULL;
}
expr_insert_andor(expr, next ? &next->node : &expr->andor,
new_sub);
}
*errorp = NULL;
return expr;
}
case EXPR_T_BOOLEAN:
case EXPR_T_CONDITION:
*errorp = NULL;
return expr;
default:
OVS_NOT_REACHED();
}
}
/* Same interface and purpose as expr_annotate(), with an additional parameter
* for internal bookkeeping.
*
* Uses 'nesting' to ensure that a given symbol is not recursively expanded. */
static struct expr *
expr_annotate_(struct expr *expr, const struct shash *symtab,
struct sset *nesting, char **errorp)
{
return expr_annotate__(expr, symtab, true, nesting, errorp);
}
/* "Annotates" 'expr', which does the following:
*
* - Applies prerequisites, by locating each comparison operator whose
* field has a prerequisite and adding a logical AND against those
* prerequisites.
*
* - Expands references to subfield symbols, by replacing them by
* references to their underlying field symbols (suitably shifted).
*
* - Expands references to predicate symbols, by replacing them by the
* expressions that they expand to.
*
* In each case, annotation occurs recursively as necessary.
*
* If successful, returns the annotated expression and sets '*errorp' to NULL.
* On failure, returns NULL and sets '*errorp' to an explanatory error message,
* which the caller must free. In either case, the caller transfers ownership
* of 'expr' and receives ownership of the returned expression, if any. */
struct expr *
expr_annotate(struct expr *expr, const struct shash *symtab, char **errorp)
{
struct sset nesting = SSET_INITIALIZER(&nesting);
struct expr *result = expr_annotate_(expr, symtab, &nesting, errorp);
sset_destroy(&nesting);
return result;
}
static struct expr *
expr_simplify_eq(struct expr *expr)
{
const union mf_subvalue *mask = &expr->cmp.mask;
if (is_all_zeros(mask, sizeof *mask)) {
/* Simplify "ip4.dst == 0/0" to just "1" (plus a prerequisite). */
expr_destroy(expr);
return expr_create_boolean(true);
}
return expr;
}
static struct expr *
expr_simplify_ne(struct expr *expr)
{
struct expr *new = NULL;
const union mf_subvalue *value = &expr->cmp.value;
const union mf_subvalue *mask = &expr->cmp.mask;
int w = expr->cmp.symbol->width;
int i;
for (i = 0; (i = bitwise_scan(mask, sizeof *mask, true, i, w)) < w; i++) {
struct expr *e;
e = xzalloc(sizeof *e);
e->type = EXPR_T_CMP;
e->cmp.symbol = expr->cmp.symbol;
e->cmp.relop = EXPR_R_EQ;
bitwise_put_bit(&e->cmp.value, sizeof e->cmp.value, i,
!bitwise_get_bit(value, sizeof *value, i));
bitwise_put1(&e->cmp.mask, sizeof e->cmp.mask, i);
new = expr_combine(EXPR_T_OR, new, e);
}
if (!new) {
/* Handle a comparison like "ip4.dst != 0/0", where the mask has no
* 1-bits.
*
* The correct result for this expression may not be obvious. It's
* easier to understand that "ip4.dst == 0/0" should be true, since 0/0
* matches every IPv4 address; then, "ip4.dst != 0/0" should have the
* opposite result. */
new = expr_create_boolean(false);
}
expr_destroy(expr);
return new;
}
static struct expr *
expr_simplify_relational(struct expr *expr)
{
const union mf_subvalue *value = &expr->cmp.value;
int start, n_bits, end;
find_bitwise_range(&expr->cmp.mask, expr->cmp.symbol->width,
&start, &n_bits);
ovs_assert(n_bits > 0);
end = start + n_bits;
/* Handle some special cases.
*
* These optimize to just "true":
*
* tcp.dst >= 0
* tcp.dst <= 65535
*
* These are easier to understand, and equivalent, when treated as if
* > or < were !=:
*
* tcp.dst > 0
* tcp.dst < 65535
*/
bool lt = expr->cmp.relop == EXPR_R_LT || expr->cmp.relop == EXPR_R_LE;
bool eq = expr->cmp.relop == EXPR_R_LE || expr->cmp.relop == EXPR_R_GE;
if (bitwise_scan(value, sizeof *value, !lt, start, end) == end) {
if (eq) {
expr_destroy(expr);
return expr_create_boolean(true);
} else {
return expr_simplify_ne(expr);
}
}
/* Reduce "tcp.dst >= 1234" to "tcp.dst == 1234 || tcp.dst > 1234",
* and similarly for "tcp.dst <= 1234". */
struct expr *new = NULL;
if (eq) {
new = expr_clone(expr);
new->cmp.relop = EXPR_R_EQ;
}
for (int z = bitwise_scan(value, sizeof *value, lt, start, end);
z < end;
z = bitwise_scan(value, sizeof *value, lt, z + 1, end)) {
struct expr *e;
e = expr_clone(expr);
e->cmp.relop = EXPR_R_EQ;
bitwise_toggle_bit(&e->cmp.value, sizeof e->cmp.value, z);
bitwise_zero(&e->cmp.value, sizeof e->cmp.value, start, z - start);
bitwise_zero(&e->cmp.mask, sizeof e->cmp.mask, start, z - start);
new = expr_combine(EXPR_T_OR, new, e);
}
expr_destroy(expr);
return new ? new : expr_create_boolean(false);
}
/* Resolves condition and replaces the expression with a boolean. */
static struct expr *
expr_evaluate_condition__(struct expr *expr,
bool (*is_chassis_resident)(const void *c_aux,
const char *port_name),
const void *c_aux)
{
bool result;
switch (expr->cond.type) {
case EXPR_COND_CHASSIS_RESIDENT:
result = is_chassis_resident(c_aux, expr->cond.string);
break;
default:
OVS_NOT_REACHED();
}
result ^= expr->cond.not;
expr_destroy(expr);
return expr_create_boolean(result);
}
struct expr *
expr_evaluate_condition(struct expr *expr,
bool (*is_chassis_resident)(const void *c_aux,
const char *port_name),
const void *c_aux)
{
struct expr *sub, *next;
switch (expr->type) {
case EXPR_T_AND:
case EXPR_T_OR:
LIST_FOR_EACH_SAFE (sub, next, node, &expr->andor) {
ovs_list_remove(&sub->node);
struct expr *e = expr_evaluate_condition(sub, is_chassis_resident,
c_aux);
e = expr_fix(e);
expr_insert_andor(expr, next ? &next->node : &expr->andor, e);
}
return expr_fix(expr);
