1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
|
Advanced Configuration
----------------------
.. index::
single: start-delay; operation attribute
single: interval-origin; operation attribute
single: interval; interval-origin
single: operation; interval-origin
single: operation; start-delay
Specifying When Recurring Actions are Performed
###############################################
By default, recurring actions are scheduled relative to when the resource
started. In some cases, you might prefer that a recurring action start relative
to a specific date and time. For example, you might schedule an in-depth
monitor to run once every 24 hours, and want it to run outside business hours.
To do this, set the operation's ``interval-origin``. The cluster uses this point
to calculate the correct ``start-delay`` such that the operation will occur
at ``interval-origin`` plus a multiple of the operation interval.
For example, if the recurring operation's interval is 24h, its
``interval-origin`` is set to 02:00, and it is currently 14:32, then the
cluster would initiate the operation after 11 hours and 28 minutes.
The value specified for ``interval`` and ``interval-origin`` can be any
date/time conforming to the
`ISO8601 standard <https://en.wikipedia.org/wiki/ISO_8601>`_. By way of
example, to specify an operation that would run on the first Monday of
2021 and every Monday after that, you would add:
.. topic:: Example recurring action that runs relative to base date/time
.. code-block:: xml
<op id="intensive-monitor" name="monitor" interval="P7D" interval-origin="2021-W01-1"/>
.. index::
single: resource; failure recovery
single: operation; failure recovery
.. _failure-handling:
Handling Resource Failure
#########################
By default, Pacemaker will attempt to recover failed resources by restarting
them. However, failure recovery is highly configurable.
.. index::
single: resource; failure count
single: operation; failure count
Failure Counts
______________
Pacemaker tracks resource failures for each combination of node, resource, and
operation (start, stop, monitor, etc.).
You can query the fail count for a particular node, resource, and/or operation
using the ``crm_failcount`` command. For example, to see how many times the
10-second monitor for ``myrsc`` has failed on ``node1``, run:
.. code-block:: none
# crm_failcount --query -r myrsc -N node1 -n monitor -I 10s
If you omit the node, ``crm_failcount`` will use the local node. If you omit
the operation and interval, ``crm_failcount`` will display the sum of the fail
counts for all operations on the resource.
You can use ``crm_resource --cleanup`` or ``crm_failcount --delete`` to clear
fail counts. For example, to clear the above monitor failures, run:
.. code-block:: none
# crm_resource --cleanup -r myrsc -N node1 -n monitor -I 10s
If you omit the resource, ``crm_resource --cleanup`` will clear failures for
all resources. If you omit the node, it will clear failures on all nodes. If
you omit the operation and interval, it will clear the failures for all
operations on the resource.
.. note::
Even when cleaning up only a single operation, all failed operations will
disappear from the status display. This allows us to trigger a re-check of
the resource's current status.
Higher-level tools may provide other commands for querying and clearing
fail counts.
The ``crm_mon`` tool shows the current cluster status, including any failed
operations. To see the current fail counts for any failed resources, call
``crm_mon`` with the ``--failcounts`` option. This shows the fail counts per
resource (that is, the sum of any operation fail counts for the resource).
.. index::
single: migration-threshold; resource meta-attribute
single: resource; migration-threshold
Failure Response
________________
Normally, if a running resource fails, pacemaker will try to stop it and start
it again. Pacemaker will choose the best location to start it each time, which
may be the same node that it failed on.
However, if a resource fails repeatedly, it is possible that there is an
underlying problem on that node, and you might desire trying a different node
in such a case. Pacemaker allows you to set your preference via the
``migration-threshold`` resource meta-attribute. [#]_
If you define ``migration-threshold`` to *N* for a resource, it will be banned
from the original node after *N* failures there.
.. note::
The ``migration-threshold`` is per *resource*, even though fail counts are
tracked per *operation*. The operation fail counts are added together
to compare against the ``migration-threshold``.
By default, fail counts remain until manually cleared by an administrator
using ``crm_resource --cleanup`` or ``crm_failcount --delete`` (hopefully after
first fixing the failure's cause). It is possible to have fail counts expire
automatically by setting the ``failure-timeout`` resource meta-attribute.
.. important::
A successful operation does not clear past failures. If a recurring monitor
operation fails once, succeeds many times, then fails again days later, its
fail count is 2. Fail counts are cleared only by manual intervention or
falure timeout.
For example, setting ``migration-threshold`` to 2 and ``failure-timeout`` to
``60s`` would cause the resource to move to a new node after 2 failures, and
allow it to move back (depending on stickiness and constraint scores) after one
minute.
.. note::
``failure-timeout`` is measured since the most recent failure. That is, older
failures do not individually time out and lower the fail count. Instead, all
failures are timed out simultaneously (and the fail count is reset to 0) if
there is no new failure for the timeout period.
