1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
|
Usage
=====
WMS
---
Find out what a WMS has to offer. Service metadata:
.. code-block:: python
>>> from owslib.wms import WebMapService
>>> wms = WebMapService('http://wms.jpl.nasa.gov/wms.cgi', version='1.1.1')
>>> wms.identification.type
'OGC:WMS'
>>> wms.identification.version
'1.1.1'
>>> wms.identification.title
'JPL Global Imagery Service'
>>> wms.identification.abstract
'WMS Server maintained by JPL, worldwide satellite imagery.'
Available layers:
.. code-block:: python
>>> list(wms.contents)
['global_mosaic', 'global_mosaic_base', 'us_landsat_wgs84', 'srtm_mag', 'daily_terra_721', 'daily_aqua_721', 'daily_terra_ndvi', 'daily_aqua_ndvi', 'daily_terra', 'daily_aqua', 'BMNG', 'modis', 'huemapped_srtm', 'srtmplus', 'worldwind_dem', 'us_ned', 'us_elevation', 'us_colordem']
Details of a layer:
.. code-block:: python
>>> wms['global_mosaic'].title
'WMS Global Mosaic, pan sharpened'
>>> wms['global_mosaic'].queryable
0
>>> wms['global_mosaic'].opaque
0
>>> wms['global_mosaic'].boundingBox
>>> wms['global_mosaic'].boundingBoxWGS84
(-180.0, -60.0, 180.0, 84.0)
>>> wms['global_mosaic'].crsOptions
['EPSG:4326', 'AUTO:42003']
>>> wms['global_mosaic'].styles
{'pseudo_bright': {'title': 'Pseudo-color image (Uses IR and Visual bands, 542 mapping), gamma 1.5'}, 'pseudo': {'title': '(default) Pseudo-color image, pan sharpened (Uses IR and Visual bands, 542 mapping), gamma 1.5'}, 'visual': {'title': 'Real-color image, pan sharpened (Uses the visual bands, 321 mapping), gamma 1.5'}, 'pseudo_low': {'title': 'Pseudo-color image, pan sharpened (Uses IR and Visual bands, 542 mapping)'}, 'visual_low': {'title': 'Real-color image, pan sharpened (Uses the visual bands, 321 mapping)'}, 'visual_bright': {'title': 'Real-color image (Uses the visual bands, 321 mapping), gamma 1.5'}}
Available methods, their URLs, and available formats:
.. code-block:: python
>>> [op.name for op in wms.operations]
['GetCapabilities', 'GetMap']
>>> wms.getOperationByName('GetMap').methods
{'Get': {'url': 'http://wms.jpl.nasa.gov/wms.cgi?'}}
>>> wms.getOperationByName('GetMap').formatOptions
['image/jpeg', 'image/png', 'image/geotiff', 'image/tiff']
That's everything needed to make a request for imagery:
.. code-block:: python
>>> img = wms.getmap( layers=['global_mosaic'],
... styles=['visual_bright'],
... srs='EPSG:4326',
... bbox=(-112, 36, -106, 41),
... size=(300, 250),
... format='image/jpeg',
... transparent=True
... )
>>> out = open('jpl_mosaic_visb.jpg', 'wb')
>>> out.write(img.read())
>>> out.close()
Result:
.. image:: _static/jpl_mosaic_visb.jpg
:width: 300px
:height: 250px
:alt: WMS GetMap generated by OWSLib
WFS
---
Connect to a WFS and inspect its capabilities.
.. code-block:: python
>>> from owslib.wfs import WebFeatureService
>>> wfs20 = WebFeatureService(url='https://services.rce.geovoorziening.nl/dijken/wfs', version='2.0.0')
>>> wfs20.identification.title
'Landschapsatlas'
>>> [operation.name for operation in wfs20.operations]
['GetCapabilities', 'DescribeFeatureType', 'GetFeature', 'GetPropertyValue', 'ListStoredQueries', 'DescribeStoredQueries',
'CreateStoredQuery', 'DropStoredQuery', 'ImplementsBasicWFS', 'ImplementsTransactionalWFS', 'ImplementsLockingWFS',
'KVPEncoding', 'XMLEncoding', 'SOAPEncoding', 'ImplementsInheritance', 'ImplementsRemoteResolve', 'ImplementsResultPaging',
'ImplementsStandardJoins', 'ImplementsSpatialJoins', 'ImplementsTemporalJoins', 'ImplementsFeatureVersioning',
'ManageStoredQueries', 'PagingIsTransactionSafe', 'QueryExpressions']
List FeatureTypes
.. code-block:: python
>>> list(wfs20.contents)
['dijken:dijken_bovenregionale_betekenis', 'dijken:dijklijnenkaart_rce']
Download GML using ``typename``, ``bbox`` and ``srsname``.