case EXPR_T_CONDITION:
return expr_evaluate_condition__(expr, is_chassis_resident, c_aux);
case EXPR_T_CMP:
case EXPR_T_BOOLEAN:
return expr;
}
OVS_NOT_REACHED();
}
/* Takes ownership of 'expr' and returns an equivalent expression whose
* EXPR_T_CMP nodes use only tests for equality (EXPR_R_EQ). */
struct expr *
expr_simplify(struct expr *expr)
{
struct expr *sub, *next;
switch (expr->type) {
case EXPR_T_CMP:
return (!expr->cmp.symbol->width ? expr
: expr->cmp.relop == EXPR_R_EQ ? expr_simplify_eq(expr)
: expr->cmp.relop == EXPR_R_NE ? expr_simplify_ne(expr)
: expr_simplify_relational(expr));
case EXPR_T_AND:
case EXPR_T_OR:
LIST_FOR_EACH_SAFE (sub, next, node, &expr->andor) {
ovs_list_remove(&sub->node);
expr_insert_andor(expr, next ? &next->node : &expr->andor,
expr_simplify(sub));
}
return expr_fix(expr);
case EXPR_T_BOOLEAN:
return expr;
case EXPR_T_CONDITION:
return expr;
}
OVS_NOT_REACHED();
}
/* Tests whether 'expr' is an expression over exactly one symbol: that is,
* whether it is either a EXPR_T_CMP node or a tree of ANDs and ORs all over
* the same symbol. If it is, returns the symbol in question. If it is not
* (that is, if there is more than one symbol or no symbols at all), returns
* NULL. */
static const struct expr_symbol *
expr_get_unique_symbol(const struct expr *expr)
{
switch (expr->type) {
case EXPR_T_CMP:
return expr->cmp.symbol;
case EXPR_T_AND:
case EXPR_T_OR: {
const struct expr_symbol *prev = NULL;
struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
const struct expr_symbol *symbol = expr_get_unique_symbol(sub);
if (!symbol || (prev && symbol != prev)) {
return NULL;
}
prev = symbol;
}
return prev;
}
case EXPR_T_BOOLEAN:
case EXPR_T_CONDITION:
return NULL;
default:
OVS_NOT_REACHED();
}
}
struct expr_sort {
struct expr *expr;
const struct expr_symbol *symbol;
enum expr_type type;
};
static int
compare_expr_sort(const void *a_, const void *b_)
{
const struct expr_sort *a = a_;
const struct expr_sort *b = b_;
if (a->type != b->type) {
return a->type < b->type ? -1 : 1;
} else if (a->symbol) {
int cmp = strcmp(a->symbol->name, b->symbol->name);
if (cmp) {
return cmp;
}
enum expr_type a_type = a->expr->type;
enum expr_type b_type = a->expr->type;
return a_type < b_type ? -1 : a_type > b_type;
} else if (a->type == EXPR_T_AND || a->type == EXPR_T_OR) {
size_t a_len = ovs_list_size(&a->expr->andor);
size_t b_len = ovs_list_size(&b->expr->andor);
return a_len < b_len ? -1 : a_len > b_len;
} else {
return 0;
}
}
static struct expr *crush_cmps(struct expr *, const struct expr_symbol *);
static bool
disjunction_matches_string(const struct expr *or, const char *s)
{
const struct expr *sub;
LIST_FOR_EACH (sub, node, &or->andor) {
if (!strcmp(sub->cmp.string, s)) {
return true;
}
}
return false;
}
/* Implementation of crush_cmps() for expr->type == EXPR_T_AND and a
* string-typed 'symbol'. */
static struct expr *
crush_and_string(struct expr *expr, const struct expr_symbol *symbol)
{
ovs_assert(!ovs_list_is_short(&expr->andor));
struct expr *singleton = NULL;
/* First crush each subexpression into either a single EXPR_T_CMP or an
* EXPR_T_OR with EXPR_T_CMP subexpressions. */
struct expr *sub, *next = NULL;
LIST_FOR_EACH_SAFE (sub, next, node, &expr->andor) {
struct ovs_list *next_list = next ? &next->node : &expr->andor;
ovs_list_remove(&sub->node);
struct expr *new = crush_cmps(sub, symbol);
switch (new->type) {
case EXPR_T_CMP:
if (!singleton) {
ovs_list_insert(next_list, &new->node);
singleton = new;
} else {
bool match = !strcmp(new->cmp.string, singleton->cmp.string);
expr_destroy(new);
if (!match) {
expr_destroy(expr);
return expr_create_boolean(false);
}
}
break;
case EXPR_T_AND:
OVS_NOT_REACHED();
case EXPR_T_OR:
ovs_list_insert(next_list, &new->node);
break;
case EXPR_T_BOOLEAN:
if (!new->boolean) {
expr_destroy(expr);
return new;
}
expr_destroy(new);
break;
case EXPR_T_CONDITION:
OVS_NOT_REACHED();
}
}
/* If we have a singleton, then the result is either the singleton itself
* (if the ORs allow the singleton) or false. */
if (singleton) {
LIST_FOR_EACH (sub, node, &expr->andor) {
if (sub->type == EXPR_T_OR
&& !disjunction_matches_string(sub, singleton->cmp.string)) {
expr_destroy(expr);
return expr_create_boolean(false);
}
}
ovs_list_remove(&singleton->node);
expr_destroy(expr);
return singleton;
}
/* Otherwise the result is the intersection of all of the ORs. */
struct sset result = SSET_INITIALIZER(&result);
LIST_FOR_EACH_SAFE (sub, node, &expr->andor) {
struct sset strings = SSET_INITIALIZER(&strings);
const struct expr *s;
LIST_FOR_EACH (s, node, &sub->andor) {
sset_add(&strings, s->cmp.string);
}
if (sset_is_empty(&result)) {
sset_swap(&result, &strings);
} else {
sset_intersect(&result, &strings);
}
sset_destroy(&strings);
if (sset_is_empty(&result)) {
expr_destroy(expr);
sset_destroy(&result);
return expr_create_boolean(false);
}
}
expr_destroy(expr);
expr = expr_create_andor(EXPR_T_OR);
const char *string;
SSET_FOR_EACH (string, &result) {
sub = xzalloc(sizeof *sub);
sub->type = EXPR_T_CMP;
sub->cmp.relop = EXPR_R_EQ;
sub->cmp.symbol = symbol;
sub->cmp.string = xstrdup(string);
ovs_list_push_back(&expr->andor, &sub->node);
}
sset_destroy(&result);
return expr_fix(expr);
}
static int
compare_cmps_3way(const struct expr *a, const struct expr *b)
{
ovs_assert(a->cmp.symbol == b->cmp.symbol);
if (!a->cmp.symbol->width) {
return strcmp(a->cmp.string, b->cmp.string);