There are two exceptions to the migration threshold: when a resource either
fails to start or fails to stop.
If the cluster property ``start-failure-is-fatal`` is set to ``true`` (which is
the default), start failures cause the fail count to be set to ``INFINITY`` and
thus always cause the resource to move immediately.
Stop failures are slightly different and crucial. If a resource fails to stop
and fencing is enabled, then the cluster will fence the node in order to be
able to start the resource elsewhere. If fencing is disabled, then the cluster
has no way to continue and will not try to start the resource elsewhere, but
will try to stop it again after any failure timeout or clearing.
.. index::
single: resource; move
Moving Resources
################
Moving Resources Manually
_________________________
There are primarily two occasions when you would want to move a resource from
its current location: when the whole node is under maintenance, and when a
single resource needs to be moved.
.. index::
single: standby mode
single: node; standby mode
Standby Mode
~~~~~~~~~~~~
Since everything eventually comes down to a score, you could create constraints
for every resource to prevent them from running on one node. While Pacemaker
configuration can seem convoluted at times, not even we would require this of
administrators.
Instead, you can set a special node attribute which tells the cluster "don't
let anything run here". There is even a helpful tool to help query and set it,
called ``crm_standby``. To check the standby status of the current machine,
run:
.. code-block:: none
# crm_standby -G
A value of ``on`` indicates that the node is *not* able to host any resources,
while a value of ``off`` says that it *can*.
You can also check the status of other nodes in the cluster by specifying the
`--node` option:
.. code-block:: none
# crm_standby -G --node sles-2
To change the current node's standby status, use ``-v`` instead of ``-G``:
.. code-block:: none
# crm_standby -v on
Again, you can change another host's value by supplying a hostname with
``--node``.
A cluster node in standby mode will not run resources, but still contributes to
quorum, and may fence or be fenced by nodes.
Moving One Resource
~~~~~~~~~~~~~~~~~~~
When only one resource is required to move, we could do this by creating
location constraints. However, once again we provide a user-friendly shortcut
as part of the ``crm_resource`` command, which creates and modifies the extra
constraints for you. If ``Email`` were running on ``sles-1`` and you wanted it
moved to a specific location, the command would look something like:
.. code-block:: none
# crm_resource -M -r Email -H sles-2
Behind the scenes, the tool will create the following location constraint:
.. code-block:: xml
<rsc_location id="cli-prefer-Email" rsc="Email" node="sles-2" score="INFINITY"/>
It is important to note that subsequent invocations of ``crm_resource -M`` are
not cumulative. So, if you ran these commands:
.. code-block:: none
# crm_resource -M -r Email -H sles-2
# crm_resource -M -r Email -H sles-3
then it is as if you had never performed the first command.
To allow the resource to move back again, use:
.. code-block:: none
# crm_resource -U -r Email
Note the use of the word *allow*. The resource *can* move back to its original
location, but depending on ``resource-stickiness``, location constraints, and
so forth, it might stay where it is.
To be absolutely certain that it moves back to ``sles-1``, move it there before
issuing the call to ``crm_resource -U``:
.. code-block:: none
# crm_resource -M -r Email -H sles-1
# crm_resource -U -r Email
Alternatively, if you only care that the resource should be moved from its
current location, try:
.. code-block:: none
# crm_resource -B -r Email
which will instead create a negative constraint, like:
.. code-block:: xml
<rsc_location id="cli-ban-Email-on-sles-1" rsc="Email" node="sles-1" score="-INFINITY"/>
This will achieve the desired effect, but will also have long-term
consequences. As the tool will warn you, the creation of a ``-INFINITY``
constraint will prevent the resource from running on that node until
``crm_resource -U`` is used. This includes the situation where every other
cluster node is no longer available!
In some cases, such as when ``resource-stickiness`` is set to ``INFINITY``, it
is possible that you will end up with the problem described in
:ref:`node-score-equal`. The tool can detect some of these cases and deals with
them by creating both positive and negative constraints. For example:
.. code-block:: xml
<rsc_location id="cli-ban-Email-on-sles-1" rsc="Email" node="sles-1" score="-INFINITY"/>
<rsc_location id="cli-prefer-Email" rsc="Email" node="sles-2" score="INFINITY"/>
which has the same long-term consequences as discussed earlier.
Moving Resources Due to Connectivity Changes
____________________________________________
You can configure the cluster to move resources when external connectivity is
lost in two steps.
.. index::
single: ocf:pacemaker:ping resource
single: ping resource
Tell Pacemaker to Monitor Connectivity
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
First, add an ``ocf:pacemaker:ping`` resource to the cluster. The ``ping``
resource uses the system utility of the same name to a test whether a list of
machines (specified by DNS hostname or IP address) are reachable, and uses the
results to maintain a node attribute.
