1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
// BenchCon.cpp
#include "StdAfx.h"
#include "../../../Common/IntToString.h"
#include "../../../Common/MyCom.h"
#if !defined(_7ZIP_ST) || defined(_WIN32)
#include "../../../Windows/System.h"
#endif
#include "../Common/Bench.h"
#include "BenchCon.h"
#include "ConsoleClose.h"
struct CTotalBenchRes
{
UInt64 NumIterations;
UInt64 Rating;
UInt64 Usage;
UInt64 RPU;
void Init() { NumIterations = 0; Rating = 0; Usage = 0; RPU = 0; }
void Normalize()
{
if (NumIterations == 0)
return;
Rating /= NumIterations;
Usage /= NumIterations;
RPU /= NumIterations;
NumIterations = 1;
}
void SetMid(const CTotalBenchRes &r1, const CTotalBenchRes &r2)
{
Rating = (r1.Rating + r2.Rating) / 2;
Usage = (r1.Usage + r2.Usage) / 2;
RPU = (r1.RPU + r2.RPU) / 2;
NumIterations = (r1.NumIterations + r2.NumIterations) / 2;
}
};
struct CBenchCallback: public IBenchCallback
{
CTotalBenchRes EncodeRes;
CTotalBenchRes DecodeRes;
FILE *f;
void Init() { EncodeRes.Init(); DecodeRes.Init(); }
void Normalize() { EncodeRes.Normalize(); DecodeRes.Normalize(); }
UInt32 dictionarySize;
HRESULT SetEncodeResult(const CBenchInfo &info, bool final);
HRESULT SetDecodeResult(const CBenchInfo &info, bool final);
};
static void NormalizeVals(UInt64 &v1, UInt64 &v2)
{
while (v1 > 1000000)
{
v1 >>= 1;
v2 >>= 1;
}
}
static UInt64 MyMultDiv64(UInt64 value, UInt64 elapsedTime, UInt64 freq)
{
UInt64 elTime = elapsedTime;
NormalizeVals(freq, elTime);
if (elTime == 0)
elTime = 1;
return value * freq / elTime;
}
static void PrintNumber(FILE *f, UInt64 value, int size)
{
char s[32];
ConvertUInt64ToString(value, s);
fprintf(f, " ");
for (int len = (int)strlen(s); len < size; len++)
fprintf(f, " ");
fputs(s, f);
}
static void PrintRating(FILE *f, UInt64 rating)
{
PrintNumber(f, rating / 1000000, 6);
}
static void PrintResults(FILE *f, UInt64 usage, UInt64 rpu, UInt64 rating)
{
PrintNumber(f, (usage + 5000) / 10000, 5);
PrintRating(f, rpu);
PrintRating(f, rating);
}
static void PrintResults(FILE *f, const CBenchInfo &info, UInt64 rating, CTotalBenchRes &res)
{
UInt64 speed = MyMultDiv64(info.UnpackSize, info.GlobalTime, info.GlobalFreq);
PrintNumber(f, speed / 1024, 7);
UInt64 usage = GetUsage(info);
UInt64 rpu = GetRatingPerUsage(info, rating);
PrintResults(f, usage, rpu, rating);
res.NumIterations++;
res.RPU += rpu;
res.Rating += rating;
res.Usage += usage;
}
static void PrintTotals(FILE *f, const CTotalBenchRes &res)
{
fprintf(f, " ");
PrintResults(f, res.Usage, res.RPU, res.Rating);
}
HRESULT CBenchCallback::SetEncodeResult(const CBenchInfo &info, bool final)
{
if (NConsoleClose::TestBreakSignal())
return E_ABORT;
if (final)
{
UInt64 rating = GetCompressRating(dictionarySize, info.GlobalTime, info.GlobalFreq, info.UnpackSize);
PrintResults(f, info, rating, EncodeRes);
}
return S_OK;
}
static const char *kSep = " | ";
HRESULT CBenchCallback::SetDecodeResult(const CBenchInfo &info, bool final)
{
if (NConsoleClose::TestBreakSignal())
return E_ABORT;
if (final)
{
UInt64 rating = GetDecompressRating(info.GlobalTime, info.GlobalFreq, info.UnpackSize, info.PackSize, info.NumIterations);
fputs(kSep, f);
CBenchInfo info2 = info;
info2.UnpackSize *= info2.NumIterations;
info2.PackSize *= info2.NumIterations;
info2.NumIterations = 1;
PrintResults(f, info2, rating, DecodeRes);
}
return S_OK;
}
static void PrintRequirements(FILE *f, const char *sizeString, UInt64 size, const char *threadsString, UInt32 numThreads)
{
fprintf(f, "\nRAM %s ", sizeString);
PrintNumber(f, (size >> 20), 5);