.. code-block:: python
>>> # OWSLib will switch the axis order from EN to NE automatically if designated by EPSG-Registry
>>> response = wfs20.getfeature(typename='dijken:dijklijnenkaart_rce', bbox=(173700,440400,178700,441400), srsname='EPSG:28992')
>>> str(response.read())
'b\'<?xml version="1.0" encoding="UTF-8"?><dijken:dijklijnenkaart_rce...\''
Download in other formats (if supported by server) and pagination.
.. code-block:: python
>>> # Check which output formats are available for GetFeature
>>> [o.parameters['outputFormat']['values'] for o in wfs20.operations if o.name=='GetFeature']
[['application/gml+xml; version=3.2', 'DXF', 'DXF-ZIP', 'GML2', 'KML', 'SHAPE-ZIP', 'application/json', 'application/vnd.google-earth.kml xml',
'application/vnd.google-earth.kml+xml', 'csv', 'gml3', 'gml32', 'json', 'text/csv', 'text/xml; subtype=gml/2.1.2', 'text/xml; subtype=gml/3.1.1', 'text/xml; subtype=gml/3.2']]
>>> response = wfs20.getfeature(typename='dijken:dijklijnenkaart_rce', bbox=(173700,440400,178700,441400), srsname='EPSG:28992', outputFormat='application/json')
>>> response.read()
b'{"type":"FeatureCollection","features":...'
>>> response = wfs20.getfeature(typename='dijken:dijklijnenkaart_rce', srsname='EPSG:4326', maxfeatures=20, startindex=1)
'b\'<?xml version="1.0" encoding="UTF-8"?><dijken:dijklijnenkaart_rce...\''
Return a FeatureType's schema via ``DescribeFeatureType``. The dictionary returned is
compatible with a `Fiona schema object <https://fiona.readthedocs.io/en/latest/fiona.html#fiona.collection.Collection.schema>`_.
.. code-block:: python
>>> wfs20.get_schema('dijken:dijklijnenkaart_rce')
{'properties': {'ogc_fid': 'int', 'id': 'string', 'naam': 'string', 'aanleg_beg': 'string', 'aanleg_ein': 'string', 'aanleg_ind': 'string', 'status': 'string', 'herkomst': 'string', 'verdwenen': 'string', 'oorsprfunc': 'string', 'naspfunc': 'string', 'bijzonderh': 'string', 'bron_data': 'string', 'bron_id': 'string', 'bron_geo': 'string', 'rce_zone': 'string', 'waternaam': 'string', 'polder': 'string', 'shape_leng': 'double', 'opmerking': 'string', 'laatst_bew': 'date'}, 'required': ['ogc_fid'], 'geometry': 'GeometryCollection', 'geometry_column': 'wkb_geometry'}
Download GML using ``typename`` and ``filter``.
Usage with WFS 1.1 (FE.1.1):
.. code-block:: python
>>> from owslib.fes import *
>>> from owslib.etree import etree
>>> from owslib.wfs import WebFeatureService
>>> wfs10 = WebFeatureService(url='https://services.rce.geovoorziening.nl/dijken/wfs', version='1.1.0')
>>> filter = PropertyIsLike(propertyname='naam', literal='Haarlemmer*', wildCard='*')
>>> filterxml = etree.tostring(filter.toXML()).decode("utf-8")
>>> response = wfs10.getfeature(typename='dijken:dijklijnenkaart_rce', filter=filterxml)
Usage with WFS 2.0 (FE.2.0):
::
>>> from owslib.fes2 import *
>>> from owslib.etree import etree
>>> from owslib.wfs import WebFeatureService
>>> wfs11 = WebFeatureService(url='http://geoserv.weichand.de:8080/geoserver/wfs', version='2.0.0')
>>> filter = Filter(
PropertyIsLike(propertyname='bez_gem', literal='Ingolstadt', wildCard='*')
)
>>> filterxml = etree.tostring(filter.toXML()).decode("utf-8")
>>> response = wfs11.getfeature(typename='bvv:gmd_ex', filter=filterxml)
Save response to a file.