} else if (a->cmp.mask_n_bits != b->cmp.mask_n_bits) {
return a->cmp.mask_n_bits < b->cmp.mask_n_bits ? -1 : 1;
} else {
int d = memcmp(&a->cmp.value, &b->cmp.value, sizeof a->cmp.value);
if (!d) {
d = memcmp(&a->cmp.mask, &b->cmp.mask, sizeof a->cmp.mask);
}
return d;
}
}
static int
compare_cmps_cb(const void *a_, const void *b_)
{
const struct expr *const *ap = a_;
const struct expr *const *bp = b_;
const struct expr *a = *ap;
const struct expr *b = *bp;
return compare_cmps_3way(a, b);
}
/* Similar to mf_subvalue_intersect(), but only checks the possibility of
* intersection without producing a result. */
static bool
expr_bitmap_intersect_check(const unsigned long *a_value,
const unsigned long *a_mask,
const unsigned long *b_value,
const unsigned long *b_mask,
size_t bit_width)
{
for (size_t i = 0; i < bitmap_n_longs(bit_width); i++) {
if ((a_value[i] ^ b_value[i]) & (a_mask[i] & b_mask[i])) {
return false;
}
}
return true;
}
/* This function expects an OR expression with already crushed sub
* expressions, so they are plain comparisons. Result is the same
* expression, but with unnecessary sub-expressions removed. */
static struct expr *
crush_or_supersets(struct expr *expr, const struct expr_symbol *symbol)
{
ovs_assert(expr->type == EXPR_T_OR);
/* Calculate offset within subfield and a width that can be used
* in a bitmap. */
const size_t sz = CHAR_BIT * sizeof expr->cmp.value.be64[0];
const size_t bit_width = ROUND_UP(symbol->width, sz);
const size_t ofs = ARRAY_SIZE(expr->cmp.value.be64) - bit_width / sz;
/* Sort subexpressions by number of bits in the mask, value and the mask
* itself, to bring together duplicates and have expressions ordered by
* mask sizes. */
size_t n = ovs_list_size(&expr->andor);
struct expr **subs = xmalloc(n * sizeof *subs);
bool has_addr_set = false;
/* Linked list over the 'subs' array to quickly skip deleted elements,
* i.e. the index of the next potentially non-NULL element. */
size_t *next = xmalloc(n * sizeof *next);
size_t i = 0, j, max_n_bits = 0;
struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
if (sub->as_name) {
has_addr_set = true;
}
if (symbol->width) {
const unsigned long *sub_mask;
sub_mask = (unsigned long *) &sub->cmp.mask.be64[ofs];
sub->cmp.mask_n_bits = bitmap_count1(sub_mask, bit_width);
max_n_bits = MAX(max_n_bits, sub->cmp.mask_n_bits);
}
next[i] = i + 1; /* Link 'i' -> 'i + 1'. */
subs[i++] = sub;
}
ovs_assert(i == n);
qsort(subs, n, sizeof *subs, compare_cmps_cb);
/* Eliminate duplicates. */
size_t last = 0;
for (i = 1; i < n; i++) {
if (compare_cmps_3way(subs[last], subs[i])) {
next[last] = i;
last = i;
} else {
/* Remove address set reference from the duplicate. */
subs[last]->as_name = NULL;
expr_destroy(subs[i]);
subs[i] = NULL;
}
}
if (!symbol->width || symbol->level != EXPR_L_ORDINAL || has_addr_set) {
/* Not a fully maskable field or this expression is tracking an
* address set. Don't try to optimize to preserve address set I-P. */
goto done;
}
/* Build a mask size index. 'mask_index[n_bits]' is an index in 'subs',
* where expressions with 'n_bits' bits in mask start. */
size_t *mask_index, n_bits;
size_t index_size = (max_n_bits + 2) * sizeof *mask_index;
mask_index = xmalloc(index_size);
/* Initialize to maximum unsigned values. */
memset(mask_index, 0xff, index_size);
for (i = 0; i < n; i = next[i]) {
if (subs[i]) {
n_bits = subs[i]->cmp.mask_n_bits;
mask_index[n_bits] = MIN(mask_index[n_bits], i);
}
}
/* Fill the gaps, so they point to an index with more bits. */
for (i = max_n_bits; i > 0; i--) {
mask_index[i] = MIN(mask_index[i], mask_index[i + 1]);
}
/* Find and eliminate supersets. */
for (i = 0; i < n; i = next[i]) {
if (!subs[i]) {
continue;
}
/* 'subs' are sorted based on the number of bits in the mask.
* For an expression to be a subset, it has to have more bits. */
n_bits = subs[i]->cmp.mask_n_bits;
if (mask_index[n_bits + 1] > n) {
break;
}
for (last = 0, j = mask_index[n_bits + 1]; j < n; j = next[j]) {
struct expr *a = subs[i], *b = subs[j];
ovs_assert(i != j);
if (!b) {
continue;
}
const unsigned long *a_value, *a_mask, *b_value, *b_mask;
a_value = (unsigned long *) &a->cmp.value.be64[ofs];
b_value = (unsigned long *) &b->cmp.value.be64[ofs];
a_mask = (unsigned long *) &a->cmp.mask.be64[ofs];
b_mask = (unsigned long *) &b->cmp.mask.be64[ofs];
if (expr_bitmap_intersect_check(a_value, a_mask, b_value, b_mask,
bit_width)
&& bitmap_is_superset(b_mask, a_mask, bit_width)) {
/* 'a' is the same expression with a smaller mask.
* Remove address set reference from the duplicate. */
a->as_name = NULL;
expr_destroy(subs[j]);
subs[j] = NULL;
/* Shorten the path for the next round. */
if (last) {
next[last] = next[j]; /* Skip the 'j'. */
} else {
/* The first element with 'n_bits + 1' bits was removed. */
mask_index[n_bits + 1] = next[j];
}
} else {
last = j; /* 'j' is the last non-NULL element seen. */
}
}
}
free(mask_index);
done:
ovs_list_init(&expr->andor);
for (i = 0; i < n; i++) {
if (subs[i]) {
ovs_list_push_back(&expr->andor, &subs[i]->node);
}
}
free(next);
free(subs);
return expr;
}
/* Implementation of crush_cmps() for expr->type == EXPR_T_AND and a
* numeric-typed 'symbol'. */
static struct expr *
crush_and_numeric(struct expr *expr, const struct expr_symbol *symbol)
{
ovs_assert(!ovs_list_is_short(&expr->andor));
union mf_subvalue value, mask;
memset(&value, 0, sizeof value);
memset(&mask, 0, sizeof mask);
struct expr *sub, *next = NULL;