fprintf(f, " MB, # %s %3d", threadsString, (unsigned int)numThreads);
}
HRESULT LzmaBenchCon(
DECL_EXTERNAL_CODECS_LOC_VARS
FILE *f, UInt32 numIterations, UInt32 numThreads, UInt32 dictionary)
{
if (!CrcInternalTest())
return S_FALSE;
#ifndef _7ZIP_ST
UInt64 ramSize = NWindows::NSystem::GetRamSize(); //
UInt32 numCPUs = NWindows::NSystem::GetNumberOfProcessors();
PrintRequirements(f, "size: ", ramSize, "CPU hardware threads:", numCPUs);
if (numThreads == (UInt32)-1)
numThreads = numCPUs;
if (numThreads > 1)
numThreads &= ~1;
if (dictionary == (UInt32)-1)
{
int dicSizeLog;
for (dicSizeLog = 25; dicSizeLog > kBenchMinDicLogSize; dicSizeLog--)
if (GetBenchMemoryUsage(numThreads, ((UInt32)1 << dicSizeLog)) + (8 << 20) <= ramSize)
break;
dictionary = (1 << dicSizeLog);
}
#else
if (dictionary == (UInt32)-1)
dictionary = (1 << 22);
numThreads = 1;
#endif
PrintRequirements(f, "usage:", GetBenchMemoryUsage(numThreads, dictionary), "Benchmark threads: ", numThreads);
CBenchCallback callback;
callback.Init();
callback.f = f;
fprintf(f, "\n\nDict Compressing | Decompressing\n ");
int j;
for (j = 0; j < 2; j++)
{
fprintf(f, " Speed Usage R/U Rating");
if (j == 0)
fputs(kSep, f);
}
fprintf(f, "\n ");
for (j = 0; j < 2; j++)
{
fprintf(f, " KB/s %% MIPS MIPS");
if (j == 0)
fputs(kSep, f);
}
fprintf(f, "\n\n");
for (UInt32 i = 0; i < numIterations; i++)
{
const int kStartDicLog = 22;
int pow = (dictionary < ((UInt32)1 << kStartDicLog)) ? kBenchMinDicLogSize : kStartDicLog;
while (((UInt32)1 << pow) > dictionary)
pow--;
for (; ((UInt32)1 << pow) <= dictionary; pow++)
{
fprintf(f, "%2d:", pow);
callback.dictionarySize = (UInt32)1 << pow;
HRESULT res = LzmaBench(
EXTERNAL_CODECS_LOC_VARS
numThreads, callback.dictionarySize, &callback);
fprintf(f, "\n");
RINOK(res);
}
}
callback.Normalize();
fprintf(f, "----------------------------------------------------------------\nAvr:");
PrintTotals(f, callback.EncodeRes);
fprintf(f, " ");
PrintTotals(f, callback.DecodeRes);
fprintf(f, "\nTot:");
CTotalBenchRes midRes;
midRes.SetMid(callback.EncodeRes, callback.DecodeRes);
PrintTotals(f, midRes);
fprintf(f, "\n");
return S_OK;
}
struct CTempValues
{
UInt64 *Values;
CTempValues(UInt32 num) { Values = new UInt64[num]; }
~CTempValues() { delete []Values; }
};
HRESULT CrcBenchCon(FILE *f, UInt32 numIterations, UInt32 numThreads, UInt32 dictionary)
{
if (!CrcInternalTest())
return S_FALSE;
#ifndef _7ZIP_ST
UInt64 ramSize = NWindows::NSystem::GetRamSize();
UInt32 numCPUs = NWindows::NSystem::GetNumberOfProcessors();
PrintRequirements(f, "size: ", ramSize, "CPU hardware threads:", numCPUs);
if (numThreads == (UInt32)-1)
numThreads = numCPUs;
#else
numThreads = 1;
#endif
if (dictionary == (UInt32)-1)
dictionary = (1 << 24);
CTempValues speedTotals(numThreads);
fprintf(f, "\n\nSize");
for (UInt32 ti = 0; ti < numThreads; ti++)
{
fprintf(f, " %5d", ti + 1);
speedTotals.Values[ti] = 0;
}
fprintf(f, "\n\n");
UInt64 numSteps = 0;
for (UInt32 i = 0; i < numIterations; i++)
{
for (int pow = 10; pow < 32; pow++)
{
UInt32 bufSize = (UInt32)1 << pow;
if (bufSize > dictionary)
break;
fprintf(f, "%2d: ", pow);
UInt64 speed;
for (UInt32 ti = 0; ti < numThreads; ti++)
{
if (NConsoleClose::TestBreakSignal())
return E_ABORT;
RINOK(CrcBench(ti + 1, bufSize, speed));
PrintNumber(f, (speed >> 20), 5);
speedTotals.Values[ti] += speed;
}
fprintf(f, "\n");
numSteps++;
}
}
if (numSteps != 0)
{
fprintf(f, "\nAvg:");
for (UInt32 ti = 0; ti < numThreads; ti++)
PrintNumber(f, ((speedTotals.Values[ti] / numSteps) >> 20), 5);
fprintf(f, "\n");
}
return S_OK;
}
|