.. code-block:: python
>>> out = open('/tmp/data.gml', 'wb')
>>> out.write(bytes(response.read(), 'UTF-8'))
>>> out.close()
Download GML using ``StoredQueries``\ (only available for WFS 2.0
services)
.. code-block:: python
>>> from owslib.wfs import WebFeatureService
>>> wfs20 = WebFeatureService(url='https://services.rce.geovoorziening.nl/dijken/wfs', version='2.0.0')
>>> # List StoredQueries
>>> [storedquery.id for storedquery in wfs20.storedqueries]
['urn:ogc:def:query:OGC-WFS::GetFeatureById']
>>> # List Parameters for StoredQuery[0]
>>> [parameter.name for parameter in wfs20.storedqueries[0].parameters]
['ID']
>>> response = wfs20.getfeature(storedQueryID='urn:ogc:def:query:OGC-WFS::GetFeatureById', storedQueryParams={'ID':'dijklijnenkaart_rce.13364'})
>>> str(response.read())
'b\'<?xml version="1.0" encoding="UTF-8"?><dijken:dijklijnenkaart_rce...\''
OGC API
-------
The `OGC API`_ standards are a clean break from the traditional OGC service architecture
using current design patterns (RESTful, JSON, OpenAPI). As such, OWSLib the code follows
the same pattern.
OGC API - Features - Part 1: Core 1.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
>>> from owslib.ogcapi.features import Features
>>> w = Features('https://demo.pygeoapi.io/master')
>>> w.url
'https://demo.pygeoapi.io/master'
>>> conformance = w.conformance()
{'conformsTo': ['http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core', 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30', 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html', 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson']}
>>> api = w.api() # OpenAPI document/
>>> collections = w.collections()
>>> len(collections['collections'])
13
>>> feature_collections = w.feature_collections()
>>> len(feature_collections)
13
>>> lakes = w.collection('lakes')
>>> lakes['id']
'lakes'
>>> lakes['title']
'Large Lakes'
>>> lakes['description']
'lakes of the world, public domain'
>>> lakes_queryables = w.collection_queryables('lakes')
>>> len(lakes_queryables['queryables'])
6
>>> lakes_query = w.collection_items('lakes')
>>> lakes_query['features'][0]['properties']
{'scalerank': 0, 'name_alt': None, 'admin': None, 'featureclass': 'Lake', 'id': 0, 'name': 'Lake Baikal'}
>>> lakes_query = w.collection_items('lakes', name='L. Ontario')
>>> len(lakes_querylakes_query['features'][0]['properties']
{'id': 0, 'scalerank': 0, 'name': 'Lake Baikal', 'name_alt': 'https://en.wikipedia.org/wiki/Lake_Baikal', 'admin': None, 'featureclass': 'Lake'}
OGC API - Coverages - Part 1: Core 1.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
>>> from owslib.ogcapi.coverages import Coverages
>>> w = Coverages('https://dev.api.weather.gc.ca/coverages-demo')
>>> w.url
'https://dev.api.weather.gc.ca/coverages-demo/')
>>> api = w.api() # OpenAPI document
>>> collections = w.collections()
>>> len(collections['collections'])
3
>>> coverages = w.coverages()
>>> len(coverages)
1
>>> gdps = w.collection('gdps-temperature')
>>> gdps['id']
'gdps-temperature'
>>> gdps['title']
Global Deterministic Prediction System sample'
>>> gdps['description']
'Global Deterministic Prediction System sample'
>>> gdps['extent']['spatial']['grid'][0]
>>> {"cellsCount": 2400, "resolution": 0.15000000000000002 }
>>> gdps['extent']['spatial']['grid'][1]
>>> {"cellsCount": 1201, "resolution": 0.15}
>>> schema = w.collection_schema('gdps-temperature')
>>> len(schema['properties'])
1
>>> schema['properties']['1']['type']
'number'
>> gdps_coverage_data = w.coverage('gdps-temperature', range_subset=[1])
OGC API - Records - Part 1: Core 1.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
>>> from owslib.ogcapi.records import Records
>>> w = Records('https://example.org/records-api')
>>> w.url
'https://example.org/records-api'
>>> conformance = w.conformance()
{'conformsTo': ['http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core', 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/oas30', 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/html', 'http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson', 'http://www.opengis.net/spec/ogcapi-records-1/1.0/req/core', 'http://www.opengis.net/spec/ogcapi-records/1.0/req/oas30', 'http://www.opengis.net/spec/ogcapi-records-1/1.0/req/json', 'http://www.opengis.net/spec/ogcapi-records-1/1.0/req/html']}