LIST_FOR_EACH_SAFE (sub, next, node, &expr->andor) {
ovs_list_remove(&sub->node);
struct expr *new = crush_cmps(sub, symbol);
switch (new->type) {
case EXPR_T_CMP:
if (!mf_subvalue_intersect(&value, &mask,
&new->cmp.value, &new->cmp.mask,
&value, &mask)) {
expr_destroy(new);
expr_destroy(expr);
return expr_create_boolean(false);
}
expr_destroy(new);
break;
case EXPR_T_AND:
OVS_NOT_REACHED();
case EXPR_T_OR:
ovs_list_insert(next ? &next->node : &expr->andor, &new->node);
break;
case EXPR_T_BOOLEAN:
if (!new->boolean) {
expr_destroy(expr);
return new;
}
expr_destroy(new);
break;
case EXPR_T_CONDITION:
OVS_NOT_REACHED();
}
}
if (ovs_list_is_empty(&expr->andor)) {
if (is_all_zeros(&mask, sizeof mask)) {
expr_destroy(expr);
return expr_create_boolean(true);
} else {
struct expr *cmp;
cmp = xzalloc(sizeof *cmp);
cmp->type = EXPR_T_CMP;
cmp->cmp.symbol = symbol;
cmp->cmp.relop = EXPR_R_EQ;
cmp->cmp.value = value;
cmp->cmp.mask = mask;
expr_destroy(expr);
return cmp;
}
} else if (ovs_list_is_short(&expr->andor)) {
/* Transform "a && (b || c || d)" into "ab || ac || ad" where "ab" is
* computed as "a && b", etc. */
struct expr *disjuncts = expr_from_node(ovs_list_pop_front(&expr->andor));
struct expr *or;
or = xzalloc(sizeof *or);
or->type = EXPR_T_OR;
ovs_list_init(&or->andor);
ovs_assert(disjuncts->type == EXPR_T_OR);
LIST_FOR_EACH_SAFE (sub, node, &disjuncts->andor) {
ovs_assert(sub->type == EXPR_T_CMP);
ovs_list_remove(&sub->node);
if (mf_subvalue_intersect(&value, &mask,
&sub->cmp.value, &sub->cmp.mask,
&sub->cmp.value, &sub->cmp.mask)) {
ovs_list_push_back(&or->andor, &sub->node);
} else {
expr_destroy(sub);
}
}
expr_destroy(disjuncts);
expr_destroy(expr);
if (ovs_list_is_empty(&or->andor)) {
expr_destroy(or);
return expr_create_boolean(false);
} else if (ovs_list_is_short(&or->andor)) {
struct expr *cmp = expr_from_node(ovs_list_pop_front(&or->andor));
expr_destroy(or);
return cmp;
} else {
return crush_cmps(or, symbol);
}
} else {
/* Transform "x && (a0 || a1) && (b0 || b1) && ..." into
* "(xa0b0 || xa0b1 || xa1b0 || xa1b1) && ...". */
struct expr *as = expr_from_node(ovs_list_pop_front(&expr->andor));
struct expr *bs = expr_from_node(ovs_list_pop_front(&expr->andor));
struct expr *new = NULL;
struct expr *or;
or = xzalloc(sizeof *or);
or->type = EXPR_T_OR;
ovs_list_init(&or->andor);
struct expr *a;
LIST_FOR_EACH (a, node, &as->andor) {
union mf_subvalue a_value, a_mask;
ovs_assert(a->type == EXPR_T_CMP);
if (!mf_subvalue_intersect(&value, &mask,
&a->cmp.value, &a->cmp.mask,
&a_value, &a_mask)) {
continue;
}
struct expr *b;
LIST_FOR_EACH (b, node, &bs->andor) {
ovs_assert(b->type == EXPR_T_CMP);
if (!new) {
new = xzalloc(sizeof *new);
new->type = EXPR_T_CMP;
new->cmp.symbol = symbol;
new->cmp.relop = EXPR_R_EQ;
}
if (mf_subvalue_intersect(&a_value, &a_mask,
&b->cmp.value, &b->cmp.mask,
&new->cmp.value, &new->cmp.mask)) {
ovs_list_push_back(&or->andor, &new->node);
new = NULL;
}
}
}
expr_destroy(as);
expr_destroy(bs);
expr_destroy(new);
if (ovs_list_is_empty(&or->andor)) {
expr_destroy(expr);
expr_destroy(or);
return expr_create_boolean(false);
} else if (ovs_list_is_short(&or->andor)) {
struct expr *cmp = expr_from_node(ovs_list_pop_front(&or->andor));
expr_destroy(or);
if (ovs_list_is_empty(&expr->andor)) {
expr_destroy(expr);
return crush_cmps(cmp, symbol);
} else {
return crush_cmps(expr_combine(EXPR_T_AND, cmp, expr), symbol);
}
} else if (!ovs_list_is_empty(&expr->andor)) {
struct expr *e = expr_combine(EXPR_T_AND, or, expr);
ovs_assert(!ovs_list_is_short(&e->andor));
return crush_cmps(e, symbol);
} else {
expr_destroy(expr);
return crush_cmps(or, symbol);
}
}
}
/* Implementation of crush_cmps() for expr->type == EXPR_T_OR. */
static struct expr *
crush_or(struct expr *expr, const struct expr_symbol *symbol)
{
struct expr *sub, *next = NULL;
/* First, crush all the subexpressions. That might eliminate the
* OR-expression entirely; if so, return the result. Otherwise, 'expr'
* is now a disjunction of cmps over the same symbol. */
LIST_FOR_EACH_SAFE (sub, next, node, &expr->andor) {
ovs_list_remove(&sub->node);
expr_insert_andor(expr, next ? &next->node : &expr->andor,
crush_cmps(sub, symbol));
}
expr = expr_fix(expr);
if (expr->type != EXPR_T_OR) {
return expr;
}
expr = crush_or_supersets(expr, symbol);
return expr_fix(expr);
}
/* Takes ownership of 'expr', which must have a unique symbol in the sense of
* 'expr_get_unique_symbol(expr)', where 'symbol' is the symbol returned by
* that function. Returns an equivalent expression owned by the caller that is
* a single EXPR_T_CMP or a disjunction of them or a EXPR_T_BOOLEAN. */
static struct expr *
crush_cmps(struct expr *expr, const struct expr_symbol *symbol)
{
switch (expr->type) {
case EXPR_T_OR:
return crush_or(expr, symbol);
case EXPR_T_AND:
return (symbol->width
? crush_and_numeric(expr, symbol)
: crush_and_string(expr, symbol));
case EXPR_T_CMP:
return expr;
case EXPR_T_BOOLEAN:
return expr;
/* Should not hit expression type condition, since crush_cmps is only
* called during expr_normalize, after expr_simplify which resolves
* all conditions. */
case EXPR_T_CONDITION:
default:
OVS_NOT_REACHED();
}
}
/* Applied to an EXPR_T_AND 'expr' whose subexpressions are in terms of only
* EXPR_T_CMP, EXPR_T_AND, and EXPR_T_OR, this takes ownership of 'expr' and
* returns a new expression in terms of EXPR_T_CMP, EXPR_T_AND, EXPR_T_OR, or
* EXPR_T_BOOLEAN.
