1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827
|
<html><head><title>Acknowledgments</title></head>
<body>
<a name="541728"><CENTER><h1>Acknowledgments</h1></CENTER></a>
<hr><p><a name="541736">
As with all such things, PANACEA was not created in a vacuum and owes a debt of thanks to many people who contributed in many different ways to its evolution. There are many more than can be mentioned in this short space, and the ones who are singled out are not mentioned in any particular order.<p>
</a>
<a name="541737">
Bill Eme and Tom Kelleher used the code, looked at the code, and made many excellent suggestions about the functionality. Rex Evans worked on forerunners to PANACEA over the years and many of the ideas here had their origins in his efforts. Lee Taylor similarly has had lots of experience with simulation code systems and has had a large impact on the workings of PANACEA. John Ambrosiano pushed hard for PANACHE and has graciously tested it. David Hardin has helped greatly in clarifying certain user requirements and in verifying their implementation.<p>
</a>
<a name="541738">
Jan Moura and Jeff Long organized a group to look into the requirements for time history data management and their efforts are to be found here. Scott Futral and Al Miller contributed some code and examples.<p>
</a>
<a name="541739">
Thanks also go to Ron Mayle and Howard Scott who have put up with PANACEA from its conception as often frustrated users.<p>
</a>
<a name="541740">
<h1>1.0 </a>Introduction</h1>
</a>
<a name="541741">
A numerical simulation code is fundamentally a device to solve an initial value problem. Very often these programs are written starting with the routines that solve some system of equations. Unless care is taken to formulate these routines with regard to a host of issues (e.g., data flow), it can be very awkward to set up a problem or to look at the answers that the code returns. Furthermore, it can be nearly impossible to take advantage of some of the excellent work that various groups have done (e.g., equation solver packages) because the data flow and structuring issues have not been given sufficient attention in the program design stages.<p>
</a>
<a name="541742">
One way to avoid some of these difficulties is to write the data flow controls, the I/O mechanisms, and the database manager first. With these parts in place, there is a great deal of guidance for building the parts of a simulation code that deal with the specific set of equations to be solved; thus initial value data is fed in and the solution is written out clearly and conveniently. Furthermore, this approach provides a basis for defining some conventions to allow the sharing of simulation modules. It also helps isolate the machine dependencies of a code in a very few places, which greatly enhances the portability of the code.<p>
</a>
<a name="541743">
PANACEA is a library of routines built to address these issues. In essence, PANACEA attempts to embody all of the functionality of a numerical simulation code, which is generic to all simulation codes. It accomplishes this by implementing a model of the simulation as a system of services (routines), which are bound together with the simulation specific routines provided by the code developer. One useful result of this approach is that it effectively imposes a discipline for the development of simulation codes that promote shareability, portability, and inter-operability.<p>
</a>
<a name="541744">
Throughout this manual examples will be couched in terms of a sample PANACEA code system called ABC. Like most PANACEA codes, ABC consists of three executable codes: </a>A, the initial value problem generator; </a>B, the main simulation code; and </a>C, the post processor code for ABC. ABC is a simple 2d hydrodynamics code with three packages: a global package for mesh handling and various “global” facilities; a hydrodynamics package; and a materials package. Many of the code fragments given, although appearing complete, are edited down to draw attention to essential points and leave out details which are not pertinent to the discussion of PANACEA.<p>
</a>
<a name="541745">
<h1>2.0 The PANACEA Model</h1>
</a>
<a name="541746">
This section discusses the motivation for and offers an explanation of the </a>PANACEA model. It summarizes the services that PANACEA provides and examines some related code issues. <p>
</a>
<a name="541747">
<h2>2.1 Sequence of States</h2>
</a>
<a name="541748">
An</a> initial value problem can be viewed as a machine (some system of equations) and an initial state. The initial state is evolved to a final state by the machine. When the system of equations is solved numerically, the evolution of states by the machine is represented as a discrete sequence of states.<p>
</a>
<a name="541749">
In this view, there are three broad phases to a numerical simulation. First, the initial state must be generated. Second, the numerical machine must evolve each state into its successor state until this cycle is terminated according to some criterion. Last, some or all of the information that represents the states of the system must be organized for visualization. The last two phases often occur simultaneously. For example, in a time plot of some physical variable in the simulation, the information for the plot must be gathered up in the course of the entire simulation and viewed at the end.<p>
</a>
<a name="541750">
PANACEA formalizes these three phases by addressing entire sets of routines to supporting the processes involved: problem generation, simulation, and post-processing for visualization. These phases can be accomplished in three separate codes or can be integrated into a single code. PANACEA attempts to make a minimum number of assumptions about the simulation being carried out. The assumptions that are made pertain to the model of a simulation as outlined above.<p>
</a>
<a name="541751">
<h2>2.2 Simulation Packages</h2>
</a>
<a name="541752">
Many of the most complex simulation programs are broken down into parts that solve some subset of the system of equations in the simulation. For example, some codes have a thermal conduction package that is a separately callable module. The reasons are fourfold: ease of control (packages can be switched on and off); simplified design and maintenance; multiple packages solving the same subset of equations (algorithmic testing or problem domain differences); or code recycling.<p>
</a>
<a name="541753">
Ideally, packages built for one code could be loaded into another code with few or no changes. This shareability will require some standardization of interfaces, database access, and so forth. PANACEA provides a framework upon which to build such a standardization. It is especially well suited to this task in light of its attempt to make few assumptions about how a code is organized or what it does.<p>
</a>
<a name="541754">
PANACEA has the facilities to manage a collection of simulation packages. The code developer defines each package to PANACEA (according to the criteria of the PANACEA model of simulations), which amounts to providing a set of functions which carry out simulation specific operations. Figure 1 illustrates how some basic functions provided by the code developer are bound by PANACEA into a simulation code. With the packages defined, PANACEA can manipulate them as abstract entities and perform such generic operations as cycling through the packages to evolve the state of the simulation.<p>
</a>
<a name="541755">
<p>
</a>
<A NAME="541757"><B>Defining packages for a PANACEA simulation code
</B><HR><A NAME="541758"><PRE> def_system()
</PRE><A NAME="541759"><PRE> {PA_run_time_package(“global”, NULL, NULL, def_global,
</PRE><A NAME="541760"><PRE> cont_global, init_vars, global_entry,
</PRE><A NAME="541761"><PRE> B_build_pseudo_mapping, NULL, NULL);
</PRE><A NAME="541762"><PRE> PA_run_time_package(“hydrodynamics”, NULL, NULL,
</PRE><A NAME="541763"><PRE> def_hydro, cont_hydro, init_hydro,
</PRE><A NAME="541764"><PRE> hydro, B_build_pseudo_mapping,
</PRE><A NAME="541765"><PRE> NULL, NULL);
</PRE><A NAME="541766"><PRE> PA_run_time_package(“materials”, NULL, NULL,
</PRE><A NAME="541767"><PRE> def_mat, cont_mat, mat_init,
</PRE><A NAME="541768"><PRE> mat, B_build_pseudo_mapping,
</PRE><A NAME="541769"><PRE> NULL, NULL);
</PRE><A NAME="541770"><PRE> return;}
</PRE><a name="541771">
<p>
</a>
<a name="545673">
Many (but not all) simulation codes require one or more computational meshes. Every simulation code does require some controlling information (e.g., when to stop) to be managed. PANACEA acknowledges this problem by requiring at least one package be provided. It is given a special status and a special name, the global package. It is recommended (but not required) that the mesh generation and handling routines go in the global package.<p>
</a>
<a name="541772">
To help realize the goal of shareability, the PANACEA package is defined as containing all of the routines needed to use the package in each of the phases: generation, simulation, and post-processing. In that way, the recipient of a PANACEA package should not have to add or change as much coding. For example, an equation-of-state (EOS) package might have some special information, which the generator must process for the main simulation. A PANACEA version of such an EOS package would include the routines to process that information for the generator.<p>
</a>
<a name="541773">
In practice, PANACEA packages can be thought of and realized as libraries of routines that are loaded together with a very simple driver module to produce the entire simulation code system (see Figure 2). If the PANACEA ideal of shareability were perfect, one simulation code could add the invocation of a package from a second code and load the package library to add the new package to the original simulation code system.<p>
</a>
<A NAME="545510"><B>A simple driver for the code whose packages are defined in Figure 1.
</B><HR><A NAME="545511"><PRE> /* B.C - the main simulation code of the ABC system */
</PRE><A NAME="545512"><PRE>
</PRE><A NAME="545513"><PRE> #include “b.h”
</PRE><A NAME="545514"><PRE>
</PRE><A NAME="545515"><PRE> /* MAIN - read the restart dump and run the physics loop */
</PRE><A NAME="545516"><PRE>
</PRE><A NAME="545517"><PRE> main(c, v)
</PRE><A NAME="545518"><PRE> int c;
</PRE><A NAME="545519"><PRE> char **v;
</PRE><A NAME="545520"><PRE> {char *fname;
</PRE><A NAME="545521"><PRE>
</PRE><A NAME="545522"><PRE> /* define the code system by setting up the packages */
</PRE><A NAME="545523"><PRE> def_system();
</PRE><A NAME="545524"><PRE> PA_build_domain_hook = B_build_domain;
</PRE><A NAME="545525"><PRE> PA_build_mapping_hook = B_build_mapping;
</PRE><A NAME="545526"><PRE>
</PRE><A NAME="545527"><PRE> /* read the restart file */
</PRE><A NAME="545528"><PRE> if (fname != NULL)
</PRE><A NAME="545529"><PRE> {PA_rd_restart(fname, NONE);
</PRE><A NAME="545530"><PRE> name[2] = SC_strsave(fname);};
</PRE><A NAME="545531"><PRE>
</PRE><A NAME="545532"><PRE> /* perform initialization */
</PRE><A NAME="545533"><PRE> PA_init_system(param[1], (param[3] - param[2])*param[4],
</PRE><A NAME="545534"><PRE> swtch[3], name[3], name[4], name[5]);
</PRE><A NAME="545535"><PRE>
</PRE><A NAME="545536"><PRE> /* run the simulation */
</PRE><A NAME="545537"><PRE> PA_simulate(param[1], swtch[3], N_zones, param[2], param[3],
</PRE><A NAME="545538"><PRE> param[4], param[5], param[6], param[7],
</PRE><A NAME="545539"><PRE> name[2], name[3], name[4], name[5]);
</PRE><A NAME="545540"><PRE>
</PRE><A NAME="545541"><PRE> /* write a restart dump before ending */
</PRE><A NAME="545542"><PRE> PA_wr_restart(name[2]);
</PRE><A NAME="545543"><PRE>
</PRE><A NAME="545608"><PRE> exit(0);}
</PRE><A NAME="545613"><PRE>
</PRE><a name="545609">
<h2>2.3 Simulation Variables</h2>
</a>
<a name="545610">
The complement to the simulation package is the simulation variable. Each package has three categories of variables: input variables, which are provided to the package by other packages; internal variables, which are neither imported into the package nor exported from it; and output variables, which are provided by the package for use by other packages.<p>
</a>
<a name="545563">
PANACEA manages a database of variables to which each package may contribute. Each variable is “owned” by some package and each package can gain access to any variable in the database. Access control is especially useful to help prevent some of the more obscure problems that can arise with unregulated access to simulation variables.<p>
</a>
<a name="545555">
A very important aspect of the variables in the database is to have a generic mechanism for specifying output requests. PANACEA can handle “most” requests in a generic fashion, thus freeing the application developer from having to worry about “most” output requests (plots, edits, dumps, etc.).<p>
</a>
<a name="541778">
Variables in PANACEA are carefully defined, including such information as name, type, array dimensions, units, and various categories of scope. This imposes an important discipline on the developer and permits PANACEA to provide some additional services relating to unit conversion, and subset extraction for I/O (see Figure 3).<p>
</a>
<a name="541779">
The database manager is the main mechanism for regulating data flow through a PANACEA code system. There is a practical problem inherited from the C programming language, in which PANACEA is implemented, in that there are no separate name spaces and hence global variables can (and sometimes do) make variables available where not actually intended or desired. A solution to this problem will come in later versions of PANACEA.<p>
</a>
<a name="541780">
<h2>2.4 Physical Units</h2>
</a>
<a name="541781">
PANACEA maintains three systems of units: external, internal, and cgs. The end user specifies input quantities in external units and output quantities are given in external units. Internal units are those in which the simulation routines deal. This was done to give code developers the opportunity to debug in units that make sense to them while letting the end users deal in a system of units that is natural to the problems being run. A “complete” set of fundamental constants and many derived physical constants are maintained by PANACEA in cgs units originally. PANACEA handles all data conversions in an efficient and transparent way, though each variable must have its units defined so that conversions can be done. The conversions cannot work if there are any numerical constants that have physical units in a PANACEA code. For example, writing 2.99e10 for the speed of light in an expression is illegal (although PANACEA does nothing to enforce it). The PANACEA provided constant, c, must be used instead.<p>
</a>
<A NAME="541816"><B>Defining variable for a PANACEA database. Note that this is one of the functions installed
as part of the definition of the hydrodynamics package in Figure 1
</B><HR><A NAME="541818"><PRE> /* DEF_HYDRO - define the hydrodynamics package data base */
</PRE><A NAME="541819"><PRE>
</PRE><A NAME="541820"><PRE> def_hydro(pck)
</PRE><A NAME="541821"><PRE> PA_package *pck;
</PRE><A NAME="541822"><PRE> {int *P_zones;
</PRE><A NAME="541824"><PRE> P_zones = &swtch[4];
</PRE><A NAME="541825"><PRE>
</PRE><A NAME="541826"><PRE> /* RESTART VARIABLES */
</PRE><A NAME="541828"><PRE> PA_def_var(“n”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541829"><PRE> SCOPE, RESTART, CLASS, REQU, CENTER, Z_CENT, ATTRIBUTE
</PRE><A NAME="541830"><PRE> P_zones, DIMENSION, PER, CC, UNITS);
</PRE><A NAME="541831"><PRE> PA_def_var(“P”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541832"><PRE> SCOPE, RESTART, CLASS, REQU, CENTER, Z_CENT, ATTRIBUTE
</PRE><A NAME="541833"><PRE> P_zones, DIMENSION, ERG, PER, CC, UNITS);
</PRE><A NAME="541834"><PRE> PA_def_var(“rho”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541835"><PRE> SCOPE, RESTART, CLASS, REQU, CENTER, Z_CENT, ATTRIBUTE
</PRE><A NAME="541836"><PRE> P_zones, DIMENSION, G, PER, CC, UNITS);
</PRE><A NAME="541837"><PRE>
</PRE><A NAME="541838"><PRE> /* RUNTIME VARIABLES */
</PRE><A NAME="541840"><PRE> PA_def_var(“Rpdv”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541841"><PRE> CENTER, Z_CENT, ATTRIBUTE,
</PRE><A NAME="541842"><PRE> P_zones, DIMENSION, EV, PER, SEC, UNITS);
</PRE><A NAME="541843"><PRE> PA_def_var(“Rqdv”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541844"><PRE> CENTER, Z_CENT, ATTRIBUTE,
</PRE><A NAME="541845"><PRE> P_zones, DIMENSION, EV, PER, SEC, UNITS);
</PRE><A NAME="541846"><PRE> PA_def_var(“vol”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541847"><PRE> CENTER, Z_CENT, ATTRIBUTE,
</PRE><A NAME="541848"><PRE> P_zones, DIMENSION, CC, UNITS);
</PRE><A NAME="541849"><PRE> PA_def_var(“mass-z”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541850"><PRE> CENTER, Z_CENT, ATTRIBUTE,
</PRE><A NAME="541851"><PRE> P_zones, DIMENSION, G, UNITS);
</PRE><A NAME="541852"><PRE>
</PRE><A NAME="541853"><PRE> /* EDIT VARIABLES */
</PRE><A NAME="541854"><PRE> PA_def_var(“Q”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="541855"><PRE> SCOPE, EDIT, CLASS, REQU, CENTER, Z_CENT, ATTRIBUTE,
</PRE><A NAME="541856"><PRE> P_zones, DIMENSION, ERG, PER, CC, UNITS);
</PRE><A NAME="541858"><PRE>
</PRE><A NAME="545501"><PRE> return;}
</PRE><a name="541860">
This efficiency offers three benefits. First, by requiring constants to be expressed in terms of physical constants and dimensionless numbers, a code system avoids certain arithmetic errors and is more self-documenting. Second, an extra level of consistency is built into simulation codes. I have found bugs in simulation packages by running a problem in two different systems of internal units. Such simulations should produce the same result, but various inconsistencies between packages can easily result in different answers. The third benefit is that without such a mechanism simulation packages in general would not be sharable! By carrying their system of units around in physical terms, packages can be moved around among simulations codes without regard to the way the original developer thought about units.<p>
</a>
<a name="541861">
<h2>2.5 Data Flow</h2>
</a>
<a name="541862">
With the three phase model in mind, the PANACEA model manages the data flow throughout a simulation as follows: the generator reads in ASCII and binary information to define the initial state, which is written as a binary file; the simulation phase code reads state files and source files, communicates with itself by writing state files, and communicates with the post-processor by writing dumps targeted for it; and the post-processor reads only the post-processor dumps and writes out files for target visualization systems.<p>
</a>
<a name="541863">
To maintain portability, PANACEA uses PDBLib to read and write portable binary files. The choice of PDBLib is motivated by its efficiency and its ability to handle structured data including pointers. In fact, PANACEA uses parts of PDBLib directly to manage its database. In this way, the developer can work with relatively arbitrary data structures without having to worry about reading and writing them out to the state files. The fact that the same tool is used for all binary files coupled with the fact that PDB files are self-describing gives the code developer the opportunity to make the greatest use of the data in the various files.<p>
</a>
<a name="541864">
<h2>2.6 Generation of Initial State</h2>
</a>
<a name="541865">
The procedure for using PANACEA to build a program to generate initial states for a simulation is described in this section. For sake of example, the generator program will be referred to as A. As with all PANACEA codes the simulation packages are the focus of attention.<p>
</a>
<a name="541866">
PANACEA uses a very simple mechanism for processing user commands. Each line of input in the user written file that describes the simulation problem is read into a buffer; the first token is stripped off and used in a hash table to dispatch to a routine that the code developer has provided to process the remaining tokens in the input line and to take appropriate action. PANACEA provides several functions to get the tokens and, if necessary, to translate them to numerical data types.<p>
</a>
<a name="541867">
Given this model, it is clear that the developer must write a collection of routines to handle the various commands for A. Very often in non-PANACEA codes this is done by having a routine with a potentially enormous if...elseif...elseif...endif construct. The advantage of PANACEA’s hash driven scheme is that each command is processed separately and with equally quick access. This procedure is done on a package-by-package basis. In this way, the routines that generate information for a package are associated with the package.<p>
</a>
<a name="541868">
Since PANACEA manages a database of simulation variables, the variables for each package must be defined to the database. PANACEA provides a routine for this purpose. The code developer must completely define variables for each package. These definitions are put into a single routine, which is one of the defining routines of a PANACEA package. The information required about a variable is shown below:<p>
</a>
<ul><a name="541869">
<li>A name by which it is installed in the database (a hash table).