>>> api = w.api() # OpenAPI document
>>> collections = w.collections()
>>> len(collections)
1
>>> records = w.records()
>>> len(records)
1
>>> my_catalogue = w.collection('my-catalogue')
>>> my_catalogue['id']
'my-catalogue'
>>> my_catalogue['title']
'My catalogue'
>>> my_catalogue['description']
'My catalogue'
>>> my_catalogue_queryables = w.collection_queryables('my-catalogue')
>>> len(my_catalogue_queryables)
8
>>> my_catalogue_query = w.collection_items('my-catalogue')
>>> my_catalogue_query['features'][0]['properties'].keys()
['title', 'abstract', 'keywords']
>>> my_catalogue_query['features'][0]['properties']['title']
'Roadrunner ambush locations'
>>> my_catalogue_query2 = w.collection_items('my-catalogue', q='birds')
>>> msc_wis_dcpc_query2['numberMatched']
2
>>> msc_wis_dcpc_query2['numberReturned']
2
>>> my_catalogue_cql_text_query = w.collection_items('my-catalogue', filter="title LIKE 'Roadrunner%'")
>>> my_catalogue_cql_text_query['features'][0]['properties']['title']
'Roadrunner ambush locations'
>>> my_catalogue_cql_json_query = w.collection_items('my-catalogue', limit=1, cql={'eq': [{ 'property': 'title' }, 'Roadrunner ambush locations']})
>>> my_catalogue_cql_json_query['features'][0]['properties']['title']
'Roadrunner ambush locations'
>>> import json
>>> record_data = 'sample-geojson-record.json'
>>> with open(record_data) as fh:
.. data = json.load(fh)
>>> identifier = data['id']
>>> w.collection_item_create('my-catalogue', data)
>>> w.collection_item_update('my-catalogue', identifier, data)
>>> w.collection_item_delete('my-catalogue', identifier)
OGC API - Features - Part 4: Create, Replace, Update and Delete
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
This specification applies to both OGC API - Features and OGC API - Records
.. code-block:: python
>>> import json
>>> from owslib.ogcapi.records import Records
>>> record_data = '/path/to/record.json'
>>> url = 'http://localhost:8000'
>>> collection_id = 'metadata:main'
>>> r = Records(url)
>>> cat = r.collection(collection_id)
>>> with open(record_data) as fh:
... data = json.load(fh)
>>> identifier = data['id']
>>> r.collection_item_delete(collection_id, identifier)
# insert metadata
>>> r.collection_item_create(collection_id, data)
# update metadata
>>> r.collection_item_update(collection_id, identifier, data)
# delete metadata
>>> r.collection_item_delete(collection_id, identifier)
OGC API - Processes - Part 1: Core 1.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
>>> from owslib.ogcapi.processes import Processes
>>> p = Processes(SERVICE_URL)
>>> processes = p.processes()
>>> hello_world = p.process('hello-world')
>>> hello_world['id']
'hello-world'
>>> hello_world['title']
'Hello World'
>>> result = p.execute('hello-world', inputs={'name': 'World', 'message': 'Testing from OWSLib'})
>>> result
{'outputs': [{'id': 'echo', 'value': 'Hello World! Testing from OWSLib'}]}
OGC API - Maps - Part 1: Core 1.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
>>> from owslib.ogcapi.maps import Maps
>>> m = Maps('http://localhost:5000')
>>> lakes = m.collection('lakes')
>>> data = m.map('lakes', width=1200, height=800, transparent=False)
>>> with open("output.png", "wb") as fh:
... fh.write(data.getbuffer())
OGC API - Environmental Data Retrieval - Part 1: Core 1.0
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. code-block:: python
>>> from owslib.ogcapi.edr import EnvironmentalDataRetrieval
>>> e = EnvironmentalDataRetrieval('http://localhost:5000')
>>> icoads_sst = m.collection('icoads-sst')
>>> data = e.query_data('icoads_sst', 'position', coords='POINT(-75 45)', parameter_names=['SST', 'AIRT'])
OGC API - Connected Systems - Part 1: Feature Resources & Part 2: Dynamic Data
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. note::
The library covers all of parts 1 and 2, the example below is a short overview of the functionality.