*
* The function attempts to bring together and combine clauses of the original
* 'expr' that were in terms of a single variable. For example, it combines
* (x[0] == 1 && x[1] == 1) into the single x[0..1] == 3. */
static struct expr *
expr_sort(struct expr *expr)
{
ovs_assert(expr->type == EXPR_T_AND);
size_t n = ovs_list_size(&expr->andor);
struct expr_sort *subs = xzalloc(n * sizeof *subs);
struct expr *sub;
size_t i;
i = 0;
LIST_FOR_EACH (sub, node, &expr->andor) {
subs[i].expr = sub;
subs[i].symbol = expr_get_unique_symbol(sub);
subs[i].type = subs[i].symbol ? EXPR_T_CMP : sub->type;
i++;
}
ovs_assert(i == n);
qsort(subs, n, sizeof *subs, compare_expr_sort);
ovs_list_init(&expr->andor);
expr_destroy(expr);
expr = NULL;
for (i = 0; i < n; ) {
if (subs[i].symbol) {
size_t j;
for (j = i + 1; j < n; j++) {
if (subs[i].symbol != subs[j].symbol) {
break;
}
}
struct expr *crushed;
if (j == i + 1) {
crushed = crush_cmps(subs[i].expr, subs[i].symbol);
} else {
struct expr *combined = subs[i].expr;
for (size_t k = i + 1; k < j; k++) {
combined = expr_combine(EXPR_T_AND, combined,
subs[k].expr);
}
ovs_assert(!ovs_list_is_short(&combined->andor));
crushed = crush_cmps(combined, subs[i].symbol);
}
if (crushed->type == EXPR_T_BOOLEAN) {
if (!crushed->boolean) {
for (size_t k = j; k < n; k++) {
expr_destroy(subs[k].expr);
}
expr_destroy(expr);
expr = crushed;
break;
} else {
expr_destroy(crushed);
}
} else {
expr = expr_combine(EXPR_T_AND, expr, crushed);
}
i = j;
} else {
expr = expr_combine(EXPR_T_AND, expr, subs[i++].expr);
}
}
free(subs);
return expr ? expr : expr_create_boolean(true);
}
static struct expr *expr_normalize_or(struct expr *expr);
/* Returns 'expr', which is an AND, reduced to OR(AND(clause)) where
* a clause is a cmp or a disjunction of cmps on a single field. */
static struct expr *
expr_normalize_and(struct expr *expr)
{
expr = expr_sort(expr);
if (expr->type != EXPR_T_AND) {
return expr;
}
struct expr *a, *b;
LIST_FOR_EACH_SAFE (a, b, node, &expr->andor) {
if (!b || a->type != EXPR_T_CMP || b->type != EXPR_T_CMP
|| a->cmp.symbol != b->cmp.symbol) {
continue;
} else if (a->cmp.symbol->width
? mf_subvalue_intersect(&a->cmp.value, &a->cmp.mask,
&b->cmp.value, &b->cmp.mask,
&b->cmp.value, &b->cmp.mask)
: !strcmp(a->cmp.string, b->cmp.string)) {
ovs_list_remove(&a->node);
expr_destroy(a);
} else {
expr_destroy(expr);
return expr_create_boolean(false);
}
}
if (ovs_list_is_short(&expr->andor)) {
struct expr *sub = expr_from_node(ovs_list_pop_front(&expr->andor));
expr_destroy(expr);
return sub;
}
struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
if (sub->type == EXPR_T_CMP || sub->type == EXPR_T_CONDITION) {
continue;
}
ovs_assert(sub->type == EXPR_T_OR);
const struct expr_symbol *symbol = expr_get_unique_symbol(sub);
if (!symbol || symbol->must_crossproduct) {
struct expr *or = expr_create_andor(EXPR_T_OR);
struct expr *k;
LIST_FOR_EACH (k, node, &sub->andor) {
struct expr *and = expr_create_andor(EXPR_T_AND);
struct expr *m;
LIST_FOR_EACH (m, node, &expr->andor) {
struct expr *term = m == sub ? k : m;
if (term->type == EXPR_T_AND) {
struct expr *p;
LIST_FOR_EACH (p, node, &term->andor) {
struct expr *new = expr_clone(p);
ovs_list_push_back(&and->andor, &new->node);
}
} else {
struct expr *new = expr_clone(term);
ovs_list_push_back(&and->andor, &new->node);
}
}
ovs_list_push_back(&or->andor, &and->node);
}
expr_destroy(expr);
return expr_normalize_or(or);
}
}
return expr;
}
static struct expr *
expr_normalize_or(struct expr *expr)
{
struct expr *sub, *next;
LIST_FOR_EACH_SAFE (sub, next, node, &expr->andor) {
if (sub->type == EXPR_T_AND) {
ovs_list_remove(&sub->node);
struct expr *new = expr_normalize_and(sub);
if (new->type == EXPR_T_BOOLEAN) {
if (new->boolean) {
expr_destroy(expr);
return new;
}
expr_destroy(new);
} else {
expr_insert_andor(expr, next ? &next->node : &expr->andor,
new);
}
} else {
ovs_assert(sub->type == EXPR_T_CMP ||
sub->type == EXPR_T_CONDITION);
}
}
if (ovs_list_is_empty(&expr->andor)) {
expr_destroy(expr);
return expr_create_boolean(false);
}
if (ovs_list_is_short(&expr->andor)) {
struct expr *e = expr_from_node(ovs_list_pop_front(&expr->andor));
expr_destroy(expr);
return e;
}
return expr;
}
/* Takes ownership of 'expr', which is either a constant "true" or "false" or
* an expression in terms of only relationals, AND, and OR. Returns either a
* constant "true" or "false" or 'expr' reduced to OR(AND(clause)) where a
* clause is a cmp or a disjunction of cmps on a single field. This form is
* significant because it is a form that can be directly converted to OpenFlow
* flows with the Open vSwitch "conjunctive match" extension.
*
* 'expr' must already have been simplified, with expr_simplify() and had
* conditions evaluated using expr_evaluate_condition(). */
struct expr *
expr_normalize(struct expr *expr)
{
switch (expr->type) {
case EXPR_T_CMP:
return expr;
case EXPR_T_AND:
return expr_normalize_and(expr);
case EXPR_T_OR:
return expr_normalize_or(expr);
case EXPR_T_BOOLEAN:
return expr;
/* Should not hit expression type condition, since expr_normalize is
* only called after expr_evaluate_condition(), which resolves all
* conditions. */
case EXPR_T_CONDITION:
default:
OVS_NOT_REACHED();
}
}
/* Creates, initializes, and returns a new 'struct expr_match'. If 'm' is
* nonnull then it is copied into the new expr_match, otherwise the new
* expr_match's 'match' member is initialized to a catch-all match for the
* caller to refine in-place.
*
* If 'conj_id' is nonzero, adds one conjunction based on 'conj_id', 'clause',
* and 'n_clauses' to the returned 'struct expr_match', otherwise the
* expr_match will not have any conjunctions.
*
* The caller should use expr_match_add() to add the expr_match to a hash table
* after it is finalized. */
static struct expr_match *
expr_match_new(const struct match *m, uint8_t clause, uint8_t n_clauses,
uint32_t conj_id)
{
struct expr_match *match = xzalloc(sizeof *match);
if (m) {
match->match = *m;
} else {
match_init_catchall(&match->match);
}
if (conj_id) {
match->conjunctions =
VECTOR_CAPACITY_INITIALIZER(struct cls_conjunction, 1);
struct cls_conjunction conj = (struct cls_conjunction) {
.id = conj_id,
.clause = clause,
.n_clauses = n_clauses,
};
vector_push(&match->conjunctions, &conj);
} else {
match->conjunctions = VECTOR_EMPTY_INITIALIZER(struct cls_conjunction);
}
return match;
}
void
expr_match_destroy(struct expr_match *match)
{
free(match->as_name);
vector_destroy(&match->conjunctions);
free(match);
}
/* Adds 'match' to hash table 'matches', which becomes the new owner of
* 'match'.
*
* This might actually destroy 'match' because it gets merged together with
* some existing conjunction.*/
static void
expr_match_add(struct hmap *matches, struct expr_match *match)
{
uint32_t hash = match_hash(&match->match, 0);
struct expr_match *m;
HMAP_FOR_EACH_WITH_HASH (m, hmap_node, hash, matches) {
if (match_equal(&m->match, &match->match)) {
if (vector_is_empty(&m->conjunctions) ||
vector_is_empty(&match->conjunctions)) {
vector_destroy(&m->conjunctions);
} else {
ovs_assert(vector_len(&match->conjunctions) == 1);
vector_push(&m->conjunctions,
vector_get_ptr(&match->conjunctions, 0));
}
if (m->as_name) {
/* m is combined with match. so untracked the address set. */
free(m->as_name);
m->as_name = NULL;
}
expr_match_destroy(match);
return;
}
}
hmap_insert(matches, &match->hmap_node, hash);
}
/* Applies EXPR_T_CMP-typed 'expr' to 'm'. This will only work properly if 'm'
* doesn't already match on 'expr->cmp.symbol', because it replaces any
* existing match on that symbol instead of intersecting with it.