</a>
<a name="541870">
<li>A pointer to the number of elements in the variable.
</a>
<a name="541871">
<li>A list of pointers to dimensions defining the shape of variable (1-D array, 2-D array, etc.).
</a>
<a name="541872">
<li>A designation specifying the scope of the variable.
</a>
<a name="541873">
<li>Another designation for the class of the variable.
</a>
<a name="541874">
<li>One for the centering of the variable with respect to any coordinate mesh used in the simulation.
</a>
<a name="541875">
<li>A list of physical units (see Figure 3).
</a>
<a name="541876">
The scope of a variable addresses three issues: (1) If it is necessary to the definition of the simulation state, in which case it is written to the state file when such a dump is done; (2) If the variable can be computed from the state but should otherwise remain present for the entire simulation; or (3) If the variable should only exist long enough to be edited and then have its space reclaimed.<p>
</a>
<a name="541877">
The class of a variable refers to whether it is required to be in the state file, whether it is optional in the state file, or whether it should be read from the state file only when specifically requested. The first two classes are read in whenever a state file is read. The last one only brings in the data when specifically accessed with PA_CONNECT.<p>
</a>
<a name="541878">
Pointers to the size (number of elements and shape) information are necessary because, at the time the variables are defined, there is no problem definition to give values to these numbers. Therefore, PANACEA is given pointers to the locations where that information will be stored when a problem is generated or read in from a state file.<p>
</a>
<a name="541879">
PANACEA provides a routine to install the code developer’s generator routines in the command hash table. Thus, in addition to the routines to process the input, a function to install these routines in the command table must be provided. This routine is one of the defining routines for a PANACEA package (see Figure 4).<p>
</a>
<A NAME="541880"><B>Install commands for the global package. These form part of the initial value problem
generator, A.
</B><HR><A NAME="541882"><PRE> /* GLOBAL_CMMNDS - install the commands for the global package */
</PRE><A NAME="541883"><PRE>
</PRE><A NAME="541884"><PRE> global_cmmnds()
</PRE><A NAME="541885"><PRE> {N_parts = 0;
</PRE><A NAME="541886"><PRE>
</PRE><A NAME="541887"><PRE> PA_inst_c(“make”, NULL, FALSE, 0, make_mesh, PA_zargs, commands);
</PRE><A NAME="541888"><PRE> PA_inst_c(“clear”, NULL, FALSE, 0, clearh, PA_zargs, commands);
</PRE><A NAME="541889"><PRE> PA_inst_c(“part”, NULL, FALSE, 0, parth, PA_zargs, commands);
</PRE><A NAME="541890"><PRE> PA_inst_c(“side”, NULL, FALSE, 0, sideh, PA_zargs, commands);
</PRE><A NAME="541891"><PRE>
</PRE><A NAME="541892"><PRE> /* named switches, parameters, and names */
</PRE><A NAME="541893"><PRE> PA_inst_c(“start-time”, param, SC_DOUBLE_I, 2, PA_pshand,
</PRE><A NAME="541894"><PRE> PA_sargs, commands);
</PRE><A NAME="541895"><PRE> PA_inst_c(“stop-time”, param, SC_DOUBLE_I, 3, PA_pshand,
</PRE><A NAME="541896"><PRE> PA_sargs, commands);
</PRE><A NAME="541897"><PRE>
</PRE><A NAME="541898"><PRE> return;}
</PRE><A NAME="541899"><PRE>
</PRE><a name="541936">
A PANACEA package provides for three arrays: one array of integers called switches; one array of doubles called parameters; and one array of strings called names, which the developer may wish to use to control a package’s operation. For example, a number of sub-iterations or a multiplier on some process might be managed by PANACEA on behalf of the code developer (i.e., the database manager overhead can be reduced by managing arrays rather than large numbers of scalars). The code developer can use this facility by providing a routine that specifies how many switches, parameters, and names are required for a given package and specifies their default values. PANACEA itself provides routines to handle input commands to set values for these quantities (collectively referred to as controls). In fact, PANACEA even provides the developer with the option of referring to the controls by names (at least from the generator input see Figure 4). The routine that defines the controls is one of the package defining routines (see Figure 5).<p>
</a>
<a name="541937">
The normal execution sequence for a PANACEA generator follows:<p>
</a>
<a name="541938">
<li>The command table is built by installing each package’s commands.
</a>
<a name="541939">
<li>The controls for each package are defined.
</a>
<a name="541940">
<li>The variables for each package are defined.
</a>
<a name="541941">
<li>The input is read in and processed.
</a>
<a name="541942">
<li>The variables that are created are interned in the database managed by PANACEA.
</a>
<a name="541943">
<li>The database is dumped out into a state file.
</a>
<A NAME="545679"><B>Define and initialize the controls for a PANACEA package. Note that this is one of the
functions installed as part of the definition for the hydrodynamics package in Figure 1.
</B><HR><A NAME="545681"><PRE> /* CONT_HYDRO - set the hydrodynamics package controls */
</PRE><A NAME="545682"><PRE>
</PRE><A NAME="545683"><PRE> cont_hydro(pck)
</PRE><A NAME="545684"><PRE> PA_package *pck;
</PRE><A NAME="545685"><PRE> {static int n_names = 2, n_params = 15, n_swtches = 10;
</PRE><A NAME="545686"><PRE>
</PRE><A NAME="545687"><PRE> PA_mk_control(pck, “hydrodynamics”, n_names, n_params, n_swtches);
</PRE><A NAME="545688"><PRE>
</PRE><A NAME="545689"><PRE> swtch[1] = TRUE; /* hydro switch */
</PRE><A NAME="545690"><PRE> swtch[2] = 0;
</PRE><A NAME="545691"><PRE> swtch[3] = 0;
</PRE><A NAME="545692"><PRE> swtch[4] = global_swtch[12];
</PRE><A NAME="545693"><PRE> swtch[5] = 0;
</PRE><A NAME="545694"><PRE> swtch[6] = 1;
</PRE><A NAME="545695"><PRE> swtch[7] = 0;
</PRE><A NAME="545696"><PRE>
</PRE><A NAME="545697"><PRE> param[1] = 0.2;
</PRE><A NAME="545698"><PRE> param[2] = 2.0;
</PRE><A NAME="545699"><PRE> param[3] = 1.0;
</PRE><A NAME="545700"><PRE> param[4] = 1.5;
</PRE><A NAME="545701"><PRE> param[5] = 0.2;
</PRE><A NAME="545702"><PRE> param[6] = 0.2;
</PRE><A NAME="545703"><PRE> param[7] = 0.2;
</PRE><A NAME="545704"><PRE> param[8] = 1.0;
</PRE><A NAME="545705"><PRE> param[9] = 0.0;
</PRE><A NAME="545706"><PRE> param[10] = 1.0;
</PRE><A NAME="545707"><PRE> param[11] = 3.0/2.0;
</PRE><A NAME="545708"><PRE> param[12] = 1.0e-6;
</PRE><A NAME="545709"><PRE> param[13] = 0.1;
</PRE><A NAME="545710"><PRE> param[14] = 2.0;
</PRE><A NAME="545711"><PRE> param[15] = 1.0;
</PRE><A NAME="545712"><PRE>
</PRE><A NAME="545713"><PRE> return;}
</PRE><A NAME="545714"><PRE>
</PRE><A NAME="545715"><PRE>
</PRE><A NAME="545716"><PRE>
</PRE><A NAME="545783"><PRE>
</PRE><a name="541944">
The last step is carried out by PANACEA alone. The step in which the variables are interned in the database requires a routine supplied by the developer to make PANACEA calls that associate local or global variables with entries in the database. This is the final defining routine for a package in the generation phase (see Figure 6).<p>
</a>
<A NAME="545722"><B> Intern the variables for the hydrodynamics package. This is a function defined for the
initial value problem generator, A, by the hydrodynamics package.
</B><HR><A NAME="545724"><PRE> /* INTERN_HYDRO - INTERN the variables of the hydrodynamics package
</PRE><A NAME="545725"><PRE> * - prior to writing the initial restart dump
</PRE><A NAME="545726"><PRE> */
</PRE><A NAME="545727"><PRE>
</PRE><A NAME="545728"><PRE> intern_hydro()
</PRE><A NAME="545729"><PRE> {swtch[2] = global_swtch[1];
</PRE><A NAME="545730"><PRE> swtch[3] = global_swtch[2];
</PRE><A NAME="545731"><PRE> swtch[4] = global_swtch[12];
</PRE><A NAME="545732"><PRE>
</PRE><A NAME="545733"><PRE> param[12] *= (global_param[3] - global_param[2]);
</PRE><A NAME="545734"><PRE> param[13] *= (global_param[3] - global_param[2]);
</PRE><A NAME="545735"><PRE>
</PRE><A NAME="545736"><PRE> PA_INTERN(n, “n”, double);
</PRE><A NAME="545737"><PRE> PA_INTERN(p, “P”, double);
</PRE><A NAME="545738"><PRE> PA_INTERN(rho, “rho”, double);
</PRE><A NAME="545739"><PRE>
</PRE><A NAME="545740"><PRE> return;}
</PRE><A NAME="545741"><PRE>
</PRE><a name="541945">
Finally, to build a PANACEA generator, the code developer writes a driver module that issues calls to PANACEA to define the packages given the functions discussed above, to process command line arguments, and to hand control of the input reading process to PANACEA. All further action is controlled by PANACEA and the information in the input stream, i.e., reviewing information, writing the initial state file, and exiting. This driver is compiled and loaded with the package libraries, the PANACEA library, and some other lower level libraries such as PDBLib.<p>
</a>
<a name="541946">
In practice, the first place to start is the global package. If the simulation code has a computational mesh, the routines to translate a collection of user specifications into a representation appropriate for the simulation routines should reside here. Controls that specify how many cycles to run, that keep the names of file families, etc. go in the global package. In addition, routines for direct visualization of the initial state before writing a state file might be most logically included in the global package.<p>
</a>
<a name="541947">
This process would be repeated for each package of the simulation until a complete generator code was specified. It is important to remember that PANACEA attempts to make limited assumptions about what the code developer wants to do - a necessity to have some structure specifying a framework on which to hang simulation packages. It is best to keep in mind a picture of fundamental processes of data flow and management and computational flow control, i.e., to think about what has to be happening to get a generation code to work properly.<p>
</a>
</ul><a name="541969">
<h2>2.7 Simulation</h2>
</a>
<a name="541970">
The actual simulation phase of the PANACEA model is the simplest. Since PANACEA simulation codes only read state files that serve what PANACEA itself manages, the code developer only needs to provide the actual simulation routines. Actually, PANACEA allows for some additional routines to be supplied to increase the efficiency of data flow through the code and to handle simulation specific output requests.<p>
</a>
<a name="545755">
Once the database has been read in from the state file, PANACEA alone has access to the variables in the database. In order to gain access to the data, the code developer must issue calls to connect local or global code variables to the information in the database. Even though the database is hash driven and is therefore quite efficient, PANACEA overhead can be reduced by connecting to package variables once and leaving those connections intact for the entire simulation run. This is not required, but it is very convenient and efficient. The code developer can supply a routine in which all of these connections are made on a package-by-package basis, i.e., one routine per package. These routines are defining routines for the packages. PANACEA will execute each of these packages once per simulation run before the main simulation routines are called (see Figure 7).<p>
</a>
<a name="545756">
Most PANACEA packages have a main entry point which is where the real simulation work occurs. The main entry point is probably the routine which is most often the starting point when a code developer sets out to write a new simulation package. Typically, the main entry point it designed to be executed once per major computational cycle. From PANACEA’s point of view it is both an easy point to control and a natural point to monitor the performance and resource usage of a package. Figure 8 illustrates a main entry point routine.<p>
</a>
<a name="545762">
PANACEA packages also include slots for routines to handle special purpose I/O and routines to run after the main simulations routines have been called for the last time in a run. The code developer can provide them if necessary and supply them to the call which defines the package to the simulation code.<p>
</a>
<a name="545763">
PANACEA provides a service to sequentially execute the main simulation routines until a certain “time” has elapsed. Many variations on such a service are possible and the code developer does not have to use the ones PANACEA provides. Given the list of packages, the code developer can manipulate them in whatever fashion is appropriate to the problem at hand (see Figure 2).<p>
</a>
<a name="541971">
<p>
</a>
<A NAME="541972"><B>Initialize the hydrodynamics package. Note that this is one of the functions installed as
part of the definition of the hydrodynamics package in Figure 1.