The node attribute is called ``pingd`` by default, but is customizable in order
to allow multiple ping groups to be defined.
Normally, the ping resource should run on all cluster nodes, which means that
you'll need to create a clone. A template for this can be found below, along
with a description of the most interesting parameters.
.. table:: **Commonly Used ocf:pacemaker:ping Resource Parameters**
:widths: 1 4
+--------------------+--------------------------------------------------------------+
| Resource Parameter | Description |
+====================+==============================================================+
| dampen | .. index:: |
| | single: ocf:pacemaker:ping resource; dampen parameter |
| | single: dampen; ocf:pacemaker:ping resource parameter |
| | |
| | The time to wait (dampening) for further changes to occur. |
| | Use this to prevent a resource from bouncing around the |
| | cluster when cluster nodes notice the loss of connectivity |
| | at slightly different times. |
+--------------------+--------------------------------------------------------------+
| multiplier | .. index:: |
| | single: ocf:pacemaker:ping resource; multiplier parameter |
| | single: multiplier; ocf:pacemaker:ping resource parameter |
| | |
| | The number of connected ping nodes gets multiplied by this |
| | value to get a score. Useful when there are multiple ping |
| | nodes configured. |
+--------------------+--------------------------------------------------------------+
| host_list | .. index:: |
| | single: ocf:pacemaker:ping resource; host_list parameter |
| | single: host_list; ocf:pacemaker:ping resource parameter |
| | |
| | The machines to contact in order to determine the current |
| | connectivity status. Allowed values include resolvable DNS |
| | connectivity host names, IPv4 addresses, and IPv6 addresses. |
+--------------------+--------------------------------------------------------------+
.. topic:: Example ping resource that checks node connectivity once every minute
.. code-block:: xml
<clone id="Connected">
<primitive id="ping" class="ocf" provider="pacemaker" type="ping">
<instance_attributes id="ping-attrs">
<nvpair id="ping-dampen" name="dampen" value="5s"/>
<nvpair id="ping-multiplier" name="multiplier" value="1000"/>
<nvpair id="ping-hosts" name="host_list" value="my.gateway.com www.bigcorp.com"/>
</instance_attributes>
<operations>
<op id="ping-monitor-60s" interval="60s" name="monitor"/>
</operations>
</primitive>
</clone>
.. important::
You're only half done. The next section deals with telling Pacemaker how to
deal with the connectivity status that ``ocf:pacemaker:ping`` is recording.
Tell Pacemaker How to Interpret the Connectivity Data
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
.. important::
Before attempting the following, make sure you understand
:ref:`rules`.
There are a number of ways to use the connectivity data.
The most common setup is for people to have a single ping target (for example,
the service network's default gateway), to prevent the cluster from running a
resource on any unconnected node.
.. topic:: Don't run a resource on unconnected nodes
.. code-block:: xml
<rsc_location id="WebServer-no-connectivity" rsc="Webserver">
<rule id="ping-exclude-rule" score="-INFINITY" >
<expression id="ping-exclude" attribute="pingd" operation="not_defined"/>
</rule>
</rsc_location>
A more complex setup is to have a number of ping targets configured. You can
require the cluster to only run resources on nodes that can connect to all (or
a minimum subset) of them.
.. topic:: Run only on nodes connected to three or more ping targets
.. code-block:: xml
<primitive id="ping" provider="pacemaker" class="ocf" type="ping">
... <!-- omitting some configuration to highlight important parts -->
<nvpair id="ping-multiplier" name="multiplier" value="1000"/>
...
</primitive>
...
<rsc_location id="WebServer-connectivity" rsc="Webserver">
<rule id="ping-prefer-rule" score="-INFINITY" >
<expression id="ping-prefer" attribute="pingd" operation="lt" value="3000"/>
</rule>
</rsc_location>
Alternatively, you can tell the cluster only to *prefer* nodes with the best
connectivity, by using ``score-attribute`` in the rule. Just be sure to set
``multiplier`` to a value higher than that of ``resource-stickiness`` (and
don't set either of them to ``INFINITY``).
.. topic:: Prefer node with most connected ping nodes
.. code-block:: xml
<rsc_location id="WebServer-connectivity" rsc="Webserver">
<rule id="ping-prefer-rule" score-attribute="pingd" >
<expression id="ping-prefer" attribute="pingd" operation="defined"/>
</rule>
</rsc_location>
It is perhaps easier to think of this in terms of the simple constraints that
the cluster translates it into. For example, if ``sles-1`` is connected to all
five ping nodes but ``sles-2`` is only connected to two, then it would be as if
you instead had the following constraints in your configuration:
.. topic:: How the cluster translates the above location constraint
.. code-block:: xml
<rsc_location id="ping-1" rsc="Webserver" node="sles-1" score="5000"/>
<rsc_location id="ping-2" rsc="Webserver" node="sles-2" score="2000"/>
The advantage is that you don't have to manually update any constraints
whenever your network connectivity changes.