All CRUD operations are performed in a very similar manner. Please see the Connected Systems API docs
for the full lists of properties, encoding requirements and expected responses.
.. code-block:: python
>>> from owslib.ogcapi.connectedsystems import Systems, Datastreams, Observations
>>> s = Systems('http://localhost:5000', auth=('user', 'password'), headers={'Content-Type': 'application/sml+json'})
>>> ds = Datastreams('http://localhost:5000', auth=('user', 'password'), headers={'Content-Type': 'application/json'})
>>> obs = Observations('http://localhost:5000', auth=('user', 'password'), headers={'Content-Type': 'application/json'})
# insert a new system, datastream and observation
>>> system_info = {
>>> "type": "SimpleProcess",
>>> "uniqueId": "urn:osh:sensor:testsmlsensor:001",
>>> "label": "Test SML Sensor",
>>> "description": "A Sensor created from an SML document",
>>> "definition": "http://www.w3.org/ns/ssn/Sensor"
>>> }
>>> ds_definition = {
>>> "name": "Test Datastream",
>>> "outputName": "Test Output #1",
>>> "schema": {
>>> "obsFormat": "application/swe+json",
>>> "encoding": {
>>> "type": "JSONEncoding",
>>> "vectorAsArrays": False
>>> },
>>> "recordSchema": {
>>> "type": "DataRecord",
>>> "label": "Test Datastream Record",
>>> "updatable": False,
>>> "optional": False,
>>> "definition": "http://test.com/Record",
>>> "fields": [
>>> {
>>> "type": "Time",
>>> "label": "Test Datastream Time",
>>> "updatable": False,
>>> "optional": False,
>>> "definition": "http://test.com/Time",
>>> "name": "timestamp",
>>> "uom": {
>>> "href": "http://test.com/TimeUOM"
>>> }
>>> },
>>> {
>>> "type": "Boolean",
>>> "label": "Test Datastream Boolean",
>>> "updatable": False,
>>> "optional": False,
>>> "definition": "http://test.com/Boolean",
>>> "name": "testboolean"
>>> }
>>> ]
>>> }
>>> }
>>> }
>>> observation = {
>>> "phenomenonTime": the_time,
>>> "resultTime": the_time,
>>> "result": {
>>> "timestamp": datetime.now().timestamp() * 1000,
>>> "testboolean": True
>>> }
>>> }
>>> s.create_system(system_info)
>>> system_id = s.resource_headers['Location'][0].split('/')[-1]
>>> ds.create_datastream(system_id, ds_definition)
>>> ds_id = ds.resource_headers['Location'][0].split('/')[-1]
>>> obs.create_observation(ds_id, observation)
>>> obs_id = obs.resource_headers['Location'][0].split('/')[-1]
>>> # retrieve the observations of our datastream
>>> observations = obs.get_observations(ds_id)['items']
>>>
WCS
---
.. code-block:: python
>>> # Import OWSLib in Python once installed
... from owslib.wcs import WebCoverageService
>>> # Create coverage object
... my_wcs = WebCoverageService('http://ows.rasdaman.org/rasdaman/ows',
... version='2.0.1')
>>> # Get list of coverages
... print my_wcs.contents.keys()