</B><HR><A NAME="541973"><PRE>
</PRE><A NAME="541974"><PRE> /* INIT_HYDRO - initialize and allocate hydro variables once */
</PRE><A NAME="541975"><PRE>
</PRE><A NAME="541976"><PRE> init_hydro(pck)
</PRE><A NAME="541977"><PRE> PA_package *pck;
</PRE><A NAME="541978"><PRE> {int i, j;
</PRE><A NAME="541979"><PRE>
</PRE><A NAME="541980"><PRE> /* PA_CONNECT global zonal variables */
</PRE><A NAME="541981"><PRE> PA_CONNECT(rho, “rho”, double *, TRUE);
</PRE><A NAME="541982"><PRE> PA_CONNECT(n, “n”, double *, TRUE);
</PRE><A NAME="541983"><PRE> PA_CONNECT(p, “P”, double *, TRUE);
</PRE><A NAME="541984"><PRE> PA_CONNECT(massz, “mass-z”, double *, TRUE);
</PRE><A NAME="541985"><PRE> PA_CONNECT(t, “T”, double *, TRUE);
</PRE><A NAME="541986"><PRE> PA_CONNECT(ab, “A-bar”, double *, TRUE);
</PRE><A NAME="541987"><PRE> PA_CONNECT(zb, “Z-bar”, double *, TRUE);};
</PRE><A NAME="541988"><PRE>
</PRE><A NAME="541989"><PRE> /* allocate local zonal variables */
</PRE><A NAME="541990"><PRE> cs = MAKE_N(double, N_zones);
</PRE><A NAME="541991"><PRE> dtvg = MAKE_N(double, N_zones);
</PRE><A NAME="541992"><PRE> pdv = MAKE_N(double, N_zones);
</PRE><A NAME="541993"><PRE> qdv = MAKE_N(double, N_zones);
</PRE><A NAME="541994"><PRE> voln = MAKE_N(double, N_zones);
</PRE><A NAME="541995"><PRE> volo = MAKE_N(double, N_zones);
</PRE><A NAME="541996"><PRE>
</PRE><A NAME="541997"><PRE> /* set some scalars */
</PRE><A NAME="541998"><PRE> csmin = param[9];
</PRE><A NAME="541999"><PRE> hgamma = 1.0 + 1.0/(param[11] + SMALL);
</PRE><A NAME="542000"><PRE>
</PRE><A NAME="542001"><PRE> /* initialize some zonal arrays */
</PRE><A NAME="542002"><PRE> for (j = frz; j <= lrz; j++)
</PRE><A NAME="542003"><PRE> {volo[j] = vol[j];
</PRE><A NAME="542004"><PRE> massz[j] = rho[j]*vol[j];};
</PRE><A NAME="542005"><PRE>
</PRE><A NAME="542006"><PRE> return;}
</PRE><A NAME="542007"><B>The main entry point for a PANACEA package. Note that this is one of the functions
installed as part of the definition of the hydrodynamics package in Figure 1.
</B><HR><A NAME="542008"><PRE>
</PRE><A NAME="542009"><PRE> /* HYDRO - the main hydro entry point */
</PRE><A NAME="542010"><PRE>
</PRE><A NAME="542011"><PRE> hydro(pck)
</PRE><A NAME="542012"><PRE> PA_package *pck;
</PRE><A NAME="542013"><PRE> {int hyd_z;
</PRE><A NAME="542014"><PRE> double hyd_dt;
</PRE><A NAME="542015"><PRE> static int first = TRUE;
</PRE><A NAME="542016"><PRE>
</PRE><A NAME="542017"><PRE> /* check that this package was requested */
</PRE><A NAME="542018"><PRE> if (swtch[1] == FALSE)
</PRE><A NAME="542019"><PRE> return;
</PRE><A NAME="542020"><PRE>
</PRE><A NAME="542021"><PRE> if (first)
</PRE><A NAME="542022"><PRE> pck->space = (double) Ssp_alloc;
</PRE><A NAME="542023"><PRE>
</PRE><A NAME="542024"><PRE> PA_MARK_TIME;
</PRE><A NAME="542025"><PRE>
</PRE><A NAME="542026"><PRE> init_cycle();
</PRE><A NAME="542027"><PRE>
</PRE><A NAME="542028"><PRE> /* do the real hydro work */
</PRE><A NAME="542029"><PRE> hydro_wrk(&hyd_dt, &hyd_z);
</PRE><A NAME="542030"><PRE>
</PRE><A NAME="542031"><PRE> /* record the hydro timestep vote */
</PRE><A NAME="542032"><PRE> pck->dt = hyd_dt;
</PRE><A NAME="542033"><PRE> pck->dt_zone = hyd_z;
</PRE><A NAME="542034"><PRE>
</PRE><A NAME="542035"><PRE> PA_ACCM_TIME(pck->time);
</PRE><A NAME="542036"><PRE>
</PRE><A NAME="542037"><PRE> if (first)
</PRE><A NAME="542038"><PRE> {pck->space = (double) Ssp_alloc - pck->space;
</PRE><A NAME="542039"><PRE> first = FALSE;};
</PRE><A NAME="542040"><PRE>
</PRE><A NAME="542041"><PRE> return;}
</PRE><A NAME="542042"><PRE>
</PRE><a name="542043">
<p>
</a>
<a name="542047">
To help with the monitoring of performance, each package has slots to record the CPU time spent in the package and the total memory required by the package. The latter is most useful when memory is being managed dynamically. PANACEA will print out statistics for each of the packages at the end of a run. In practice, this tends to be very useful information when algorithmic optimization is being pursued or when obscure behavior is suggesting memory bugs. See Figure 8.<p>
</a>
<a name="542048">
<h2>2.8 Data Management for Visualization</h2>
</a>
<a name="542049">
Ultimately, a simulation code system is limited by its ability to produce information that can be presented in a meaningful way. The visualization problem is one of current intense interest and effort. From the point of view of PANACEA, the important task is to get numerical results out of the simulation code and into a form usable by a visualization system. Because of the variety of visualization systems and their input formats, PANACEA can provide active services for the first part, i.e., it gets data out of the simulation efficiently. It only passively supports the second part by accessing the data it puts out from the simulation. The code developer is left with the task of formatting the information for the visualization system of choice. <p>
</a>
<a name="542050">
There are two basic kinds of data flow out of the simulation code. First, at each cycle, the data that is completed in a cycle must be written out according to user requests. Second, information that is accumulated across more than one cycle must be addressed.<p>
</a>
<a name="542051">
The “snapshot” requests (complete in one cycle) can be put out either directly for the visualization system or into some intermediate form for subsequent processing. In the PANACEA model, output data are not kept in the state of the running code. In fact, PANACEA services are aimed at transferring the data from the code to data files as efficiently as possible. The main advantage of this scheme is that the task of visualization can be done on a different machine while the simulation progresses if data is put out every cycle. A second advantage is that the running code does not grow as a result of the stored output data.<p>
</a>
<a name="542052">
The output whose meaning comes from the results of several computational cycles (generically referred to as time plots) is handled differently. PANACEA dumps the information computed in each cycle out into an intermediate file family at the end of the cycle. After the simulation is complete a separate post-processing code transposes the information and writes it in the desired format. This process naturally involves the code developer to a greater extent than the generation process, given that input parsing is ASCII based whereas visualization systems have a variety of input mechanisms.<p>
</a>
<a name="542053">
The PACT tool, PDBView, has facilities to display the “snapshot” files generated by PANACEA. PANACEA has support for post processor codes to emit files for ULTRA II, the PACT utility for presentation, analysis, and manipulation of 1D data sets. Typically these are time plots since the snapshot mechanism covers most other cases.<p>
</a>
<a name="542054">
<p>
</a>
<A NAME="542055"><B>Sample PANACEA plot request specifications. All of the range and domain variables are
in the database.
</B><HR><a name="542057">
A velocity vector plot every 20.0 time units from 0 to 100.0 over the entire mesh.<p>
</a>
<A NAME="AUTOTAG;"><B>graph {vx,vy}(t=step(0.0;1.0e2;20.0),rx,ry)
</B><a name="542059">
A vector plot with components rho and n every 20.0 time units from 0 to 100.0 over the entire mesh.<p>
</a>
<A NAME="AUTOTAG;"><B>graph {rho,n}(t=step(0.0;1.0e2;20.0),rx,ry)
</B><a name="542061">
The radiation field at time 50.0 and frequency 1000.0 over the entire mesh. This could be rendered as a contour plot, a surface plot, a wire-frame plot, or an image plot.<p>
</a>
<A NAME="AUTOTAG;"><B>graph jnu(t=50.0,rx,ry,nu=1000.0)
</B><a name="542063">
The variable, p, at every time over the entire mesh.<p>
</a>
<A NAME="AUTOTAG;"><B>graph p(t,rx,ry)
</B><A NAME="AUTOTAG;"><B>
</B><a name="542066">
PANACEA has very powerful and general mechanisms for plotting data from the database. These mechanisms translate output requests into data for a visualization system (see Figure 9).<p>
</a>
<a name="542067">
<h2>2.9 Source Functions and Source Data</h2>
</a>
<a name="542068">
Many systems of equations that are simulated numerically involve source functions of one sort or another. Also, initial value and boundary value data must be gotten into the simulation. In general, the amount of information for these purposes is too large to include in an ASCII input file. In any case, it is straightforward enough to handle all of this type of information in complete generality.<p>
</a>
<a name="542069">
PANACEA provides a set of services to manage source or boundary value data. The characterization of the data is specified in the input phase. The characterization may include information as to where or when the source is to be applied, a file from which to read the data, etc. During the simulation phase, the source data is interpolated by PANACEA and handed to simulation routines upon request.<p>
</a>
<a name="542070">
To make this process as efficient as possible, when source data is so voluminous as to require data files to contain it reasonably, it is prepared in advance in the form of PDB files. The self-describing nature of these files and variable database of PANACEA make it easy to code and efficient at run time. PANACEA provides routines to facilitate the writing of a code to gather source information from whatever sources the code developer has and to produce the required PDB source files. The further advantage of this approach is that many simulation runs can be done (and typically are) with one set of source information that does not change. Having the PDB files separate makes this fast and convenient.<p>
</a>
<a name="542071">
The source variable notion is very natural from the data generation and specification point of view. However, from the point of view of the algorithms, additional issues concern initial or boundary value data. Often this data is not directly part of the variable database (perhaps because it is applied to the boundaries of one of the database variables). PANACEA distinguishes between initial or boundary value data and source data. It treats source data as a separate sub-class of initial value data. In particular, source data usually involves information coming in over many computational cycles, and it may require interpolation with respect to “time”. It also may involve large quantities of data that are most conveniently kept in files (PDB files actually). PANACEA services make as much of this transparent to the developer as possible.<p>
</a>
<a name="542072">
PANACEA services gather up specifications, doing some processing when appropriate, and hold that information for the simulation on demand. These services also interpolate “temporal” data to the correct “time” in a simulation. Even though PANACEA makes a distinction between sources and initial value data, it gathers them in the same fashion (see Figure 10).<p>
</a>
<a name="545775">
<p>
</a>
<A NAME="542075"><B>Some examples of source and initial value specifications in PANACEA.