You can also combine the concepts above into something even more complex. The
example below shows how you can prefer the node with the most connected ping
nodes provided they have connectivity to at least three (again assuming that
``multiplier`` is set to 1000).
.. topic:: More complex example of choosing location based on connectivity
.. code-block:: xml
<rsc_location id="WebServer-connectivity" rsc="Webserver">
<rule id="ping-exclude-rule" score="-INFINITY" >
<expression id="ping-exclude" attribute="pingd" operation="lt" value="3000"/>
</rule>
<rule id="ping-prefer-rule" score-attribute="pingd" >
<expression id="ping-prefer" attribute="pingd" operation="defined"/>
</rule>
</rsc_location>
.. _live-migration:
Migrating Resources
___________________
Normally, when the cluster needs to move a resource, it fully restarts the
resource (that is, it stops the resource on the current node and starts it on
the new node).
However, some types of resources, such as many virtual machines, are able to
move to another location without loss of state (often referred to as live
migration or hot migration). In pacemaker, this is called resource migration.
Pacemaker can be configured to migrate a resource when moving it, rather than
restarting it.
Not all resources are able to migrate; see the
:ref:`migration checklist <migration_checklist>` below. Even those that can,
won't do so in all situations. Conceptually, there are two requirements from
which the other prerequisites follow:
* The resource must be active and healthy at the old location; and
* everything required for the resource to run must be available on both the old
and new locations.
The cluster is able to accommodate both *push* and *pull* migration models by
requiring the resource agent to support two special actions: ``migrate_to``
(performed on the current location) and ``migrate_from`` (performed on the
destination).
In push migration, the process on the current location transfers the resource
to the new location where is it later activated. In this scenario, most of the
work would be done in the ``migrate_to`` action and, if anything, the
activation would occur during ``migrate_from``.
Conversely for pull, the ``migrate_to`` action is practically empty and
``migrate_from`` does most of the work, extracting the relevant resource state
from the old location and activating it.
There is no wrong or right way for a resource agent to implement migration, as
long as it works.
.. _migration_checklist:
.. topic:: Migration Checklist
* The resource may not be a clone.
* The resource agent standard must be OCF.
* The resource must not be in a failed or degraded state.
* The resource agent must support ``migrate_to`` and ``migrate_from``
actions, and advertise them in its meta-data.
* The resource must have the ``allow-migrate`` meta-attribute set to
``true`` (which is not the default).
If an otherwise migratable resource depends on another resource via an ordering
constraint, there are special situations in which it will be restarted rather
than migrated.
For example, if the resource depends on a clone, and at the time the resource
needs to be moved, the clone has instances that are stopping and instances that
are starting, then the resource will be restarted. The scheduler is not yet
able to model this situation correctly and so takes the safer (if less optimal)
path.
Also, if a migratable resource depends on a non-migratable resource, and both
need to be moved, the migratable resource will be restarted.
.. index::
single: reload
single: reload-agent
Reloading an Agent After a Definition Change
############################################
The cluster automatically detects changes to the configuration of active
resources. The cluster's normal response is to stop the service (using the old
definition) and start it again (with the new definition). This works, but some
resource agents are smarter and can be told to use a new set of options without
restarting.
To take advantage of this capability, the resource agent must:
* Implement the ``reload-agent`` action. What it should do depends completely
on your application!
.. note::
Resource agents may also implement a ``reload`` action to make the managed
service reload its own *native* configuration. This is different from
``reload-agent``, which makes effective changes in the resource's
*Pacemaker* configuration (specifically, the values of the agent's
reloadable parameters).
* Advertise the ``reload-agent`` operation in the ``actions`` section of its
meta-data.
* Set the ``reloadable`` attribute to 1 in the ``parameters`` section of
its meta-data for any parameters eligible to be reloaded after a change.
Once these requirements are satisfied, the cluster will automatically know to
reload the resource (instead of restarting) when a reloadable parameter
changes.
.. note::
Metadata will not be re-read unless the resource needs to be started. If you
edit the agent of an already active resource to set a parameter reloadable,
the resource may restart the first time the parameter value changes.
.. note::
If both a reloadable and non-reloadable parameter are changed
simultaneously, the resource will be restarted.
.. rubric:: Footnotes
.. [#] The naming of this option was perhaps unfortunate as it is easily
confused with live migration, the process of moving a resource from one
node to another without stopping it. Xen virtual guests are the most
common example of resources that can be migrated in this manner.
|