*
* If 'expr' is a comparison on a string field, uses 'lookup_port' and 'aux' to
* convert the string to a port number. In such a case, if the port can't be
* found, returns false. In all other cases, returns true. */
static bool
constrain_match(const struct expr *expr,
bool (*lookup_port)(const void *aux,
const char *port_name,
unsigned int *portp),
const void *aux, struct match *m)
{
ovs_assert(expr->type == EXPR_T_CMP);
if (expr->cmp.symbol->width) {
mf_mask_subfield(expr->cmp.symbol->field, &expr->cmp.value,
&expr->cmp.mask, m);
} else {
unsigned int port;
if (!lookup_port(aux, expr->cmp.string, &port)) {
return false;
}
struct mf_subfield sf;
sf.field = expr->cmp.symbol->field;
sf.ofs = 0;
sf.n_bits = expr->cmp.symbol->field->n_bits;
union mf_subvalue x;
memset(&x, 0, sizeof x);
x.integer = htonll(port);
mf_write_subfield(&sf, &x, m);
}
return true;
}
static bool
add_disjunction(const struct expr *or,
bool (*lookup_port)(const void *aux, const char *port_name,
unsigned int *portp),
const void *aux,
struct match *m, uint8_t clause, uint8_t n_clauses,
uint32_t conj_id, struct hmap *matches)
{
struct expr *sub;
int n = 0;
ovs_assert(or->type == EXPR_T_OR);
LIST_FOR_EACH (sub, node, &or->andor) {
struct expr_match *match = expr_match_new(m, clause, n_clauses,
conj_id);
if (sub->as_name) {
ovs_assert(sub->type == EXPR_T_CMP);
ovs_assert(sub->cmp.symbol->width);
match->as_name = xstrdup(sub->as_name);
match->as_ip = sub->cmp.value.ipv6;
match->as_mask = sub->cmp.mask.ipv6;
}
if (constrain_match(sub, lookup_port, aux, &match->match)) {
expr_match_add(matches, match);
n++;
} else {
expr_match_destroy(match);
}
}
/* If n == 1, then this didn't really need to be a disjunction. Oh well,
* that shouldn't happen much. */
return n > 0;
}
static void
add_conjunction(const struct expr *and,
bool (*lookup_port)(const void *aux, const char *port_name,
unsigned int *portp),
const void *aux, uint32_t *n_conjsp, struct hmap *matches)
{
struct match match;
int n_clauses = 0;
struct expr *sub;
match_init_catchall(&match);
ovs_assert(and->type == EXPR_T_AND);
LIST_FOR_EACH (sub, node, &and->andor) {
switch (sub->type) {
case EXPR_T_CMP:
if (!constrain_match(sub, lookup_port, aux, &match)) {
return;
}
break;
case EXPR_T_OR:
n_clauses++;
break;
case EXPR_T_AND:
case EXPR_T_BOOLEAN:
case EXPR_T_CONDITION:
default:
OVS_NOT_REACHED();
}
}
if (!n_clauses) {
expr_match_add(matches, expr_match_new(&match, 0, 0, 0));
} else if (n_clauses == 1) {
LIST_FOR_EACH (sub, node, &and->andor) {
if (sub->type == EXPR_T_OR) {
add_disjunction(sub, lookup_port, aux, &match, 0, 0, 0,
matches);
}
}
} else {
int clause = 0;
(*n_conjsp)++;
LIST_FOR_EACH (sub, node, &and->andor) {
if (sub->type == EXPR_T_OR) {
if (!add_disjunction(sub, lookup_port, aux, &match, clause++,
n_clauses, *n_conjsp, matches)) {
/* This clause can't ever match, so we might as well skip
* adding the other clauses--the overall disjunctive flow
* can't ever match. Ideally we would also back out all of
* the clauses we already added, but that seems like a lot
* of trouble for a case that might never occur in
* practice. */
return;
}
}
}
/* Add the flow that matches on conj_id. */
match_set_conj_id(&match, *n_conjsp);
expr_match_add(matches, expr_match_new(&match, 0, 0, 0));
}
}
static void
add_cmp_flow(const struct expr *cmp,
bool (*lookup_port)(const void *aux, const char *port_name,
unsigned int *portp),
const void *aux, struct hmap *matches)
{
struct expr_match *m = expr_match_new(NULL, 0, 0, 0);
if (constrain_match(cmp, lookup_port, aux, &m->match)) {
expr_match_add(matches, m);
} else {
expr_match_destroy(m);
}
}
/* Converts 'expr', which must be in the form returned by expr_normalize(), to
* a collection of Open vSwitch flows in 'matches', which this function
* initializes to an hmap of "struct expr_match" structures. Returns the
* number of conjunctive match IDs consumed by 'matches', which uses
* conjunctive match IDs beginning with 1; the caller must offset or remap them
* into the desired range as necessary.
*
* The matches inserted into 'matches' will be of three distinct kinds:
*
* - Ordinary flows. The caller should add these OpenFlow flows with
* its desired actions.
*
* - Conjunctive flows, distinguished by 'n > 0' in the expr_match
* structure. The caller should add these OpenFlow flows with the
* conjunction(id, k/n) actions as specified in the 'conjunctions' array,
* remapping the ids.
*
* - conj_id flows, distinguished by matching on the "conj_id" field. The
* caller should remap the conj_id and add the OpenFlow flow with its
* desired actions.
*
* 'lookup_port' must be a function to map from a port name to a port number.
* When successful, 'lookup_port' stores the port number into '*portp' and
* returns true; when there is no port by the given name, it returns false.
* 'aux' is passed to 'lookup_port' as auxiliary data. Any comparisons against
* string fields in 'expr' are translated into integers through this function.
* A comparison against a string that is not in 'ports' acts like a Boolean
* "false"; that is, it will always fail to match. For a simple expression,
* this means that the overall expression always fails to match, but an
* expression with a disjunction on the string field might still match on other
* port names.
*
* (This treatment of string fields might be too simplistic in general, but it
* seems reasonable for now when string fields are used only for ports.) */
uint32_t
expr_to_matches(const struct expr *expr,
bool (*lookup_port)(const void *aux, const char *port_name,
unsigned int *portp),
const void *aux, struct hmap *matches)
{
uint32_t n_conjs = 0;
hmap_init(matches);
switch (expr->type) {
case EXPR_T_CMP:
add_cmp_flow(expr, lookup_port, aux, matches);
break;
case EXPR_T_AND:
add_conjunction(expr, lookup_port, aux, &n_conjs, matches);
break;
case EXPR_T_OR:
if (expr_get_unique_symbol(expr)) {
struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
add_cmp_flow(sub, lookup_port, aux, matches);
}
} else {
struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
if (sub->type == EXPR_T_AND) {
add_conjunction(sub, lookup_port, aux, &n_conjs, matches);
} else {
add_cmp_flow(sub, lookup_port, aux, matches);
}
}
}
break;
case EXPR_T_BOOLEAN:
if (expr->boolean) {
struct expr_match *m = expr_match_new(NULL, 0, 0, 0);
expr_match_add(matches, m);
} else {
/* No match. */
}
break;
/* Should not hit expression type condition, since expr_to_matches is
* only called after expr_simplify, which resolves all conditions. */
case EXPR_T_CONDITION:
default:
OVS_NOT_REACHED();
}
return n_conjs;
}
/* Prepares the expr matches in the hmap 'matches' by updating the
* conj id offsets specified in 'conj_id_ofs'.