</B><HR><a name="542077">
Set a boundary condition tagged as “boundary-pressure”. The hydrodynamics package will look for “boundary-pressure” specifications and interpolate appropriate values from the data in file, “press.dat”.<p>
</a>
<A NAME="AUTOTAG;"><B>specify bc boundary-pressure from press.dat
</B><a name="542079">
Set a boundary condition tagged as “constant-vx”. The hydrodynamics package will look for “constant-vx” specifications and take the given values as the place to apply it.<p>
</a>
<A NAME="AUTOTAG;"><B>specify bc constant-vx 1 1 1 5
</B><a name="542081">
Impose a profile on the source variable tagged as “temperature-floor”. The relevant package looks for a source variable tagged this way. It will interpret (with PANACEA’s help) and interpolate the “time”, “value” pairs.<p>
</a>
<A NAME="AUTOTAG;"><B>specify src temperature-floor
</B><A NAME="AUTOTAG;"><B>s 0.0 50.0
</B><A NAME="AUTOTAG;"><B>s 0.3 100.0
</B><A NAME="AUTOTAG;"><B>s 0.5 300.0
</B><A NAME="AUTOTAG;"><B>s 0.8 400.0
</B><A NAME="AUTOTAG;"><B>s 1.0 500.0
</B><a name="542088">
Variables defined in the PANACEA database can be directly controlled by source variables. In this case, the variable rho would be interpolated from the source file rho.dat instead of being computed by a hydrodynamics package.<p>
</a>
<A NAME="AUTOTAG;"><B>specify rho from rho.dat
</B><a name="542091">
Typically, a PANACEA simulation code system will have a program to build source files for simulation runs. PANACEA has the routines to do the generic work here. It helps to map ASCII (or other) data files that are derived from experiments or other simulations into the database of the simulation code system. The developer provides the routines with specific information about the input data; the PANACEA services package it in a form that is most efficient for the simulation code to use.<p>
</a>
<a name="542092">
<h2>2.10 Data Structures</h2>
</a>
<a name="542093">
As the above discussion indicates, PANACEA attempts to work with many abstract concepts to delineate the boundary between the generic and the specific. The key to working with an abstraction is to create a concrete representation. Briefly, PANACEA uses the C struct mechanism to define structured data types representing packages, variables, source variables, initial value specifications, plot requests, and generator commands. These structures and a collection of routines to create, release, and manipulate them are the key to realizing PANACEA’s goals.<p>
</a>
<a name="542094">
One additional set of structures (provided by an associated math library called PML, Portable Mathematics Library) is important for its ability to tie some key aspects of data flow together. In attempting to deal with data that are generated from a specification that is natural for the end user, computed within a form natural to numerical algorithms, stored in intermediate data files or transmitted over networks, and finally visualized in yet a different form, it was important to formulate a description of data that is self-consistent and mathematically precise. In this way, data sets could be assembled, passed among computational routines, stored, and visualized all in a relatively efficient and general way. This description had to be general enough to deal with multidimensional data with a variety of properties.<p>
</a>
<a name="542095">
The key concepts are those of sets and mappings. Mathematically, for the purposes of both computation and visualization, one is interested in working with mappings of domain sets to range sets. A set consists of a collection of data items along with information describing the type of elements, the dimensionality of the set, the dimensionality of the elements, the topology of the set, the metric information, etc. Ideally, the set structure contains sufficient information to allow routines to process them without additional specifications. For example, a set might be a collection of 3-vectors on a 2-sphere or a simple 1-D array.<p>
</a>
<a name="542096">
Sets can be related by mappings that describe how elements of two sets are related. The mapping structure contains a domain set, a range set, some information about extremes of both sets, and other descriptive information (e.g., relative centering). Ideally, a differentiation routine could be handed a mapping whose properties it understands and return a new mapping representing the gradient of the argument mapping. The goal is to objectify a complete collection of information for the purposes of storage and computation.<p>
</a>
<a name="542097">
A third layer of structure combines a mapping with rendering specifications that make it possible to visualize the data set embodied in the mapping. This structure is referred to as a graph, and it provides a means of associating mathematically complete data sets (i.e. mappings) with information describing how they are to be displayed. For example, a mapping with a two-dimensional domain and a one-dimensional range could be rendered as a contour plot, a wire frame mesh plot, a surface plot, or an image plot. These rendering techniques all take the same fundamental data, embodied in the mapping structure (see Figure 9).<p>
</a>
<a name="542098">
<h2>2.11 Summary and Further Directions</h2>
</a>
<a name="542099">
PANACEA provides a collection of services to facilitate the production of numerical simulation codes and to increase the reusability and shareability of simulation packages. By attempting to provide services to do everything that is generic to “all” simulation codes, PANACEA also provides some standards of data exchange, management, and visualization.<p>
</a>
<a name="542100">
Although coded in C, PANACEA is coded in an object-oriented style. The most important ramification of this is that abstract objects (e.g., packages, variables, and mappings) have a relatively faithful concrete representation. This puts PANACEA on a sound conceptual basis and helps to delineate the generic from the specific in simulation code systems.<p>
</a>
<a name="542101">
As an additional benefit, the modularization that follows from this style lends itself to natural coarse-grained parallelization of code systems. In practice, packages can also be organized so as to make fine grained parallelization possible because the controlling structures and the data objects of PANACEA do not really intrude into the detailed workings of the simulation algorithms. Therefore, while PANACEA helps modularize a code system so that packages or large parts of packages might be run in parallel, it does not interfere with parallelizing individual routines which permit it.<p>
</a>
<a name="542102">
The encapsulation of abstract objects in concrete representations facilitates the process of manipulating these objects symbolically. I have used PANACEA with the PACT SCHEME interpreter to give users of one PANACEA code the ability to manipulate the code in very broad and general ways.<p>
</a>
<a name="542103">
This technique allows the manipulation of the packages’ execution sequences, the examination of the state of the running code, and the changes in the state of the code. When carried to its logical conclusion, this method will also permit the prototyping of algorithms at the LISP level before investing the effort in writing more efficient code at a lower level.<p>
</a>
<a name="542104">
Finally, PANACEA can bind simulation packages generated by a tool, such as ALPAL, into entire code systems. PANACEA complements ALPAL very neatly by attending to large control and data flow issues, while ALPAL uses the PANACEA services rather than getting loaded down with these issues.<p>
</a>
<a name="542105">
<h1>3.0 PANACEA Objects</h1>
</a>
<a name="542106">
In this section, the objects of PANACEA and their properties are discussed in detail.<p>
</a>
<a name="542107">
<h2>3.1 Packages</h2>
</a>
<a name="542108">
A PANACEA package consists of a collection of controlling information which is defined by the application through function calls to PANACEA routines and a set of functions supplied by the application. These functions perform a well-defined set of operations and PANACEA invokes them in the proper sequence to carry out the desired simulation.<p>
</a>
<a name="542109">
The functions that an application supplies are:<p>
</a>
<A NAME="542110">gencmd() define the generator commands
<P><A NAME="542111">dfstrc(pdrs) define data structures used in package variables
<P><A NAME="542112">intrn() intern variables into the database at generation
<P><A NAME="542113">defun(pck) define new units
<P><A NAME="542114">defvar(pck) define the package variables
<P><A NAME="542115">defcnt(pck) define the package controls
<P><A NAME="542116">inizer(pck) initialize the package
<P><A NAME="542117">main(pck) the main entry into the package
<P><A NAME="542118">ppsor(pr, t) handle package specific output
<P><A NAME="542119">finzer(pck) close out the package
<P><a name="542120">
All of these functions except ppsor must return 1 if they complete successfully and 0 otherwise.<p>
</a>
<a name="542121">
<h2>3.2 Variables</h2>
</a>
<a name="542122">
A PANACEA variable consists of a collection of descriptive information and the actual data associated with a computational quantity used in a numerical simulation. PANACEA variables can be scalars or arrays. They correspond to what code developers traditionally think of as variables in systems of equations. In addition they include information which governs their use. This information is collectively referred to as the attributes of the variable.<p>
</a>
<a name="542123">
Each PANACEA variable has a name. Since PANACEA variables are owned by packages, each PANACEA variable knows which package owns it. PANACEA variables also contain dimension information. Since PANACEA variables are defined before the values of their dimensions are known, PANACEA variables keep track of the addresses of the application code variables (typically scalars) which will contain the correct values for the dimensions when the PANACEA variables are accessed. PANACEA variables also contain conversion factors between CGS, internal, and external unit systems. Because the data associated with a PANACEA variable may be stored on disk files, PANACEA variables keep track of information describing any relevant data files.<p>
</a>
<a name="542124">
Three key attributes of a PANACEA variable require special discussion. Typically the data associated with PANACEA variables is in the form of an array which can be extremely large depending on the problems with which the application code deals. To provide flexibility, efficiency, and control, the data arrays associated with PANACEA variables can be allocated and released under the control of these three attributes. The scope attribute, class attribute, and persistence attribute. The scope attribute pertains to the lifetime of a PANACEA variable or more precisely its data. The class attribute defines the behavior of PANACEA variables with regard to PA_CONNECT. The persistence attribute defines the behavior of PANACEA variables with respect to PA_DISCONNECT.<p>
</a>
<a name="542125">
<h3>3.2.1 </a>Variable Scopes</h3>
</a>
<a name="542126">
The scopes defined in PANACEA are:<p>
</a>
<A NAME="542127"><PRE> </a>DEFN
</PRE><A NAME="542128"><PRE> </a>RESTART
</PRE><A NAME="542129"><PRE> </a>DMND
</PRE><A NAME="542130"><PRE> </a>RUNTIME
</PRE><A NAME="542131"><PRE> </a>EDIT
</PRE><a name="542132">
<h4>3.2.1.1 </a>DEFN</h4>
</a>
<a name="542133">
PANACEA variables with the DEFN scope are considered to be a part of the state of the numerical simulation. These variables, in contrast to RESTART variables whose properties they share, must be read from a state file before the RESTART variables. This distinction permits variables which define certain problem parameters (hence the designation DEFiNition variables) to be read in first, before the other RESTART variables which may depend on the information these variables specify.<p>
</a>
<a name="542134">
<h4>3.2.1.2 </a>RESTART</h4>
</a>
<a name="542135">
PANACEA variables with the RESTART scope are considered to be a part of the state of the numerical simulation. These variables define the state of the numerical simulation and cannot be derived from other state information. The PANACEA model dictates that with a complete set of RESTART variables in a state file, the simulation can be restarted from the state defined by the contents of the state file. These variables are read into database memory at the time the state file is opened.<p>
</a>
<a name="542136">
<h4>3.2.1.3 </a>DMND</h4>
</a>
<a name="542137">
PANACEA variables with the DMND scope are considered to be a part of the state of the numerical simulation. Like RESTART variables they define the state of the simulation. It sometimes happens that for reasons of size or efficiency, some state variables should not be read into memory when the file is opened, but when access is specifically requested via </a>PA_CONNECT. The DeMaND scope provides for this contingency.<p>
</a>
<a name="542138">
<h4>3.2.1.4 </a>RUNTIME</h4>
</a>
<a name="542139">
PANACEA variables with RUNTIME scope can be derived from state information defined by the RESTART variables. As such it is not necessary to write them into state files or read them out of state files. This saves space in state files and the time it would take to read or write the variables.<p>
</a>
<a name="542140">
<h4>3.2.1.5 </a>EDIT</h4>
</a>
<a name="542141">
There are some variables in a system of equations to be simulated which are only temporary or auxiliary. It is often useful to look at these variables for purposes such as debugging. In every computational cycle, PANACEA variables with EDIT scope are allocated just before the packages which own them are entered, their contents are “edited” as soon as the package returns, and the space associated with them is released.<p>
</a>
<a name="542142">
<h3>3.2.2 </a>Variable Classes</h3>
</a>
<a name="542143">
Another attribute is class. The class attribute specifies the behavior of PANACEA regarding the handling of the various scopes especially in the </a>PA_CONNECT process. The classes defined in PANACEA are:<p>
</a>
<A NAME="542144"><PRE> </a>REQU
</PRE><A NAME="542145"><PRE> </a>OPTL
</PRE><A NAME="542146"><PRE> </a>PSEUDO
</PRE><a name="542147">
<h4>3.2.2.1 </a>REQU</h4>
</a>
<a name="542148">
PANACEA variables in this class are required. That is to say that when access to such a variable is requested via </a>PA_CONNECT, it is a fatal error if at least one of the following sources of data values does not provide data for the PANACEA variable: the state file (DEFN, RESTART, and DMND variables only check this source); source specification data (via </a>SPECIFY command); an initializer function (optionally provided with the variable definition); or a broadcast default value (optionally provided with the variable definition). These means of initialization are attempted in the order stated above.<p>
</a>
<a name="542149">
<h4>3.2.2.2 </a>OPTL</h4>
</a>
<a name="542150">
PANACEA variables with the OPTL class can be thought of as optional. In contrast to REQU variables, PANACEA returns a NULL pointer if the data cannot be found for the variable (by the same procedure as for the REQU variables) instead of terminating with a fatal error.<p>
</a>
<a name="542151">
Many variables which are part of the state of a simulation are nevertheless OPTL. The usual case is for a variable in a package which may be turned off. In such a case, the absence of the variable in the state file is not an impediment to the running of the simulation.<p>
</a>
<a name="542152">
<h4>3.2.2.3 PSEUDO</h4>
</a>
<a name="542153">
In some simulations auxiliary variables which can be thought of logically as arrays are implemented as scalars or subsets of other arrays. Ordinarily this is no concern of PANACEA. However, when it is desired to put such data out into post processor files, PANACEA attempts to assist. The generic descriptive information that PANACEA requires of all variables is insufficient to specify how to construct the logical array structure desired in the output files from the actual information as implemented in the simulation coding. The application package will have to supply routines to accomplish this mapping. The PSEUDO class tells PANACEA to handle such a variable in a special way which requires more coordination with the particular package. The PSEUDO class is currently only meaningful in connection with variables of EDIT scope.<p>
</a>
<a name="542154">
<h3>3.2.3 </a>Variable Persistence</h3>