['RadianceColor', 'test_irr_cube_2', 'test_mean_summer_airtemp', 'test_double_1d', 'INSPIRE_EL', 'AverageChlorophyllScaled', 'INSPIRE_OI_RGB', 'Temperature4D', 'INSPIRE_OI_IR', 'visible_human', 'INSPIRE_WS_LC', 'meris_lai', 'climate_earth', 'mean_summer_airtemp', 'multiband', 'ls8_coastal_aerosol', 'NN3_3', 'NN3_2', 'NN3_1', 'NN3_4', 'AvgTemperatureColorScaled', 'AverageChloroColorScaled', 'lena', 'Germany_DTM', 'climate_cloud', 'FiLCCoverageBit', 'AverageChloroColor', 'LandsatMultiBand', 'RadianceColorScaled', 'AvgLandTemp', 'NIR', 'BlueMarbleCov']
>>> # Get geo-bounding boxes and native CRS
... my_wcs.contents['AverageChlorophyllScaled'].boundingboxes
[{'nativeSrs': 'http://ows.rasdaman.org/def/crs-compound?1=http://ows.rasdaman.org/def/crs/EPSG/0/4326&2=http://ows.rasdaman.org/def/crs/OGC/0/UnixTime', 'bbox': (-90.0, -180.0, 90.0, 180.0)}]
>>> # Get axis labels
... my_wcs.contents['AverageChlorophyllScaled'].grid.axislabels
['Lat', 'Long', 'unix']
>>> # Get dimension
... my_wcs.contents['AverageChlorophyllScaled'].grid.dimension
3
>>> # Get grid lower and upper bounds
... my_wcs.contents['AverageChlorophyllScaled'].grid.lowlimits
['0', '0', '0']
>>> my_wcs.contents['AverageChlorophyllScaled'].grid.highlimits
['119', '239', '5']
>>> # Get offset vectors for geo axes
... my_wcs.contents['AverageChlorophyllScaled'].grid.offsetvectors
[['-1.5', '0', '0'], ['0', '1.5', '0'], ['0', '0', '1']]
>>> # For coverage with time axis get the date time values
... my_wcs.contents['AverageChlorophyllScaled'].timepositions
[datetime.datetime(2015, 1, 1, 0, 0), datetime.datetime(2015, 2, 1, 0, 0), datetime.datetime(2015, 3, 1, 0, 0), datetime.datetime(2015, 4, 1, 0, 0), datetime.datetime(2015, 5, 1, 0, 0), datetime.datetime(2015, 7, 1, 0, 0)]
CSW
---
Connect to a CSW, and inspect its properties:
.. code-block:: python
>>> from owslib.csw import CatalogueServiceWeb
>>> csw = CatalogueServiceWeb('http://geodiscover.cgdi.ca/wes/serviceManagerCSW/csw')
>>> csw.identification.type
'CSW'
>>> [op.name for op in csw.operations]
['GetCapabilities', 'GetRecords', 'GetRecordById', 'DescribeRecord', 'GetDomain']
Get supported resultType's:
.. code-block:: python
>>> csw.getdomain('GetRecords.resultType')
>>> csw.results
{'values': ['results', 'validate', 'hits'], 'parameter': 'GetRecords.resultType', 'type': 'csw:DomainValuesType'}
>>>
Search for bird data:
.. code-block:: python
>>> from owslib.fes import PropertyIsEqualTo, PropertyIsLike, BBox
>>> birds_query = PropertyIsEqualTo('csw:AnyText', 'birds')
>>> csw.getrecords2(constraints=[birds_query], maxrecords=20)
>>> csw.results
{'matches': 101, 'nextrecord': 21, 'returned': 20}
>>> for rec in csw.records:
... print(csw.records[rec].title)
...