*
* Returns the total size (in bytes) of the matches data structure, including
* individual match entries.
*/
size_t
expr_matches_prepare(struct hmap *matches, uint32_t conj_id_ofs)
{
size_t total_size = sizeof *matches;
struct expr_match *m;
HMAP_FOR_EACH (m, hmap_node, matches) {
if (m->match.wc.masks.conj_id) {
m->match.flow.conj_id += conj_id_ofs;
}
struct cls_conjunction *src;
VECTOR_FOR_EACH_PTR (&m->conjunctions, src) {
src->id += conj_id_ofs;
}
total_size += sizeof *m + vector_memory_usage(&m->conjunctions);
}
return total_size;
}
/* Destroys all of the 'struct expr_match'es in 'matches', as well as the
* 'matches' hmap itself. */
void
expr_matches_destroy(struct hmap *matches)
{
struct expr_match *m;
if (!matches) {
return;
}
HMAP_FOR_EACH_POP (m, hmap_node, matches) {
expr_match_destroy(m);
}
hmap_destroy(matches);
}
/* Prints a representation of the 'struct expr_match'es in 'matches' to
* 'stream'. */
void
expr_matches_print(const struct hmap *matches, FILE *stream)
{
if (hmap_is_empty(matches)) {
fputs("(no flows)\n", stream);
return;
}
const struct expr_match *m;
HMAP_FOR_EACH (m, hmap_node, matches) {
char *s = match_to_string(&m->match, NULL, OFP_DEFAULT_PRIORITY);
fputs(s, stream);
free(s);
bool first = true;
struct cls_conjunction *c;
VECTOR_FOR_EACH_PTR (&m->conjunctions, c) {
fprintf(stream, "%c conjunction(%"PRIu32", %d/%d)",
first ? ':' : ',', c->id, c->clause, c->n_clauses);
first = false;
}
putc('\n', stream);
}
}
/* Returns true if 'expr' honors the invariants for expressions (see the large
* comment above "struct expr" in expr.h), false otherwise. */
bool
expr_honors_invariants(const struct expr *expr)
{
const struct expr *sub;
switch (expr->type) {
case EXPR_T_CMP:
if (expr->cmp.symbol->width) {
for (int i = 0; i < ARRAY_SIZE(expr->cmp.value.be64); i++) {
if (expr->cmp.value.be64[i] & ~expr->cmp.mask.be64[i]) {
return false;
}
}
}
return true;
case EXPR_T_AND:
case EXPR_T_OR:
if (ovs_list_is_short(&expr->andor)) {
return false;
}
LIST_FOR_EACH (sub, node, &expr->andor) {
if (sub->type == expr->type || !expr_honors_invariants(sub)) {
return false;
}
}
return true;
case EXPR_T_BOOLEAN:
case EXPR_T_CONDITION:
return true;
default:
OVS_NOT_REACHED();
}
}
static bool
expr_is_normalized_and(const struct expr *expr)
{
/* XXX should also check that no symbol is repeated. */
const struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
if (!expr_get_unique_symbol(sub)) {
return false;
}
}
return true;
}
/* Returns true if 'expr' is in the form returned by expr_normalize(), false
* otherwise. */
bool
expr_is_normalized(const struct expr *expr)
{
switch (expr->type) {
case EXPR_T_CMP:
return true;
case EXPR_T_AND:
return expr_is_normalized_and(expr);
case EXPR_T_OR:
if (!expr_get_unique_symbol(expr)) {
const struct expr *sub;
LIST_FOR_EACH (sub, node, &expr->andor) {
if (!expr_get_unique_symbol(sub)
&& !expr_is_normalized_and(sub)) {
return false;
}
}
}
return true;
case EXPR_T_BOOLEAN:
return true;
case EXPR_T_CONDITION:
return false;
default:
OVS_NOT_REACHED();
}
}
static bool
expr_evaluate_andor(const struct expr *e, const struct flow *f,
bool short_circuit,
bool (*lookup_port)(const void *aux, const char *port_name,
unsigned int *portp),
const void *aux)
{
const struct expr *sub;
LIST_FOR_EACH (sub, node, &e->andor) {
if (expr_evaluate(sub, f, lookup_port, aux) == short_circuit) {
return short_circuit;
}
}
return !short_circuit;
}
static bool
expr_evaluate_cmp(const struct expr *e, const struct flow *f,
bool (*lookup_port)(const void *aux, const char *port_name,
unsigned int *portp),
const void *aux)
{
const struct expr_symbol *s = e->cmp.symbol;
const struct mf_field *field = s->field;
int cmp;
if (e->cmp.symbol->width) {
int n_bytes = field->n_bytes;
const uint8_t *cst = &e->cmp.value.u8[sizeof e->cmp.value - n_bytes];
const uint8_t *mask = &e->cmp.mask.u8[sizeof e->cmp.mask - n_bytes];
/* Get field value and mask off undesired bits. */
union mf_value value;
mf_get_value(field, f, &value);
for (int i = 0; i < field->n_bytes; i++) {
value.b[i] &= mask[i];
}
/* Compare against constant. */
cmp = memcmp(&value, cst, n_bytes);
} else {
/* Get field value. */
struct mf_subfield sf = { .field = field, .ofs = 0,
.n_bits = field->n_bits };
uint64_t value = mf_get_subfield(&sf, f);
/* Get constant. */
unsigned int cst;
if (!lookup_port(aux, e->cmp.string, &cst)) {
return false;
}
/* Compare. */
cmp = value < cst ? -1 : value > cst;
}
return expr_relop_test(e->cmp.relop, cmp);
}
/* Evaluates 'e' against microflow 'uflow' and returns the result.
*
* 'lookup_port' must be a function to map from a port name to a port number
* and 'aux' auxiliary data to pass to it; see expr_to_matches() for more
* details.