</a>
<a name="542155">
Another attribute is that of variable persistence. This specifies the actions PANACEA is to take in the </a>PA_DISCONNECT process. The defined persistence categories are:<p>
</a>
<A NAME="542156"><PRE> </a>KEEP
</PRE><A NAME="542157"><PRE> </a>CACHE_F
</PRE><A NAME="542158"><PRE> </a>CACHE_R
</PRE><A NAME="542159"><PRE> </a>REL
</PRE><a name="542160">
<h4>3.2.3.1 </a>KEEP</h4>
</a>
<a name="542161">
In many situations the application developer wants to relinquish the applications access to a PANACEA variable’s data yet insure that PANACEA retains the data in memory. This allows for rapid re-connections later via </a>PA_CONNECT.<p>
</a>
<a name="542162">
<h4>3.2.3.2 </a>CACHE_F</h4>
</a>
<a name="542163">
For larger data arrays, the application may not wish to have access to the data for part of the simulation, not wish PANACEA to retain it in memory either, and still require the data at a later point in the simulation. The CACHE_F persistence tells PANACEA to write the data out to a temporary scratch file and release its own copy from memory. It also tells PANACEA that the variable will never have its size changed via </a>PA_change_dim or </a>PA_change_length.<p>
</a>
<a name="542164">
<h4>3.2.3.3 </a>CACHE_R</h4>
</a>
<a name="542165">
For larger data arrays, the application may not wish to have access to the data for part of the simulation, not wish PANACEA to retain it in memory either, and still require the data at a later point in the simulation. The CACHE_R persistence tells PANACEA to write the data out to a temporary scratch file and release its own copy from memory. Unlike CACHE_F, CACHE_R variables can be resized. The distinction is enforced for the sake of execution and disk space efficiency.<p>
</a>
<a name="542166">
<h4>3.2.3.4 </a>REL</h4>
</a>
<a name="542167">
Perhaps the most common situation for RUNTIME variables when the data is not going to be used and the application invokes </a>PA_DISCONNECT is for PANACEA to release the memory associated with the PANACEA variable data altogether. It is not retained in any way and would have to be recreated if a </a>PA_CONNECT call were to be made at a later point in the simulation.<p>
</a>
<a name="542168">
The following table summarizes the interaction between scope, class, and persistence:<p>
</a>
<A NAME="542169"><TT>
</TT><BR><A NAME="545815"><TT>SCOPE CLASS PERSISTENCE
</TT><BR><A NAME="545816"><TT> REQU OPTL PSEUDO KEEP CACHE _X REL
</TT><BR><A NAME="545817"><TT>DEFN + - - - - -
</TT><BR><A NAME="545807"><TT>RESTART + + - + + +
</TT><BR><A NAME="542174"><TT>DMND + + - + + +
</TT><BR><A NAME="542175"><TT>RUNTIME + + - + + +
</TT><BR><A NAME="542176"><TT>EDIT - - + NA NA NA
</TT><BR><a name="542177">
<p>
</a>
<a name="542178">
In this table “+” means that the behavior of the combination is defined, and “-” means that the behavior of the combination is undefined. The undefined combinations may be defined in later releases of PANACEA.<p>
</a>
<a name="542179">
<h3>3.2.4 </a>Variable Centering</h3>
</a>
<a name="542180">
PANACEA variables which are not scalar variables as defined by PA_inst_scalar also have an attribute specifying their centering relative to the “spatial” mesh. (NOTE: this concept will be properly generalized in future releases of PANACEA). <p>
</a>
<a name="542181">
The legal values for the </a>centering of variables with an underlying mesh are:<p>
</a>
<A NAME="542182"><PRE> </a>Z_CENT </a>zone centered
</PRE><A NAME="542183"><PRE> </a>N_CENT </a>node centered
</PRE><A NAME="542184"><PRE> </a>E_CENT </a>edge centered
</PRE><A NAME="542185"><PRE> </a>F_CENT </a>face centered
</PRE><A NAME="542186"><PRE> </a>U_CENT </a>uncentered
</PRE><a name="542187">
<h3>3.2.5 </a>Variable Allocation</h3>
</a>
<a name="542188">
PANACEA can handle either of two situations on a variable by variable basis. One, memory is to be dynamically allocated and managed by the PANACEA database services. Two, memory is statically allocated by a compiler and the PANACEA database services hand out pointers to such spaces.<p>
</a>
<a name="542189">
The legal values for the </a>allocation strategy of a variable are:<p>
</a>
<A NAME="542190"><PRE> </a>STATIC </a>static allocation (i.e. by compiler)
</PRE><A NAME="542191"><PRE> </a>DYNAMIC </a>dynamic allocation (i.e. by run time memory manager)
</PRE><a name="542192">
<p>
</a>
<a name="542193">
<h2>3.3 Source Variables</h2>
</a>
<a name="542194">
<h2>3.4 Initial Value Specifications</h2>
</a>
<a name="542195">
<h2>3.5 Plot Requests</h2>
</a>
<a name="542196">
<h2>3.6 Unit Specifications</h2>
</a>
<a name="542197">
<h1>4.0 The PANACEA C API</h1>
</a>
<a name="542198">
The following commands are broken down by service category. The PANACEA service categories are:<p>
</a>
<A NAME="AUTOTAG;"><B>Database Definition and Control
</B><A NAME="AUTOTAG;"><B>Variable Definition
</B><A NAME="AUTOTAG;"><B>Control Definition
</B><A NAME="AUTOTAG;"><B>Unit Definition and Control
</B><A NAME="AUTOTAG;"><B>Database Access
</B><A NAME="AUTOTAG;"><B>Simulation Control
</B><A NAME="AUTOTAG;"><B>Plot Request Handling
</B><A NAME="AUTOTAG;"><B>Initial Value Problem Generation Support
</B><A NAME="AUTOTAG;"><B>Source Variable/Initial Value Data Handling
</B><A NAME="AUTOTAG;"><B>Time History Data Management
</B><A NAME="AUTOTAG;"><B>Miscellaneous
</B><a name="542210">
Commands are also sorted into two categories: Basic, PANACEA applications must invoke these functions at some appropriate point; and optional, these are provided for the benefit of the application but are not required.<p>
</a>
<a name="542211">
<h2>4.1 Database Definition and Control Functionality</h2>
</a>
<a name="542212">
This group of functions governs the creation and management of the PANACEA database. They are relevant to both the generator and simulation codes.<p>
</a>
<a name="542213">
These functions let applications define packages to PANACEA and query PANACEA about packages in a PANACEA code.<p>
</a>
<a name="542214">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="542216"></a>PA_gen_package
<P><A NAME="542217"></a>PA_run_time_package
<P><A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="542220"></a>PA_current_package
<P><A NAME="542221"></a>PA_install_function
<P><A NAME="542222"></a>PA_install_identifier
<P><A NAME="545042"></a>PA_GET_MAX_NAME_SPACE
<P><A NAME="545047"></a>PA_SET_MAX_NAME_SPACE
<P><a name="542223">
<h3>4.1.1 </a>PA_CURRENT_PACKAGE</h3>
</a>
<a name="542224">
<p>
</a>
<A NAME="542225"><PRE> PA_current_package()
</PRE><a name="542226">
At any moment in a </a>generator or </a>simulation code, PANACEA has a notion of the </a>current package. It is the one whose controls are connected to the global variables, </a>swtch, </a>param, and </a>name. Applications may wish to query or access the current </a>package.<p>
</a>
<a name="542227">
This function returns a pointer to the PA_package structure which is PANACEA’s current package.<p>
</a>
<a name="542228">
<h3>4.1.2 </a>PA_DEF_PACKAGE</h3>
</a>
<A NAME="542229"><PRE>
</PRE><A NAME="542230"><PRE> PA_def_package(char *name,
</PRE><A NAME="542231"><PRE> PFInt gcmd,
</PRE><A NAME="542232"><PRE> PFInt dfs,
</PRE><A NAME="542233"><PRE> PFInt dfu,
</PRE><A NAME="542234"><PRE> PFInt dfr,
</PRE><A NAME="542235"><PRE> PFInt cnt,
</PRE><A NAME="542236"><PRE> PFInt izr,
</PRE><A NAME="542237"><PRE> PFInt inr,
</PRE><A NAME="542238"><PRE> PFInt mn,
</PRE><A NAME="542239"><PRE> PFPPM_mapping psr,
</PRE><A NAME="542240"><PRE> PFInt fzr,
</PRE><A NAME="542241"><PRE> PFInt pcmd,
</PRE><A NAME="542242"><PRE> char *fname),
</PRE><A NAME="542243"><PRE>
</PRE><a name="542244">
To define a </a>package in complete generality the following functions must be supplied:<p>
</a>
<A NAME="542245">gcmd installs the functions which handle generator </a>commands
<P><A NAME="542246">dfs defines </a>data structures used by package variables
<P><A NAME="542247">dfu defines the </a>units of the package
<P><A NAME="542248">dfr defines the </a>variables of the package
<P><A NAME="542249">cnt defines and sets initial or default values for the </a>controls of the package
<P><A NAME="542250">izr </a>initializes the package one time before the main entry point is called
<P><A NAME="542251">inr </a>interns package variables into the database prior to writing the state file
<P><A NAME="542252">mn the </a>main entry point for the package
<P><A NAME="542253">psr makes </a>PM_mappings (for </a>output purposes) of package specific quantities
which PANACEA’s generic capabilities cannot handle
<P><A NAME="542254">fzr </a>finalizes a package one time before exiting the simulation
<P><A NAME="542255">pcmd installs the functions which handle </a>post processor commands
<P><A NAME="542256">fname names a dictionary file to be processed at runtime by the dfr function
<P><a name="542257">
With the exception of the psr function which returns a pointer to a PM_mapping structure if successful and NULL otherwise, these functions must return TRUE if successful and FALSE otherwise. If any of these functions is irrelevant to the package being defined, NULL should be passed in in its place.<p>
</a>
<a name="542258">
The name of the package must also be supplied.<p>
</a>
<a name="542259">
If successful, the function returns a pointer to a PA_package. Since PANACEA keeps an internal list of packages, it is not necessary for the application to do anything with the return value of this function.<p>
</a>
<a name="542260">
<h3>4.1.3 </a>PA_GEN_PACKAGE</h3>
</a>
<a name="542261">
<p>
</a>
<A NAME="542262"><PRE> PA_gen_package(char *name,
</PRE><A NAME="542263"><PRE> PFInt cmd,
</PRE><A NAME="542264"><PRE> PFInt dfs,
</PRE><A NAME="542265"><PRE> PFInt dfu,
</PRE><A NAME="542266"><PRE> PFInt dfr,
</PRE><A NAME="542267"><PRE> PFInt cnt,
</PRE><A NAME="542268"><PRE> PFInt inr,
</PRE><A NAME="542269"><PRE> char *fname)
</PRE><a name="542270">
To define a </a>package to a </a>generator code the application must supply functions:<p>
</a>
<A NAME="542271">cmd installs the functions which handle generator </a>commands
<P><A NAME="542272">dfs defines </a>data structures used by package variables
<P><A NAME="542273">dfu defines the </a>units of the package
<P><A NAME="542274">dfr defines the </a>variables of the package
<P><A NAME="542275">cnt defines and sets initial or default values for the </a>controls of the package
<P><A NAME="542276">inr </a>interns package variables into the database prior to writing the state file
<P><A NAME="542277">fname names a dictionary file to be processed at runtime by the dfr function
<P><a name="542278">
These functions must return TRUE if successful and FALSE otherwise. If any of these functions is irrelevant to the package being defined, NULL should be passed in in its place.<p>
</a>
<a name="542279">
The name of the package must also be supplied.<p>
</a>
<a name="542280">
If successful, the function returns a pointer to a PA_package. Since PANACEA keeps an internal list of packages, it is not necessary for the application to do anything with the return value of this function.<p>
</a>
<a name="545038">
<h3>4.1.4 </a>PA_GET_MAX_NAME_SPACE</h3>
</a>
<A NAME="545039"><PRE>
</PRE><A NAME="545040"><PRE> PA_GET_MAX_NAME_SPACE(int flag)
</PRE><a name="545041">
Returns the value of the name space flag in the argument flag. See the </a>PA_SET_NAME_SPACE function for further information.<p>
</a>
<a name="542281">
<h3>4.1.5 </a>PA_INSTALL_FUNCTION</h3>
</a>
<a name="542282">
<p>
</a>
<A NAME="542283"><PRE> PA_install_function(char *name, PFByte fnc)
</PRE><a name="542284">
This function provides a means for applications to make arbitrary procedures known to the PANACEA database. This is critical for </a>interactive or</a> interpreted applications which may need to invoke a function given only its name. It associates an address to which control can be passed with an ASCII name.<p>
</a>
<a name="542285">
The arguments to this function are: name, an ASCII string naming the function; and fnc, a compiled function which may be invoked by PANACEA. Currently the function installed this way can take no arguments and returns no value.<p>
</a>
<a name="542286">
This function returns nothing.<p>
</a>
<a name="542287">
<h3>4.1.6 </a>PA_INSTALL_IDENTIFIER</h3>
</a>
<a name="542288">
<p>
</a>
<A NAME="542289"><PRE> PA_install_identifier(char *name, byte *vr)
</PRE><a name="542290">
This function provides a means for applications to make arbitrary compiled variables known to the PANACEA database. This is critical for </a>interactive or</a> interpreted applications which may need to refer to a variable given only its name. It associates an address with which a value can be accessed with an ASCII name.<p>
</a>
<a name="542291">
The arguments to this function are: name, an ASCII string naming the function; and vr, a compiled variable which may be referenced by PANACEA.<p>
</a>
<a name="542292">
This function returns nothing.<p>
</a>
<a name="542293">
<h3>4.1.7 </a>PA_RUN_TIME_PACKAGE</h3>
</a>
<a name="542294">
<p>
</a>
<A NAME="542295"><PRE> PA_run_time_package(char *name,
</PRE><A NAME="542296"><PRE> PFInt dfs,
</PRE><A NAME="542297"><PRE> PFInt dfu,
</PRE><A NAME="542298"><PRE> PFInt dfr,
</PRE><A NAME="542299"><PRE> PFInt cnt,
</PRE><A NAME="542300"><PRE> PFInt izr,
</PRE><A NAME="542301"><PRE> PFInt mn,
</PRE><A NAME="542302"><PRE> PFPPM_mapping psr,
</PRE><A NAME="542303"><PRE> PFInt fzr,
</PRE><A NAME="542304"><PRE> char *fname)
</PRE><a name="542305">
To define a </a>package to a </a>simulation code the application must supply functions:<p>
</a>
<A NAME="542306">dfs defines </a>data structures used by package variables
<P><A NAME="542307">dfu defines the </a>units of the package
<P><A NAME="542308">dfr defines the </a>variables of the package
<P><A NAME="542309">cnt defines and sets initial or default values for the </a>controls of the package
<P><A NAME="542310">izr initializes the package (executed once before any main entry point)
<P><A NAME="542311">mn the </a>main entry point of the package (executed once each major cycle)
<P><A NAME="542312">psr returns a PM_mapping pointer for PSEUDO EDIT variables (each cycle)
<P><A NAME="542313">fzr shuts down the package (executed once after the last call to any main entry)
<P><a name="542314">
All of the functions except psr must return TRUE if successful and FALSE otherwise. psr returns a pointer to a PM_mapping associated with a plot request of a </a>PSEUDO EDIT variable. If any of these functions is irrelevant to the package being defined, NULL should be passed in in its place.<p>
</a>
<a name="542315">
The information defined via dfu, dfr, and cnt can alternatively be specified in an </a>ASCII text file. This file can be specified by fname. If fname is not NULL, dfu and cnt are ignored and the file fname is read in and processed using a dfr to supply interpretation of the dictionary fields.<p>
</a>
<a name="542316">
The name of the package must also be supplied.<p>
</a>
<a name="542317">
If successful, the function returns a pointer to a PA_package. Since PANACEA keeps an internal list of packages, it is not necessary for the application to do anything with the return value of this function.<p>
</a>
<a name="545043">
<h3>4.1.8 </a>PA_SET_MAX_NAME_SPACE</h3>
</a>
<A NAME="545044"><PRE>
</PRE><A NAME="545045"><PRE> PA_SET_MAX_NAME_SPACE(int flag)
</PRE><a name="545046">
If flag is TRUE then the </a>name space of PANACEA variables is maximized in that variables are defined to the database under a name made up from the package name, a hyphen, and the variable name. In this scheme, there is less potential for name conflicts. If flag is FALSE then variable are defined to the database simply by the variable name.<p>
</a>
<a name="542318">
<h2>4.2 Variable Definers</h2>
</a>
<a name="542319">
Variables are one of the main objects in PANACEA and consequently their definition to the database is crucial. Both </a>scalar and </a>array variables can be defined in the </a>database and variables may have any data </a>type used in the </a>simulation code system.<p>
</a>
<a name="542320">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542323">
<li></a>PA_def_var
</a>
<A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><a name="542327">
<li></a>PA_definitions()
</a>
<a name="542328">
<li></a>PA_variables(int flag)
</a>
</ul><a name="542329">
<h3>4.2.1 </a>PA_DEF_VAR</h3>
</a>
<a name="542330">
<p>
</a>
<A NAME="542331"><PRE> PA_def_var(char *vname,
</PRE><A NAME="542332"><PRE> char *vtype,
</PRE><A NAME="542333"><PRE> byte *viv,
</PRE><A NAME="542334"><PRE> byte *vif,
</PRE><A NAME="542335"><PRE> ...)