ALLSPECIES
NatureServe Canada References
Bird Studies Canada - BirdMap WMS
Parks Canada Geomatics Metadata Repository
Bird Studies Canada - BirdMap WFS
eBird Canada - Survey Locations
WHC CitizenScience WMS
Project FeederWatch - Survey Locations
North American Bird Banding and Encounter Database
Wildlife Habitat Canada CitizenScience WFS
Parks Canada Geomatics Metadata Repository
Parks Canada Geomatics Metadata Repository
Wildlife Habitat Canada CitizenScience WMS
Canadian IBA Polygon layer
Land
Wildlife Habitat Canada CitizenScience WMS
WATER
Parks Canada Geomatics Metadata Repository
Breeding Bird Survey
SCALE
>>>
Search for bird data in Canada:
.. code-block:: python
>>> bbox_query = BBox([-141,42,-52,84])
>>> csw.getrecords2(constraints=[birds_query, bbox_query])
>>> csw.results
{'matches': 3, 'nextrecord': 0, 'returned': 3}
>>>
Search for keywords like 'birds' or 'fowl'
.. code-block:: python
>>> birds_query_like = PropertyIsLike('dc:subject', '%birds%')
>>> fowl_query_like = PropertyIsLike('dc:subject', '%fowl%')
>>> csw.getrecords2(constraints=[birds_query_like, fowl_query_like])
>>> csw.results
{'matches': 107, 'nextrecord': 11, 'returned': 10}
>>>
Search for a specific record:
.. code-block:: python
>>> csw.getrecordbyid(id=['9250AA67-F3AC-6C12-0CB9-0662231AA181'])
>>> c.records['9250AA67-F3AC-6C12-0CB9-0662231AA181'].title
'ALLSPECIES'
Search with a CQL query
.. code-block:: python
>>> csw.getrecords(cql='csw:AnyText like "%birds%"')
Transaction: insert
.. code-block:: python
>>> csw.transaction(ttype='insert', typename='gmd:MD_Metadata', record=open("file.xml").read())
Transaction: update
.. code-block:: python
>>> # update ALL records
>>> csw.transaction(ttype='update', typename='csw:Record', propertyname='dc:title', propertyvalue='New Title')
>>> # update records satisfying keywords filter
>>> csw.transaction(ttype='update', typename='csw:Record', propertyname='dc:title', propertyvalue='New Title', keywords=['birds','fowl'])
>>> # update records satisfying BBOX filter
>>> csw.transaction(ttype='update', typename='csw:Record', propertyname='dc:title', propertyvalue='New Title', bbox=[-141,42,-52,84])
Transaction: delete
.. code-block:: python
>>> # delete ALL records
>>> csw.transaction(ttype='delete', typename='gmd:MD_Metadata')
>>> # delete records satisfying keywords filter
>>> csw.transaction(ttype='delete', typename='gmd:MD_Metadata', keywords=['birds','fowl'])
>>> # delete records satisfying BBOX filter
>>> csw.transaction(ttype='delete', typename='gmd:MD_Metadata', bbox=[-141,42,-52,84])
Harvest a resource
.. code-block:: python
>>> csw.harvest('http://host/url.xml', 'http://www.isotc211.org/2005/gmd')
WMC
---
WPS
---
.. include:: ../../tests/_broken/doctests_sphinx/wps_example_usgs.txt
SOS 1.0
-------
GetCapabilities
.. include:: ../../tests/doctests/sos_10_getcapabilities.txt
GetObservation
.. include:: ../../tests/doctests/sos_ngwd.txt
SOS 2.0
-------
Examples of service metadata and GetObservation
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. include:: ../../tests/_broken/doctests_sphinx/sos_20_52N_demo.txt
Using the GetObservation response decoder for O&M and WaterML2.0 results
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. include:: ../../tests/_broken/doctests_sphinx/sos_20_timeseries_decoder_ioos.txt
SensorML
--------
.. include:: ../../tests/doctests/sml_ndbc_station.txt
ISO
---
.. code-block:: python
>>> from owslib.iso import *
>>> m=MD_Metadata(etree.parse('tests/resources/9250AA67-F3AC-6C12-0CB9-0662231AA181_iso.xml'))
>>> m.identification.topiccategory
'farming'
>>>
ISO Codelists:
.. include:: ../../tests/doctests/iso_codelist.txt
CRS Handling
------------
.. include:: ../../tests/doctests/crs.txt
Dublin Core
-----------
NASA DIF
--------
FGDC
----
Swiss GM03
----------
Imports
>>> from tests.utils import resource_file
>>> from owslib.etree import etree
>>> from owslib.gm03 import GM03
Print testing some metadata elements
>>> e = etree.parse(resource_file('gm03_example1.xml'))