*
* This isn't particularly fast. For performance-sensitive tasks, use
* expr_to_matches() and the classifier. */
bool
expr_evaluate(const struct expr *e, const struct flow *uflow,
bool (*lookup_port)(const void *aux, const char *port_name,
unsigned int *portp),
const void *aux)
{
switch (e->type) {
case EXPR_T_CMP:
return expr_evaluate_cmp(e, uflow, lookup_port, aux);
case EXPR_T_AND:
return expr_evaluate_andor(e, uflow, false, lookup_port, aux);
case EXPR_T_OR:
return expr_evaluate_andor(e, uflow, true, lookup_port, aux);
case EXPR_T_BOOLEAN:
return e->boolean;
case EXPR_T_CONDITION:
/* Assume tests calling expr_evaluate are not chassis specific, so
* is_chassis_resident evaluates as true. */
return (e->cond.not ? false : true);
default:
OVS_NOT_REACHED();
}
}
/* Action parsing helper. */
/* Checks that 'f' is 'n_bits' wide (where 'n_bits == 0' means that 'f' must be
* a string field) and, if 'rw' is true, that 'f' is modifiable. Returns NULL
* if 'f' is acceptable, otherwise a malloc()'d error message that the caller
* must free(). */
char * OVS_WARN_UNUSED_RESULT
expr_type_check(const struct expr_field *f, int n_bits, bool rw,
enum expr_write_scope write_scope)
{
if (n_bits != f->n_bits) {
if (n_bits && f->n_bits) {
return xasprintf("Cannot use %d-bit field %s[%d..%d] "
"where %d-bit field is required.",
f->n_bits, f->symbol->name,
f->ofs, f->ofs + f->n_bits - 1,
n_bits);
} else if (n_bits) {
return xasprintf("Cannot use string field %s where numeric "
"field is required.", f->symbol->name);
} else {
return xasprintf("Cannot use numeric field %s where string "
"field is required.", f->symbol->name);
}
}
if (rw && !(f->symbol->rw & write_scope)) {
return xasprintf("Field %s is not modifiable.", f->symbol->name);
}
return NULL;
}
/* Returns the mf_subfield that corresponds to 'f'. */
struct mf_subfield
expr_resolve_field(const struct expr_field *f)
{
const struct expr_symbol *symbol = f->symbol;
int ofs = f->ofs;
while (symbol->parent) {
ofs += symbol->parent_ofs;
symbol = symbol->parent;
}
int n_bits = symbol->width ? f->n_bits : symbol->field->n_bits;
return (struct mf_subfield) { symbol->field, ofs, n_bits };
}
static bool
microflow_is_chassis_resident_cb(const void *c_aux OVS_UNUSED,
const char *port_name OVS_UNUSED)
{
/* Assume tests calling expr_parse_microflow are not chassis specific, so
* is_chassis_resident need not be supplied and should return true. */
return true;
}
static struct expr *
expr_parse_microflow__(struct lexer *lexer,
const struct shash *symtab,
bool (*lookup_port)(const void *aux,
const char *port_name,
unsigned int *portp),
const void *aux,
struct expr *e, struct flow *uflow)
{
char *error;
e = expr_annotate(e, symtab, &error);
if (error) {
lexer_error(lexer, "%s", error);
free(error);
return NULL;
}
struct ds annotated = DS_EMPTY_INITIALIZER;
expr_format(e, &annotated);
e = expr_simplify(e);
e = expr_evaluate_condition(e, microflow_is_chassis_resident_cb,
NULL);
e = expr_normalize(e);
struct match m = MATCH_CATCHALL_INITIALIZER;
switch (e->type) {
case EXPR_T_BOOLEAN:
if (!e->boolean) {
lexer_error(lexer, "Constraints are contradictory.");
}
break;
case EXPR_T_OR:
lexer_error(lexer, "Constraints are ambiguous: %s.",
ds_cstr(&annotated));
break;
case EXPR_T_CMP:
constrain_match(e, lookup_port, aux, &m);
break;
case EXPR_T_AND: {
struct expr *sub;
LIST_FOR_EACH (sub, node, &e->andor) {
if (sub->type == EXPR_T_CMP) {
constrain_match(sub, lookup_port, aux, &m);
} else {
ovs_assert(sub->type == EXPR_T_OR);
lexer_error(lexer, "Constraints are ambiguous: %s.",
ds_cstr(&annotated));
break;
}
}
}
break;
/* Should not hit expression type condition, since
* expr_simplify was called above. */
case EXPR_T_CONDITION:
default:
OVS_NOT_REACHED();
}
ds_destroy(&annotated);
*uflow = m.flow;
return e;
}
/* Parses 's' as a microflow, using symbols from 'symtab', address set
* table from 'addr_sets' and 'port_groups', and looking up port numbers using
* 'lookup_port' and 'aux'. On success, stores the result in 'uflow' and
* returns NULL, otherwise zeros 'uflow' and returns an error message that the
* caller must free().
*
* A "microflow" is a description of a single stream of packets, such as half a
* TCP connection. 's' uses the syntax of an OVN logical expression to express
* constraints that describe the microflow. For example, "ip4 && tcp.src ==
* 80" would set uflow->dl_type to ETH_TYPE_IP, uflow->nw_proto to IPPROTO_TCP,
* and uflow->tp_src to 80.
*
* Microflow expressions can be erroneous in two ways. First, they can be
* ambiguous. For example, "tcp.src == 80" is ambiguous because it does not
* state IPv4 or IPv6 as the Ethernet type. "ip4 && tcp.src > 1024" is also
* ambiguous because it does not constrain bits of tcp.src to particular
* values. Second, they can be contradictory, e.g. "ip4 && ip6". This
* function will report both types of errors.
*
* This function isn't that smart, so it can yield errors for some "clever"
* formulations of particular microflows that area accepted other ways. For
* example, all of the following expressions are equivalent:
* ip4 && tcp.src[1..15] == 0x28
* ip4 && tcp.src > 79 && tcp.src < 82
* ip4 && 80 <= tcp.src <= 81
* ip4 && tcp.src == {80, 81}
* but as of this writing this function only accepts the first two, rejecting
* the last two as ambiguous. Just don't be too clever. */
char * OVS_WARN_UNUSED_RESULT
expr_parse_microflow(const char *s, const struct shash *symtab,
const struct shash *addr_sets,
const struct shash *port_groups,
bool (*lookup_port)(const void *aux,
const char *port_name,
unsigned int *portp),
const void *aux, struct flow *uflow)
{
struct lexer lexer;
lexer_init(&lexer, s);
lexer_get(&lexer);
struct expr *e = expr_parse(&lexer, symtab, addr_sets, port_groups,
NULL, NULL, 0);
lexer_force_end(&lexer);
if (e) {
e = expr_parse_microflow__(&lexer, symtab, lookup_port, aux, e, uflow);
}
char *error = lexer_steal_error(&lexer);
lexer_destroy(&lexer);
expr_destroy(e);
if (error) {
memset(uflow, 0, sizeof *uflow);
}
return error;
}
static void
expr_find_inports(const struct expr *e, struct sset *inports)
{
const struct expr *sub;
switch (e->type) {
case EXPR_T_CMP:
if (!strcmp(e->cmp.symbol->name, "inport")
&& !e->cmp.symbol->width
&& e->cmp.relop == EXPR_R_EQ) {
sset_add(inports, e->cmp.string);
}
break;
case EXPR_T_AND:
case EXPR_T_OR:
LIST_FOR_EACH (sub, node, &e->andor) {
expr_find_inports(sub, inports);
}
break;
case EXPR_T_BOOLEAN:
case EXPR_T_CONDITION:
/* Nothing to do. */
break;
}
}
/* Traverses 'e' looking for a match against inport. If found, returns a copy
* of its name. If no matches or more than one (different) match is found,
* returns NULL and stores an error message in '*errorp'. The caller must free
* both the error message and the port name. */
char *
expr_find_inport(const struct expr *e, char **errorp)
{
struct sset inports = SSET_INITIALIZER(&inports);
expr_find_inports(e, &inports);
char *retval = NULL;
if (sset_count(&inports) == 1) {
retval = sset_pop(&inports);
*errorp = NULL;
} else if (sset_is_empty(&inports)) {
*errorp = xstrdup("flow match expression does not match on inport");
} else {
*errorp = xstrdup("flow match expression matches on multiple inports");
}
sset_destroy(&inports);
return retval;
}
|