</PRE><a name="542336">
To </a>define a </a>variable to the PANACEA </a>database certain descriptive information must be supplied.<p>
</a>
<A NAME="542337">vname defines the name of the variable
<P><A NAME="542338">vtype defines the </a>type of the variable (variables may be of any type including structures)
<P><A NAME="542339">viv a pointer to a </a>default initial value to be broadcast into the array
<P><A NAME="542340">vif a pointer to a function which can be called to </a>compute initial values for the
variable
<P><A NAME="542341">... defines the attributes, </a>dimensions, </a>physical units, and optionally the data of the
variable
<P><a name="542342">
The attributes of the variable are specified by attribute identifier, attribute value pairs. When all the attributes are specified the </a>ATTRIBUTE keyword terminates the processing of attribute specifications. By default, variables will be defined as RUNTIME, OPTL, REL, U_CENT, DYNAMIC. To set the scope, the </a>SCOPE keyword is used followed by one of the values:</a> DEFN; </a>RESTART; </a>DMND; </a>RUNTIME; </a>or EDIT. To set the class, the </a>CLASS keyword is used followed by one of the values: </a>REQU; </a>OPTL</a></a>; or </a>PSEUDO. To set the persistence, the </a>PERSIST keyword is used followed by one of the values: </a>KEEP; </a>CACHE_F, </a>CACHE_R; or </a>REL. To set the centering of the variable with respect to its spatial mesh use the </a>CENTER keyword followed by one of the values: </a>Z_CENT; </a>N_CENT; </a>E_CENT; </a>F_CENT; or </a>U_CENT.<p>
</a>
<a name="542343">
The dimensions specifications consist of a set of pointers to the integer variables which will contain the actual dimensional numbers. It is crucial to realize that at the time that the variable is being defined the sizes of the array dimensions is not known (in general). Therefore, pointers to the scalars which will contain that information must be provided! The list of dimensions is terminated with the PANACEA defined pointer, </a>DIMENSION.<p>
</a>
<a name="542344">
Another feature of dimension specification in PANACEA is that a dimension can be specified in three ways. First a single pointer indicates to PANACEA that the dimension scalar represents the number of elements in that dimension. Second, each time the PANACEA provided pointer, </a>PA_DON, occurs in the dimension list, the next two integer pointers in the argument list are interpreted to be a pointer to the value of the minimum index value of the dimension and a pointer to the value of the number of elements in the dimension of the variable, respectively (i.e. DON means Dimension, Offset, and Number). Third, each time the PANACEA provided pointer, </a>PA_DUL, occurs in the dimension list, the next two integer pointers in the argument list are interpreted to be a pointer to the value of the minimum index value of the dimension and a pointer to the value of the maximum index value of the dimension of the variable, respectively (i.e. DUL means Dimension, Upper, and Lower). The reason for this distinction between the second and third case is that although the arithmetic is simple, the meaning of the scalar variables describing the dimensions is different. Since PANACEA does not deal with the dimension range values but pointers to the values, it must respect the semantics of these dimensioning scalars. This in turn dictates the presence of at least the two cases here.<p>
</a>
<a name="542345">
The physical units of a PANACEA variable are described in terms of a collection of conversion factors from </a>CGS units. There are arrays of factors for both internal and external units. They are indexed the same way and so the effective specification of the physical units of a variable are in terms of the integer indices into these arrays. PA_def_var processes the arguments after the dimension specification terminator, </a>DIMENSION, and before the unit specification terminator, </a>UNITS. It takes the arguments from left to right and multiplies the values in the conversion factor arrays indexed by the values together. If it encounters the PANACEA provided argument, </a>PER, it collects the factors remaining until, UNITS, and divides the two terms to compute the correct conversion factors (internal and external units conversion). The arguments are handled this way so that the call to PA_def_var reads very much like English and the units are “clear” at a glance. PANACEA goes further by providing the following constants as the index values:<p>
</a>
<A NAME="542346"><PRE> Macro Variable Unit
</PRE><A NAME="542347"><PRE> </a>RAD </a>PA_radian </a>angle
</PRE><A NAME="542348"><PRE> </a>STER </a>PA_steradian </a>solid angle
</PRE><A NAME="542349"><PRE> </a>MOLE </a>PA_mole </a>number
</PRE><A NAME="542350"><PRE> </a>Q </a>PA_electric_charge </a>Coulomb
</PRE><A NAME="542351"><PRE> </a>CM </a>PA_cm </a>length
</PRE><A NAME="542352"><PRE> </a>SEC </a>PA_sec </a>time
</PRE><A NAME="542353"><PRE> </a>G </a>PA_gram </a>mass
</PRE><A NAME="542354"><PRE> </a>EV </a>PA_eV </a>energy
</PRE><A NAME="542355"><PRE> </a>K </a>PA_kelvin </a>temperature
</PRE><A NAME="542356"><PRE> </a>ERG </a>PA_erg </a>energy
</PRE><A NAME="542357"><PRE> </a>CC </a>PA_cc </a>volume
</PRE><a name="542358">
Application developers are encouraged to use this practice to make the units they define easy to read in this context of variable definition.<p>
</a>
<a name="542359">
Finally, if a variable is defined with </a>ALLOCATION equal to </a>STATIC, a </a>pointer to data for the variable must be supplied after the UNITS terminator.<p>
</a>
<a name="542360">
The syntax for </a>PA_def_var is:<p>
</a>
<a name="542361">
<p>
</a>
<A NAME="542362"><PRE> PA_def_var(name, type, init_val_ptr, init_func_ptr,
</PRE><A NAME="542363"><PRE> attribute_spec, ..., ATTRIBUTE,
</PRE><A NAME="542364"><PRE> dimension_spec, ..., DIMENSION,
</PRE><A NAME="542365"><PRE> unit_spec, ..., UNITS
</PRE><A NAME="542366"><PRE> [, data_ptr])
</PRE><A NAME="542367"><PRE>
</PRE><A NAME="542368"><PRE> attribute_spec := attribute_id, attribute_val
</PRE><A NAME="542369"><PRE> attribute_id := SCOPE | CLASS | PERSIST |
</PRE><A NAME="542370"><PRE> CENTER | ALLOCATION
</PRE><A NAME="542371"><PRE>
</PRE><A NAME="542372"><PRE> attribute_val(SCOPE) := DEFN | RESTART | DMND |
</PRE><A NAME="542373"><PRE> RUNTIME | EDIT
</PRE><A NAME="542374"><PRE> attribute_val(CLASS) := REQU | OPTL | PSEUDO
</PRE><A NAME="542375"><PRE> attribute_val(PERSIST) := REL | KEEP | CACHE_F | CACHE_R
</PRE><A NAME="542376"><PRE> attribute_val(ALLOCATION):= STATIC | DYNAMIC
</PRE><A NAME="542377"><PRE> attribute_val(CENTER) := Z_CENT | N_CENT | F_CENT |
</PRE><A NAME="542378"><PRE> E_CENT | U_CENT
</PRE><A NAME="542379"><PRE>
</PRE><A NAME="542380"><PRE> dimension_spec := n_elements_ptr |
</PRE><A NAME="542381"><PRE> PA_DUL, lower_bnd_ptr, upper_bnd_ptr |
</PRE><A NAME="542382"><PRE> PA_DON, offset_ptr, n_elements_ptr
</PRE><A NAME="542383"><PRE> unit_spec := unit_index | PER
</PRE><A NAME="542384"><PRE> unit_index := RAD | STER | MOLE | Q | CM | SEC |
</PRE><A NAME="542385"><PRE> G | EV | K | ERG | CC |
</PRE><A NAME="542386"><PRE> <user defined index>
</PRE><a name="542387">
<p>
</a>
<a name="542388">
No attributes are required to be set (</a>ATTRIBUTE must appear in the arg list) and the default values are:<p>
</a>
<a name="542389">
RUNTIME, OPTL, REL, U_CENT, DYNAMIC<p>
</a>
<a name="542390">
<h2>4.3 Control Accessors/Definers</h2>
</a>
<A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542394">
<li></a>PA_mk_control(PA_package *new, char *s, int n_a, int n_p, int n_s)
</a>
<a name="542395">
<li></a>PA_control_set(char *s)
</a>
</ul><a name="542396">
<h2>4.4 Unit Conversion/Definition Functionality</h2>
</a>
<a name="542397">
<h3>4.4.1 Unit/Conversion Definitions</h3>
</a>
<a name="542398">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542401">
<li></a>PA_def_units(int flag)
</a>
<a name="542402">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><a name="542404">
<p>
</a>
<a name="542405">
<li></a>PA_def_unit(double fac, ...)
</a>
<a name="542406">
<p>
</a>
</ul><a name="542407">
<h3>4.4.2 Unit/Conversion Setup</h3>
</a>
<a name="542408">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542411">
<li></a>PA_set_conversions(int flag)
</a>
<a name="542412">
<li></a>PA_physical_constants_ext()
</a>
<a name="542413">
<li></a>PA_physical_constants_cgs()
</a>
<a name="542414">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><a name="542417">
<li></a>PA_physical_constants_int()
</a>
<a name="542418">
<p>
</a>
<a name="542419">
<p>
</a>
<a name="542420">
<p>
</a>
</ul><a name="542421">
<h2>4.5 Database Access Functionality</h2>
</a>
<a name="542422">
<h3>4.5.1 Variable Access for Simulation</h3>
</a>
<a name="542423">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="542425"></a>PA_INTERN
<P><A NAME="542426"></a>PA_CONNECT
<P><A NAME="542427"></a>PA_DISCONNECT
<P><A NAME="542428"></a>PA_ACCESS
<P><A NAME="542429"></a>PA_RELEASE
<P><A NAME="542430"></a>PA_change_dim
<P><A NAME="AUTOTAG;"><B></a>PA_change_size
</B><a name="542432">
<h4>4.5.1.1 </a>PA_INTERN</h4>
</a>
<A NAME="542433"><PRE>
</PRE><A NAME="542434"><PRE> PA_INTERN(byte *var, char *name)
</PRE><a name="542435">
Intern a given array in the variable data base.<p>
</a>
<a name="542436">
<h4>4.5.1.2 </a>PA_CONNECT</h4>
</a>
<A NAME="542437"><PRE>
</PRE><A NAME="542438"><PRE> PA_CONNECT(byte *var, char *name, int flag)
</PRE><a name="542439">
In the PANACEA model the PANACEA </a>database is viewed as the </a>manager of dynamic memory. As such one of its key functions is to dispense pointers to the data associated with PANACEA variables. PA_CONNECT is the principal means of doing this.<p>
</a>
<a name="542440">
The call to this </a>macro takes the application pointer which is to be set, var; the name of the variable in the PANACEA database; and a flag that informs PANACEA that it must track this pointer so that its value may be reset it another database operation changes the space to which the pointer points (see </a>PA_change_dim). If the value of flag is TRUE then PANACEA will reset the application’s pointer if the space is reallocated or released by another PANACEA operation.<p>
</a>
<a name="542441">
The following steps are performed when a PA_CONNECT request is made:<p>
</a>
<A NAME="542442"><PRE> </PRE>The variable specified by name is looked up in the database hash table.
<BR><a name="542443">
If the variable is not found </a>PA_ERR is called and the application exits with the error message: VARIABLE name NOT IN DATA BASE - PA_GET_ACCESS.<p>
</a>
<A NAME="542444"><PRE> </PRE>The </a>class of the variable is checked. If the class is PSEUDO PA_ERR is called and the
application exits.
<BR><A NAME="542445"><PRE> </PRE>If the </a>scope of the variable is DMND and it has not already been read in (presumably
by another PA_CONNECT operation) the variable is read in from the state dump file.
<BR><A NAME="542446"><PRE> </PRE>Each PANACEA variable has two sets of </a>dimensions: 1) derived from the contents of
the addresses of integer scalars (necessary for correct dynamic behavior at run time);
and 2) derived from the dimensions as specified in the PDB file (necessary for correct
storage behavior). On PA_CONNECT, PANACEA reconciles these two sets of dimensions to obtain consistency and computes the actual current size in elements of the variable. The reconciliation of the two sets of dimensions is done via the following steps:
<BR><ul><a name="542447">
<li>Compute the total length implied by the file dimensions.
</a>
<a name="542448">
<li>Compute the total length implied by the PANACEA dimensions.
</a>
<a name="542449">
<li>If they agree assume that they are </a>consistent.
</a>
<a name="542450">
<li>If the file dimensions imply a zero length, assume they are inconsistent and change them to match the PANACEA dimensions.
</a>
<a name="542451">
<li>If the PANACEA dimensions imply a zero length, assume they are inconsistent and change them to match the file dimensions.
</a>
<a name="542452">
<li>Otherwise assume the PANACEA dimensions are correct and change the file dimensions to match.
</a>
<a name="542453">
<li>Set both the PANACEA variable size and the file size to the selected size.
</a>
<A NAME="542454"><PRE> </PRE>If the class of the variable is REQU the following actions are taken:
<BR><a name="542455">
<li>If the </a>PANACEA variable data pointer is not NULL return it.
</a>
<a name="542456">
<li>If the PANACEA variable data pointer is NULL; the size determined above is positive; and one of following initialization modes is available (in order): a default value; source variable, or initialization function, attempt to initialize a block of space.
</a>
<a name="542457">
<li>If the preceding step fails </a>PA_ERR is called and the application exits
</a>
<A NAME="542458"><PRE> </PRE>If the class of the variable is OPTL the following actions are taken:
<BR><a name="542459">
<li>If the PANACEA variable data pointer is not NULL return it.
</a>
<a name="542460">
<li>If the PANACEA variable data pointer is NULL; the size determined above is positive; and one of following initialization modes is available (in order): default value; source variable; or initialization function, attempt to initialize a block of space.
</a>
<a name="542461">
<li>If the preceding step fails NULL is returned.
</a>
<A NAME="542462"><PRE> </PRE>Set the PANACEA variable data pointer to the address of the space
<BR><A NAME="542463"><PRE> </PRE>Set the pointer var to the address of the space.
<BR><A NAME="542464"><PRE> </PRE>If track is TRUE, PANACEA is requested to keep </a>track of this reference by adding it to
the list of tracked pointers.
<BR><A NAME="542465"><PRE> </PRE>Return.
<BR></ul><a name="542466">
<h4>4.5.1.3 </a>PA_DISCONNECT</h4>
</a>
<A NAME="542467"><PRE>
</PRE><A NAME="542468"><PRE> PA_DISCONNECT(char *name, byte *ptr)
</PRE><a name="542469">
In the course of doing a numerical simulation, an application may wish to </a>relinquish access to the data associated with a PANACEA variable. Most likely this access was obtained via </a>PA_CONNECT. Since PANACEA is monitoring </a>database access, it is not a good idea to simply set the application pointer to NULL because the </a>database may be tracking that pointer and it could mysteriously be reappear later with a value.The correct procedure to invoke PA_DISCONNECT to inform PANACEA that this access is to be terminated.<p>
</a>
<a name="542470">
The arguments to this </a>macro are: name, the name of the PANACEA variable in the database; and ptr, the application pointer whose access to the data associated with the named PANACEA variable is to be relinquished.<p>
</a>
<a name="542471">
The following steps are carried out when a call to inform the PANACEA database that the application no longer requires a specified reference to the data associated with a PANACEA variable:<p>
</a>
<A NAME="542472"><PRE> </PRE>The variable specified by name is looked up in the database hash table. If the variable is
not found </a>PA_ERR is called and the application exits with the error message: VARIABLE name NOT IN DATA BASE - PA_REL_ACCESS
<BR><A NAME="542473"><PRE> </PRE>If the </a>scope of the variable is EDIT the following actions are taken:
<BR><ul><a name="542474">
<li>The space associated with the PANACEA variable is freed
</a>
<a name="542475">
<li>The PANACEA variable’s data pointer is set to NULL
</a>
<A NAME="542476"><PRE> </PRE>Remove the reference ptr from the </a>list of pointers pointing to this data
<BR><A NAME="542477"><PRE> </PRE>Set the reference ptr to NULL if the PANACEA variable is not a scalar variable as
defined by </a>PA_inst_scalar.
<BR><A NAME="542478"><PRE> </PRE>If there are no more references to the data associated with the PANACEA variable the
following actions are taken:
<BR><a name="542479">
<li>If the </a>persistence of the PANACEA variable is REL, the space associated with the PANACEA variable is freed and the PANACEA data pointer is set to NULL.
</a>
<a name="542480">
<li>If the persistence of the PANACEA variable is CACHE_F or CACHE_R, the space associated with the PANACEA variable is freed after writing it out to a disk file (this last part not implemented yet) and the PANACEA data pointer is set to NULL.
</a>
<a name="542481">
<li>If the persistence of the PANACEA variable is KEEP, the space associated with the PANACEA variable is retained by the PANACEA database.
</a>
<a name="542482">
<li>If the variable is a </a>scalar as defined by </a>PA_inst_scalar, the scalar’s value is set to an appropriate representation of 0.