>>> gm03 = GM03(e)
>>> gm03.header.version
'2.3'
>>> gm03.header.sender
'geocat.ch'
>>> hasattr(gm03.data, 'core')
False
>>> hasattr(gm03.data, 'comprehensive')
True
>>> len(gm03.data.comprehensive.elements)
13
>>> sorted(list(gm03.data.comprehensive.elements.keys()))
['address', 'citation', 'contact', 'data_identification', 'date', 'extent', 'extent_geographic_element', 'geographic_bounding_box', 'identification_point_of_contact', 'keywords', 'metadata', 'metadata_point_of_contact', 'responsible_party']
>>> isinstance(gm03.data.comprehensive.date, list)
True
>>> len(gm03.data.comprehensive.date)
1
>>> gm03.data.comprehensive.metadata.file_identifier
'41ac321f632e55cebf0508a2cea5d9023fd12d9ad46edd679f2c275127c88623fb9c9d29726bef7c'
>>> gm03.data.comprehensive.metadata.date_stamp
'1999-12-31T12:00:00'
>>> gm03.data.comprehensive.metadata.language
'de'
Test TID searching
>>> gm03.data.comprehensive.metadata.tid
'xN6509077498146737843'
>>> search_tid = gm03.data.comprehensive.metadata.tid
>>> gm03.data.comprehensive.get_element_by_tid('404') is None
True
>>> gm03.data.comprehensive.get_element_by_tid(search_tid) is None
False
>>> search_tid2 = gm03.data.comprehensive.extent.data_identification.ref
>>> search_tid2
'xN8036063300808707346'
>>> gm03.data.comprehensive.get_element_by_tid(search_tid2) is None
False
>>> e = etree.parse(resource_file('gm03_example2.xml'))
>>> gm03 = GM03(e)
>>> gm03.data.comprehensive.geographic_bounding_box.extent_type_code
'false'
>>> gm03.data.comprehensive.geographic_bounding_box.north_bound_latitude
'47.1865387201702'
>>> gm03.data.comprehensive.geographic_bounding_box.south_bound_latitude
'47.1234508676764'
>>> gm03.data.comprehensive.geographic_bounding_box.east_bound_longitude
'9.10597474389878'
>>> gm03.data.comprehensive.geographic_bounding_box.west_bound_longitude
'9.23798212070671'
WMTS
----
.. include:: ../../tests/_broken/doctests_sphinx/wmts_demo.txt
Result:
.. image:: _static/nasa_modis_terra_truecolour.jpg
:width: 512px
:height: 512px
:alt: WMTS GetTile generated by OWSLib
WaterML
-------
.. include:: ../../tests/doctests/wml11_cuahsi.txt
OGC OWS Context 1.0.0 Atom CML and GeoJSON Encoding (alpha/under-review)
------------------------------------------------------------------------
The OGC OWS Context implementation in OWSlib is currently in alpha and under review, and will still be improved.
Please get in touch if you (want to) use it and provide feedback on how more comfortable it should be
(especially handling geometries and dates in different encodings) and if it doesn't treat your "standards-compliant" OWS Context document right.
Greatly appreciated :-)
Basic reading/parsing of OGC Web Services Context Documents (OWS Context) in OWC Atom 1.0.0 Encoding and OWC GeoJSON 1.0.0 Encoding Standards:
.. include:: ../../tests/doctests/owscontext.txt
additionally, possibility to construct OWS Context documents from scratch, and then write/serialise into OWC Atom 1.0.0 Encoding or OWC GeoJSON 1.0.0 Encoding Standards:
.. code-block:: python
>>> from owslib.owscontext.core import OwcResource, OwcContext
>>> myContext=OwcContext(id='http://my.url.com/context/id/1',
update_date='2017-11-02T15:24:24.446+12:00',
title='Awesome new Context doc')
>>> myContext.rights='Creative Commons 4.0 BY'
>>> myEntry=OwcResource(id='http://my.url.com/resource/demo-feature-1',
update_date='2017-11-02T15:24:24.446+12:00',
title='This is a feature')
>>> contributor={'name': 'Alex K',
'email': None,
'uri': 'https://allixender.blogspot.com'}
>>> myEntry.authors.append(contributor)
>>> # ... here also continue to build your OGC data offerings, e.g. WMS GetMap etc.
>>> myContext.resources.append(myEntry)
>>> myContext.to_json()
>>> myContext.to_atomxml()
OpenSearch
----------
.. code-block:: python
>>> from owslib.opensearch import OpenSearch
>>> url = 'https://example.org/opensearch'
>>> o = OpenSearch(url)
>>> results = o.search('application/json', productType='SLC') # dict of results
|