1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
|
// Crypto/ZipStrong.cpp
#include "StdAfx.h"
#include "../../../C/7zCrc.h"
#include "../../../C/CpuArch.h"
#include "../Common/StreamUtils.h"
#include "Sha1Cls.h"
#include "ZipStrong.h"
namespace NCrypto {
namespace NZipStrong {
static const UInt16 kAES128 = 0x660E;
// DeriveKey* function is similar to CryptDeriveKey() from Windows.
// But MSDN tells that we need such scheme only if
// "the required key length is longer than the hash value"
// but ZipStrong uses it always.
static void DeriveKey2(const Byte *digest, Byte c, Byte *dest)
{
Byte buf[64];
memset(buf, c, 64);
for (unsigned i = 0; i < NSha1::kDigestSize; i++)
buf[i] ^= digest[i];
NSha1::CContext sha;
sha.Init();
sha.Update(buf, 64);
sha.Final(dest);
}
static void DeriveKey(NSha1::CContext &sha, Byte *key)
{
Byte digest[NSha1::kDigestSize];
sha.Final(digest);
Byte temp[NSha1::kDigestSize * 2];
DeriveKey2(digest, 0x36, temp);
DeriveKey2(digest, 0x5C, temp + NSha1::kDigestSize);
memcpy(key, temp, 32);
}
void CKeyInfo::SetPassword(const Byte *data, UInt32 size)
{
NSha1::CContext sha;
sha.Init();
sha.Update(data, size);
DeriveKey(sha, MasterKey);
}
STDMETHODIMP CBaseCoder::CryptoSetPassword(const Byte *data, UInt32 size)
{
_key.SetPassword(data, size);
return S_OK;
}
STDMETHODIMP CBaseCoder::Init()
{
return S_OK;
}
HRESULT CDecoder::ReadHeader(ISequentialInStream *inStream, UInt32 crc, UInt64 unpackSize)
{
Byte temp[4];
RINOK(ReadStream_FALSE(inStream, temp, 2));
_ivSize = GetUi16(temp);
if (_ivSize == 0)
{
memset(_iv, 0, 16);
SetUi32(_iv + 0, crc);
SetUi64(_iv + 4, unpackSize);
_ivSize = 12;
}
else if (_ivSize == 16)
{
RINOK(ReadStream_FALSE(inStream, _iv, _ivSize));
}
else
return E_NOTIMPL;
RINOK(ReadStream_FALSE(inStream, temp, 4));
_remSize = GetUi32(temp);
const UInt32 kAlign = 16;
if (_remSize < 16 || _remSize > (1 << 18))
return E_NOTIMPL;
if (_remSize + kAlign > _buf.Size())
{
_buf.Alloc(_remSize + kAlign);
_bufAligned = (Byte *)((ptrdiff_t)((Byte *)_buf + kAlign - 1) & ~(ptrdiff_t)(kAlign - 1));
}
return ReadStream_FALSE(inStream, _bufAligned, _remSize);
}
HRESULT CDecoder::Init_and_CheckPassword(bool &passwOK)
{
passwOK = false;
if (_remSize < 16)
return E_NOTIMPL;
Byte *p = _bufAligned;
UInt16 format = GetUi16(p);
if (format != 3)
return E_NOTIMPL;
UInt16 algId = GetUi16(p + 2);
if (algId < kAES128)
return E_NOTIMPL;
algId -= kAES128;
if (algId > 2)
return E_NOTIMPL;
UInt16 bitLen = GetUi16(p + 4);
UInt16 flags = GetUi16(p + 6);
if (algId * 64 + 128 != bitLen)
return E_NOTIMPL;
_key.KeySize = 16 + algId * 8;
bool cert = ((flags & 2) != 0);
if ((flags & 0x4000) != 0)
{
// Use 3DES
return E_NOTIMPL;
}
if (cert)
{
return E_NOTIMPL;
}
else
{
if ((flags & 1) == 0)
return E_NOTIMPL;
}
UInt32 rdSize = GetUi16(p + 8);
if (rdSize + 16 > _remSize)
return E_NOTIMPL;
/*
if (cert)
{
// how to filter rd, if ((rdSize & 0xF) != 0) ?
if ((rdSize & 0x7) != 0)
return E_NOTIMPL;
}
else
*/
{
if ((rdSize & 0xF) != 0)
return E_NOTIMPL;
}
memmove(p, p + 10, rdSize);
const Byte *p2 = p + rdSize + 10;
UInt32 reserved = GetUi32(p2);
p2 += 4;
/*
if (cert)
{
UInt32 numRecipients = reserved;
if (numRecipients == 0)
return E_NOTIMPL;
{
UInt32 hashAlg = GetUi16(p2);
hashAlg = hashAlg;
UInt32 hashSize = GetUi16(p2 + 2);
hashSize = hashSize;
p2 += 4;
reserved = reserved;
// return E_NOTIMPL;
for (unsigned r = 0; r < numRecipients; r++)
{
UInt32 specSize = GetUi16(p2);
p2 += 2;
p2 += specSize;
}
}
}
else
*/
{
if (reserved != 0)
return E_NOTIMPL;
}
UInt32 validSize = GetUi16(p2);
p2 += 2;
const size_t validOffset = p2 - p;
if ((validSize & 0xF) != 0 || validOffset + validSize != _remSize)
return E_NOTIMPL;
{
RINOK(SetKey(_key.MasterKey, _key.KeySize));
RINOK(SetInitVector(_iv, 16));
RINOK(Init());
Filter(p, rdSize);
}
Byte fileKey[32];
NSha1::CContext sha;
sha.Init();
sha.Update(_iv, _ivSize);
sha.Update(p, rdSize - 16); // we don't use last 16 bytes (PAD bytes)
DeriveKey(sha, fileKey);
RINOK(SetKey(fileKey, _key.KeySize));
RINOK(SetInitVector(_iv, 16));
Init();
memmove(p, p + validOffset, validSize);
Filter(p, validSize);
if (validSize < 4)
return E_NOTIMPL;
validSize -= 4;
if (GetUi32(p + validSize) != CrcCalc(p, validSize))
return S_OK;
passwOK = true;
return S_OK;
}
}}
|