</a>
<A NAME="542483"><PRE> </PRE>Return
<BR></ul><a name="542484">
<h4>4.5.1.4 </a>PA_ACCESS</h4>
</a>
<A NAME="542485"><PRE> PA_ACCESS(char * name, type, long offs, long ne)
</PRE><a name="542486">
Return a connection to a sub-space of an array.<p>
</a>
<a name="542487">
<h4>4.5.1.5 </a>PA_RELEASE</h4>
</a>
<A NAME="542488"><PRE> PA_RELEASE(char * name, byte * ptr, long offs, long ne)
</PRE><a name="542489">
Release the access to an array sub-space.<p>
</a>
<a name="542490">
<h4>4.5.1.6 </a>PA_CHANGE_DIM</h4>
</a>
<A NAME="542491"><PRE>
</PRE><A NAME="542492"><PRE> void PA_change_dim(int *pdm, int val)
</PRE><a name="542493">
Change the value of an integer quantity, pointed to by pdm, to which the PANACEA variable dimensions of one or more PANACEA variables point to the given value, val, and reallocate all of the PANACEA variables which have this quantity as a dimension. This rather elaborate and expensive operation is the most consistent way of handling PANACEA database variables whose sizes are changing as a result of dynamically recomputing the computational domain (e.g. a spatial or frequency mesh). The alternate method provided by </a>PA_change_size is not consistent and can produce extremely bizarre behavior which is difficult to debug.<p>
</a>
<a name="542494">
The arguments to this function are: pdm, a pointer to the integer value to be changed (this should match at least one of the quantities used in a </a>PA_def_var call used to define the database variables; and val, the new value to be assigned to the location pointed to by pdm.<p>
</a>
<a name="542495">
NOTE: the use of val here is trivial but is intended to help enforce the discipline of using </a>PA_change_dim correctly.<p>
</a>
<a name="542496">
<h4>4.5.1.7 </a>PA_CHANGE_SIZE</h4>
</a>
<A NAME="542497"><PRE>
</PRE><A NAME="542498"><PRE> void PA_change_size(char *name, int flag)
</PRE><a name="542499">
Reallocate the PANACEA variable specified by name using the current values implied by set of dimensions specified by flag. With this call it is assumed that the application has changed the value of a dimensioning integer and now wants PANACEA to handle the resizing of the space associated with a particular PANACEA variable. In general, this is an extremely risky thing to do. However, some code systems which have automatically generated code can enforce consistency via the code generator. In such a case, the performance overhead of </a>PA_change_dim is diminished to some extent.<p>
</a>
<a name="542500">
The arguments to this function are: name, a string containing the name of the PANACEA database variable to be reallocated; and flag, an integer having either of the two values </a>PA_FILE or </a>PA_DATABASE signifying which set of dimensions (file or database respectively) to use in enforcing consistency on this one variable.<p>
</a>
<a name="542501">
NOTE: use this function at your own risk!<p>
</a>
<a name="542502">
<h3>4.5.2 </a>Structured Data Support</h3>
</a>
<a name="542503">
To provide an additional dimension in data handling for FORTRAN packages and to support interactive runtime data structuring, PANACEA supplies services to define, create and release instances, and get or set members of data structure independent of any compiled in data structure such as a C struct or FORTRAN common block. This facility is completely </a>dynamic and </a>interpreted at runtime.<p>
</a>
<a name="542504">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="542506"></a>PA_mk_instance
<P><A NAME="542507"></a>PA_rl_instance
<P><A NAME="542508"></a>PA_get_member
<P><A NAME="542509"></a>PA_set_member
<P><a name="542510">
<h4>4.5.2.1 </a>PA_MK_INSTANCE</h4>
</a>
<A NAME="542511"><PRE>
</PRE><A NAME="542512"><PRE> void *PA_mk_instance(char *name,
</PRE><A NAME="542513"><PRE> char *type,
</PRE><A NAME="542514"><PRE> long n)
</PRE><A NAME="542515"><PRE>
</PRE><a name="542516">
Allocate and return a pointer to an array of</a> instances of a type (defined in the virtual internal file) which is n items long.The type must have been defined from a </a>dictionary file or from an explicit function call.<p>
</a>
<a name="542517">
The return value of this function is a pointer to the space allocated to hold n elements each of which is of sufficient byte size to hold one item of type type. The instance is also installed in an internal table under the name name so that PANACEA can track the variable.<p>
</a>
<a name="542518">
<h4>4.5.2.2 </a>PA_RL_INSTANCE</h4>
</a>
<A NAME="542519"><PRE>
</PRE><A NAME="542520"><PRE> void PA_rl_instance(char *name)
</PRE><A NAME="542521"><PRE>
</PRE><a name="542522">
Release the named </a>instance of an entry allocated with </a>PA_mk_instance.<p>
</a>
<a name="542523">
This function has no return value.<p>
</a>
<a name="542524">
<h4>4.5.2.3 </a>PA_GET_MEMBER</h4>
</a>
<A NAME="542525"><PRE>
</PRE><A NAME="542526"><PRE> void *PA_get_member(char *name,
</PRE><A NAME="542527"><PRE> char *member)
</PRE><A NAME="542528"><PRE>
</PRE><a name="542529">
Get the named member of the instance of a </a>structured variable allocated by </a>PA_mk_instance under the name name.<p>
</a>
<a name="542530">
A pointer to the </a>member is returned if successful and NULL is returned otherwise.<p>
</a>
<a name="542531">
<h4>4.5.2.4 </a>PA_SET_MEMBER</h4>
</a>
<A NAME="542532"><PRE>
</PRE><A NAME="542533"><PRE> void PA_set_member(char *name,
</PRE><A NAME="542534"><PRE> void *data,
</PRE><A NAME="542535"><PRE> char *member)
</PRE><A NAME="542536"><PRE>
</PRE><a name="542537">
Set the named member of an instance of a data structure return by </a>PA_mk_instance to point to the given data. The instance is identified by name.<p>
</a>
<a name="542538">
This function returns nothing.<p>
</a>
<a name="542539">
<h3>4.5.3 Variable Access for Output</h3>
</a>
<a name="542540">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542543">
<li></a>PA_sub_select(PA_variable *pp, C_array *arr, long *pitems, long *poffs, long *pstr)
</a>
<a name="542544">
<li></a>PA_general_select(PA_variable *pp, C_array *arr, unsigned long *pitems, unsigned long *pdims,
</a>
<a name="542545">
unsigned long *poffs, unsigned long *pstr, unsigned long *pmax)<p>
</a>
<a name="542546">
<p>
</a>
</ul><a name="542547">
<h2>4.6 </a>Simulation Control</h2>
</a>
<a name="542548">
The functions in the section describe the services PANACEA offers the simulation phase code. These are fairly high level functions which encapsulate much of the detailed inner workings of the PANACEA database and the PANACEA packages.<p>
</a>
<a name="542549">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="542551"></a>PA_rd_restart
<P><A NAME="542552"></a>PA_wr_restart
<P><A NAME="542553"></a>PA_init_system
<P><A NAME="542554"></a>PA_terminate
<P><a name="542555">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="542557"></a>PA_simulate
<P><A NAME="542558"></a>PA_run_packages
<P><A NAME="542559"></a>PA_fin_system
<P><A NAME="542560"></a>PA_advance_t
<P><a name="542561">
<h3>4.6.1 </a>PA_RD_RESTART</h3>
</a>
<A NAME="542562"><PRE>
</PRE><A NAME="542563"><PRE> void PA_rd_restart(char *rsname,
</PRE><A NAME="542564"><PRE> int convs)
</PRE><A NAME="542565"><PRE>
</PRE><a name="542566">
This function reads a </a>state file as a prelude to performing simulations starting from the state specified in the file. Statistics about the amount of data in the state file which is actually loaded into memory are printed<p>
</a>
<a name="542567">
The arguments are: rsname, the name of the state file; and convs, the type of conversions to do. The conversion options are:<p>
</a>
<A NAME="542568"><PRE> </a>NONE perform no conversions
</PRE><A NAME="542569"><PRE> </a>INT_CGS convert from </a>internal units to CGS units
</PRE><A NAME="542570"><PRE> </a>INT_EXT convert from internal units to external units
</PRE><A NAME="542571"><PRE> </a>EXT_CGS convert from </a>external units to CGS units
</PRE><A NAME="542572"><PRE> </a>EXT_INT convert from external units to internal units
</PRE><A NAME="542573"><PRE> </a>CGS_INT convert from </a>CGS units to internal units
</PRE><A NAME="542574"><PRE> </a>CGS_EXT convert from CGS units to external units
</PRE><a name="542575">
The internal system of units is defined by the </a>unit array. The external system of units is defined by the </a>convrsn array.<p>
</a>
<a name="542576">
The system of units of the data in the state file is under the control of the code developer, but it must be consistent.<p>
</a>
<a name="542577">
This function returns no value.<p>
</a>
<A NAME="542578"><B>SEE ALSO:</B>PA_wr_restart
<BR><a name="542579">
<h3>4.6.2 </a>PA_SIMULATE</h3>
</a>
<A NAME="542580"><PRE>
</PRE><A NAME="542581"><PRE> void PA_simulate(double tc,
</PRE><A NAME="542582"><PRE> int nc,
</PRE><A NAME="542583"><PRE> int nz,
</PRE><A NAME="542584"><PRE> double ti,
</PRE><A NAME="542585"><PRE> double tf,
</PRE><A NAME="542586"><PRE> double dtf_init,
</PRE><A NAME="542587"><PRE> double dtf_min,
</PRE><A NAME="542588"><PRE> double dtf_max,
</PRE><A NAME="542589"><PRE> double dtf_inc,
</PRE><A NAME="542590"><PRE> char *rsname,
</PRE><A NAME="542591"><PRE> char *edname,
</PRE><A NAME="542592"><PRE> char *ppname,
</PRE><A NAME="542593"><PRE> char *pvname)
</PRE><A NAME="542594"><PRE>
</PRE><a name="542595">
This function is provided as a template for </a>controlling and coordinating the </a>execution of the packages and other PANACEA services. It is clear that no one routine can satisfy all of the requirements of all simulation systems, and this routine does not really attempt to do so. It is provided as an example to be used in constructing the simulation control for any given application code and to be used by those applications for which it is sufficient.<p>
</a>
<a name="542596">
The arguments are: tc, the current problem time; nc, the current problem cycle; nz, the number of zones/cells/particles in the problem; ti, the starting time; tf, the stopping time; dtf_init, the initial fractional time step; dtf_min, the minimum fractional time step; dtf_max, the maximum, fractional time step; dtf_inc, the fractional increase in the time step each cycle; rsname, the name of the most recently read </a>state file; edname, the name of the </a>ASCII edit file; ppname, the name of the </a>time history file; and pvname, the name of the </a>PVA file. Each file name is a base name ending with two digits. Each time a new file in each of the respective families is closed, the next member of the family is given a name with the number indicated by the final digits advanced by one.<p>
</a>
<a name="542597">
</a>PA_simulate performs the following actions in a loop over time from ti to tf:<p>
</a>
<A NAME="542598"><PRE> </PRE>calls </a>PA_source_variable to update all source variables in the simulation for the current time and time step
<BR><A NAME="542599"><PRE> </PRE>calls </a>PA_run_package to execute each installed package in the order of installation
<BR><A NAME="542600"><PRE> </PRE>calls </a>PA_dump_pp to check all plot requests and write out any requested data in the
time history and PVA files for the current time and cycle
<BR><A NAME="542601"><PRE> </PRE>calls </a>PA_file_mon to determine whether the current edit, time history, or PVA file need
to be closed and the next member of the family created
<BR><A NAME="542602"><PRE> </PRE>calls </a>PA_advance_t to poll the packages for their time step votes and determine the
next time step
<BR><a name="542603">
At the conclusion of the loop over time, </a>PA_simulate, prints a message to the terminal announcing that the stop time has been reached, and then it calls </a>PA_fin_system to call the package </a>fzr routines and print the </a>simulation statistics to the terminal.<p>
</a>
<a name="542604">
This routine has no return value.<p>
</a>
<A NAME="542605"><B>SEE ALSO:</B></a>PA_source_variable, </a>PA_run_packages, </a>PA_dump_pp, </a>PA_file_mon,
</a>PA_advance_t, </a>PA_fin_system.
<BR><a name="542606">
<h3>4.6.3 </a>PA_RUN_PACKAGES</h3>
</a>
<A NAME="542607"><PRE>
</PRE><A NAME="542608"><PRE> void PA_run_packages(double t,
</PRE><A NAME="542609"><PRE> double dt,
</PRE><A NAME="542610"><PRE> int cycle)
</PRE><A NAME="542611"><PRE>
</PRE><a name="542612">
This routine executes the </a>main entry point of each installed </a>package and dumps any information corresponding to a plot request associated with the package.<p>
</a>
<a name="542613">
The arguments are: t, the current problem time; dt, the current problem time step; and cycle, the current problem cycle number. This information is passed to the package’s main entry point via the package structure.<p>
</a>
<a name="542614">
Prior to executing the package main, the memory for </a>PSEUDO EDIT variables is allocated. After the package main is finished, the PSEUDO EDIT variable data are dumped and the memory allocated to it is released.<p>
</a>
<a name="542615">
This function has no return value.<p>
</a>
<A NAME="542616"><B>SEE ALSO:</B></a>PA_simulate
<BR><a name="542617">
<h3>4.6.4 </a>PA_FIN_SYSTEM</h3>
</a>
<A NAME="542618"><PRE>
</PRE><A NAME="542619"><PRE> void PA_fin_system(int nz,
</PRE><A NAME="542620"><PRE> int nc)
</PRE><A NAME="542621"><PRE>
</PRE><a name="542622">
This function runs the finalizer routine for each installed package and prints </a>performance statistics on the packages for the simulation (or partial simulation) just concluded. The performance statistics are based on the </a>CPU time spent in the package as reported by the package and the </a>storage space used by the package in kBytes. Whether this information is gathered is up to the package developer. If no information is stored in a package, PANACEA does not print any statistics for that package. The macros </a>PA_MARK_TIME, </a>PA_ACCM_TIME, </a>PA_MARK_SPACE, and </a>PA_ACCM_SPACE can be used by the package developer to save the timing and memory usage information in the package structure.<p>
</a>
<a name="542623">
The arguments are: nz, the number of zones/cells/particles in the problem; and nc the number of cycles run.<p>
</a>
<a name="542624">
This function has no return value.<p>
</a>
<A NAME="542625"><B>SEE ALSO:</B></a>PA_simulate, </a>PA_MARK_TIME, </a>PA_ACCM_TIME, </a>PA_MARK_SPACE,
and </a>PA_ACCM_SPACE
<BR><a name="542626">
<h3>4.6.5 </a>PA_ADVANCE_T</h3>
</a>
<A NAME="542627"><PRE>
</PRE><A NAME="542628"><PRE> double PA_advance_t(double dtmn,
</PRE><A NAME="542629"><PRE> double dtn,
</PRE><A NAME="542630"><PRE> double dtmx)
</PRE><A NAME="542631"><PRE>
</PRE><a name="542632">
This function computes a </a>time step for the next </a>major computational cycle based on the time step “votes” returned in each package after the package </a>main entry point is executed. The algorithm is that the smallest time step from the packages is computed, the smaller of this time step, dtn, and dtmx is taken; and the larger of dtmn and the result of the previous step is returned.<p>
</a>
<a name="542633">
The arguments are: dtmn, the minimum allowed time step, dtn, the current time step; and dtmx, the maximum allowed time step.<p>
</a>
<a name="542634">
The computed new time step is returned by this function.<p>
</a>
<A NAME="542635"><B>SEE ALSO:</B></a>PA_simulate
<BR><a name="542636">
<h3>4.6.6 </a>PA_WR_RESTART</h3>
</a>
<A NAME="542637"><PRE>
</PRE><A NAME="542638"><PRE> void PA_wr_restart(char *rsname)
</PRE><A NAME="542639"><PRE>
</PRE><a name="542640">
This function causes a state file to be written out. The name of the file is specified by rsname and after the file is closed successfully, the name is incremented. By convention files which PANACEA writes have names ending with two digits. When PANACEA increments a file name it adds one to the number represented by the two digits and replaces them in the file name.<p>
</a>
<a name="542641">
All of the variables defined to PANACEA as RESTART or DEFN are written out to the state file. They should be the variables required to define the state so that a future run of the simulation code can start up with only the state file’s information.<p>
</a>
<a name="542642">
The argument is: rsname, the name to be used for the state file.<p>
</a>
<A NAME="542643"><B>SEE ALSO:</B>PA_rd_restart
<BR><a name="542644">
<h3>4.6.7 </a>PA_INIT_SYSTEM</h3>
</a>
<A NAME="542645"><PRE>
</PRE><A NAME="542646"><PRE> void PA_init_system(double t,
</PRE><A NAME="542647"><PRE> double dt,
</PRE><A NAME="542648"><PRE> int nc,
</PRE><A NAME="542649"><PRE> char *edname,
</PRE><A NAME="542650"><PRE> char *ppname,
</PRE><A NAME="542651"><PRE> char *pvname)
</PRE><A NAME="542652"><PRE>
</PRE><a name="542653">
This function </a>initializes a PANACEA </a>simulation phase code. It is not for </a>generation phase programs. It performs the following actions:<p>
</a>
<A NAME="542654"><PRE> </PRE>opens any specified </a>source files and initializes the appropriate </a>source variables
<BR><A NAME="542655"><PRE> </PRE>opens and initializes the specified </a>ASCII edit file, </a>time history file, and </a>PVA file
<BR><A NAME="542656"><PRE> </PRE>runs the </a>initializer function for each package
<BR><A NAME="542657"><PRE> </PRE>processes the </a>plot requests for run time efficiency
<BR><A NAME="542658"><PRE> </PRE>calls </a>PA_dump_pp to make an initial dump of the information specified by the plot
requests
<BR><a name="542659">
The arguments to this function are: t, the initial problem time; dt, the initial problem time step; nc, the initial problem major cycle number; edname, the name of the ASCII edit file; ppname, the name of the time history file; and pvname, the name of the PVA file.<p>
</a>
<a name="542660">
This function has no return value.<p>
</a>
<A NAME="542661"><B>SEE ALSO:</B>PA_dump_pp
<BR><a name="542662">
<h3>4.6.8 </a>PA_TERMINATE</h3>
</a>
<A NAME="542663"><PRE>
</PRE><A NAME="542664"><PRE> void PA_terminate(char *edname,
</PRE><A NAME="542665"><PRE> char *ppname,
</PRE><A NAME="542666"><PRE> char *pvname,
</PRE><A NAME="542667"><PRE> int cycle)
</PRE><A NAME="542668"><PRE>
</PRE><a name="542669">
This function gracefully shuts down a simulation run. It closes any open </a>ASCII edit files, </a>time history files, </a>PVA files, </a>cache files, or </a>state files. If this function is not called, these files may not be </a>valid data files!<p>
</a>
<a name="542670">
The arguments are: edname, the name of the ASCII edit file; ppname, the name of the time history file; pvname, the name of the PVA file; and cycle, the current problem cycle. These arguments are currently unused, however, that is subject to change.<p>
</a>
<a name="542671">
This function returns nothing.<p>
</a>
<a name="542672">
<h2>4.7 Plot Request Handling</h2>
</a>
<a name="542673">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542676">
<li></a>PA_time_plot(char *rname, void *vr)
</a>
<a name="542677">
<li></a>PA_dump_time(PA_set_spec *pi, double tc, double dtc, int cycle)
</a>
<a name="542678">
<li></a>PA_put_set(PDBfile *file, PM_set *s)
</a>
<a name="542679">
<li></a>PA_put_mapping(PG_device *dev, PDBfile *file, PM_mapping *f, int plot_type)
</a>
<a name="542680">
<li></a>PA_set_data(char *name, C_array *arr, int *pcent)
</a>
<a name="542681">
<li></a>PA_fill_component(double *data, int len, int *pist, int ne)
</a>
<a name="542682">
<li></a>PA_build_mapping(PA_plot_request *pr, PFPPM_set build_ran, double t)
</a>
<a name="542683">
<li></a>PA_non_time_domain(PA_plot_request *pr)
</a>
<a name="542684">
<p>
</a>
<a name="542685">
<li></a>PA_PR_RANGE_SIZE(PA_plot_request *pr, long n)
</a>
<a name="542686">
Reset the size of the plot request range.<p>
</a>
<a name="542687">
<li></a>PA_STASH_SP_SCALAR(char *name, long indx, double val)
</a>
<a name="542688">
Save a scalar value for a spatial pseudo variable plot request.<p>
</a>
<a name="542689">
<li></a>PA_STASH_TV_SCALAR(char *name, double val)
</a>
<a name="542690">
Save a scalar value for a time pseudo variable plot request.<p>
</a>
<a name="542691">
<li></a>PA_MESH_RANGE_SEARCH(PA_plot_request *pr, long off, char *fn)
</a>
<a name="542692">
Loop the range specification of the plot request to setup an invocation of PA_STASH_SP_SCALAR.<p>
</a>
<a name="542693">
<li></a>PA_TIME_RANGE_SEARCH(PA_plot_request *pr, char *fn)
</a>
<a name="542694">
Loop the range specification of the plot request to setup an invocation of PA_STASH_TV_SCALAR.<p>
</a>
<a name="542695">
<li></a>PA_END_MESH_SEARCH(PA_plot_request *pr, expr)
</a>
<a name="542696">
Gracefully terminate the loop started by PA_MESH_RANGE_SEARCH.<p>
</a>
<a name="542697">
<li></a>PA_END_TIME_SEARCH(PA_plot_request *pr)
</a>
<a name="542698">
Gracefully terminate the loop started by PA_TIME_RANGE_SEARCH.<p>
</a>
<a name="542699">
<li></a>PA_STORE_TV(PA_plot_request *pr, double val)
</a>
<a name="542700">
Save away the given time value data.<p>
</a>
</ul><a name="542701">
<h2>4.8 Generation Support</h2>
</a>
<a name="542702">
<p>
</a>
<a name="542703">
<h3>4.8.1 Generator Command Management</h3>
</a>
<a name="542704">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="AUTOTAG;"><B>
</B><A NAME="542707"></a> PA_inst_com
<P><A NAME="542708"></a>PA_inst_pck_gen_cmmnds()
<P><A NAME="542709"></a>PA_inst_c(char *cname, byte *cvar, int ctype, int cnum, PFVoid cproc, PFVoid chand)
<P><A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="542712"></a>PA_get_commands
<P><a name="542713">
<h4>4.8.1.1 </a>PA_INST_COM</h4>
</a>
<A NAME="542714"><PRE>
</PRE><A NAME="542715"><PRE> HASHTAB *PA_inst_com(void)
</PRE><A NAME="542716"><PRE>
</PRE><a name="542717">
Initialize and set up the table of commands needed to parse an ASCII input file and generate an initial state for a simulation. This function does the following thing:<p>
</a>
<A NAME="542718"><PRE> </PRE>Installs the generic commands
<BR><A NAME="542719"><PRE> </PRE>Installs the package generator commands (see the gencmd argument of the
</a>PA_gen_package function)
<BR><A NAME="542720"><PRE> </PRE>Calls </a>PA_definitions to define the </a>unit and </a>conv arrays for PANACEA.
<BR><A NAME="542721"><PRE> </PRE>Calls </a>PA_variables to complete the definition of the database variables (the units are not
completed with this call since the input deck may redefine the unit system).
<BR><a name="542722">
The generic PANACEA supplied generator commands are:<p>
</a>
<A NAME="542723"></a>end end the generation run
<P><A NAME="542724"></a>read read the named input file
<P><A NAME="542725"></a>dump dump a state file
<P><A NAME="542726"></a>specify specify an initial value condition
<P><A NAME="542727"></a>s continue an initial value condition specification
<P><A NAME="542728"></a>graph make a plot request
<P><A NAME="542729"></a>package set the current package
<P><A NAME="542730"></a>switch set the value of a switch in the current package
<P><A NAME="542731"></a>parameter set the value of a switch in the current package
<P><A NAME="542732"></a>name set the value of a name in the current package
<P><A NAME="542733"></a>unit set an internal conversion factor (sets the internal system of units)
<P><A NAME="542734"></a>conversion set an external conversion factor (sets the external system of units)
<P><a name="542735">
<h4>4.8.1.2 </a>PA_GET_COMMANDS</h4>
</a>
<A NAME="542736"><PRE>
</PRE><A NAME="542737"><PRE> PA_get_commands(FILE *fp, void (*errfnc)())
</PRE><A NAME="542738"><PRE>
</PRE><a name="542739">
This function reads from the specified </a>input stream, parses command lines, and dispatches to functions installed in the PANACEA command table via the </a>PA_inst_c function.<p>
</a>
<A NAME="542740"><PRE> </PRE>It executes the following steps in a loop:
<BR><A NAME="542741"><PRE> </PRE>Get a line of text
<BR><A NAME="542742"><PRE> </PRE>If no more text is available close the stream (if it is not stdin) and return.
<BR><A NAME="542743"><PRE> </PRE>If the line is a blank or comment line loop
<BR><A NAME="542744"><PRE> </PRE>Lookup up the first token in the PANACEA command table
<BR><A NAME="542745"><PRE> </PRE>If there is an associated function dispatch to it
<BR><A NAME="542746"><PRE> </PRE>If there is no associated function call the errfnc from the argument list.
<BR><a name="542747">
<h3>4.8.2 Generation Time Functions</h3>
</a>
<a name="542748">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><ul><a name="542750">
<li></a>PA_name_files(char *base_name, char **ped, char **prs, char **ppp, char **pgf)
</a>
<A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><a name="542754">
<li></a>PA_clear()
</a>
<a name="542755">
<p>
</a>
<a name="542756">
<p>
</a>
</ul><a name="542757">
<h2>4.9 Source Variable/Initial Value Data Handling</h2>
</a>
<a name="542758">
PANACEA provides functionality for handling data which is to be used as </a>boundary condition or </a>source information or to set values of database variables. One application of this capability is to use the results of one simulation to drive a second simulation whose intent is to simulate one phenomenon in an environment which itself is the result of a simulation. To emphasize the inherent unity of sources and to provide a simple mechanism for applications, PANACEA defines the concept of an initial value specification. Initial value specifications are made in the ASCII input defining a problem with the specify command. The data may be provided with the specify or s commands. It may also be provided from a source file which is produced by a utility which the simulation system designer must write. This utility uses PANACEA services to format data in such a way that PANACEA can access it quickly and efficiently at run time. This is also done because it is impossible for PANACEA to know about even the smallest fraction of potential sources for initial value data and their formats.<p>
</a>
<a name="542759">
An</a> initial value specification is the mathematical notion of initial value data which together with a set of differential equations defines an</a> initial value problem. PANACEA defines a structure called a </a>PA_iv_specification to represent an initial value specification. In particular, an initial value specification has:<p>
</a>
<A NAME="542760"><PRE> </PRE>a type: bc, for boundary condition which specifies information on the boundary of the
computational mesh; src, for source which specifies a set of values imposed in some
region of the interior of the computational mesh; or the name of a database variable
whose values throughout the simulation are interpolated from a set of predetermined
data
<BR><A NAME="542761"><PRE> </PRE>a name by which the initial value specification may be selected
<BR><A NAME="542762"><PRE> </PRE>a file name in which the actual initial value data may be found
<BR><A NAME="542763"><PRE> </PRE>a flag specifying whether the data is to be interpolated or treated as discrete sets that are
to be used as the exact specified times
<BR><A NAME="542764"><PRE> </PRE>the number of data points in one time slice of the data set
<BR><A NAME="542765"><PRE> </PRE>various representations of any data that exists in memory (PANACEA manages this
with the aim of handling this data as efficiently as possible with respect to both time
and space)
<BR><a name="542766">
To help manage initial value specifications whose data is to be imported from a source file, PANACEA defines the concept of a </a>source variable and a structure called a </a>PA_src_variable. The source variable contains information about the data in a source file and the data structures necessary to manage the interpolations which may be done by PANACEA. Source variables must have counterparts in the database. They fundamentally are devices to help load the appropriate initial value data into a database variable.<p>
</a>
<a name="542767">
The following functions are all optional in that an application can use PANACEA without using the initial value handling services of the library. If the application does use these services, the basic operations at the application level involve accessing initial value data and interpolating values from initial value data structures. There is also a more global operation which tells PANACEA to update all sourced variables.<p>
</a>
<a name="542768">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><A NAME="542771"></a>PA_get_iv_source
<P><A NAME="542772"></a>PA_get_source
<P><A NAME="542773"></a>PA_interp_src
<P><A NAME="542774"></a>PA_intr_spec
<P><A NAME="542775"></a>PA_source_variables
<P><a name="542776">
<h3>4.9.1 PA_GET_IV_SOURCE</h3>
</a>
<A NAME="542777"><PRE>
</PRE><A NAME="542778"><PRE> PA_iv_specification *PA_get_iv_source(char *name)
</PRE><A NAME="542779"><PRE>
</PRE><a name="542780">
This routine searches the list of initial value specifications and returns the named </a>PA_iv_specification. In order for this function to succeed, the given name must match the name used in at least one </a>specify command in the problem definition.<p>
</a>
<a name="542781">
Input to this function is: name, an ASCII string naming the initial value specification for which to search.<p>
</a>
<a name="542782">
Output from this function is a pointer to a </a>PA_iv_specification if successful and NULL otherwise.<p>
</a>
<a name="542783">
<h3>4.9.2 </a>PA_GET_SOURCE</h3>
</a>
<A NAME="542784"><PRE>
</PRE><A NAME="542785"><PRE> PA_src_variable *PA_get_source(char *s, int start_flag)
</PRE><A NAME="542786"><PRE>
</PRE><a name="542787">
This function returns a pointer to a source variable specified by the name, s. It is permissible to have many instances of a source variable in a source file or to have many source files with the same source variable. In such a case each call to </a>PA_get_source returns the next available instance of the source variable. If the start_flag is TRUE the first instance is found and returned.<p>
</a>
<a name="542788">
Input to this function is: s, an ASCII string naming the source variable; and start_flag, an integer signalling whether to start from the beginning of the source variable list or from the last position searched.<p>
</a>
<a name="542789">
Output from this function is a pointer to a </a>PA_src_variable if successful and NULL otherwise.<p>
</a>
<a name="542790">
<h3>4.9.3 </a>PA_INTERP_SRC</h3>
</a>
<A NAME="542791"><PRE>
</PRE><A NAME="542792"><PRE> void PA_interp_src(void *v,
</PRE><A NAME="542793"><PRE> PA_src_variable *svp,
</PRE><A NAME="542794"><PRE> int ni,
</PRE><A NAME="542795"><PRE> int nf,
</PRE><A NAME="542796"><PRE> double t,
</PRE><A NAME="542797"><PRE> double dt)
</PRE><A NAME="542798"><PRE>
</PRE><a name="542799">
This function interpolates the data from the given PA_src_variable into the space pointed to by v from v[ni] to v[nf]. The data is interpolated in time at time t with timestep dt. The interpolation is quadratic.<p>
</a>
<a name="542800">
The input to this function is: v, a pointer to the target array; svp, a pointer to a PA_src_variable containing the source data; ni, an integer starting index into v; nf, an integer ending index into v; t, a double value specifying the interpolation time; and dt, a double value specifying the time step.<p>
</a>
<a name="542801">
This function has no return value.<p>
</a>
<a name="542802">
<h3>4.9.4 </a>PA_INTR_SPEC</h3>
</a>
<A NAME="542803"><PRE>
</PRE><A NAME="542804"><PRE> double PA_intr_spec(PA_iv_specification *sp,
</PRE><A NAME="542805"><PRE> double t,
</PRE><A NAME="542806"><PRE> double val,
</PRE><A NAME="542807"><PRE> long off)
</PRE><A NAME="542808"><PRE>
</PRE><a name="542809">
This function finds the interpolated source value from the given initial value specification information. For efficiency sake when interpolating the initial value data, the index into the data set from each call is saved and used as the starting point for the next interpolation. This means that the initial value data is assumed to be stored in increasing time order.<p>
</a>
<a name="542810">
The input to this function is: sp, a pointer to a </a>PA_iv_specification containing the initial value data to be interpolated; t, a double containing the time value at which the interpolated value is required; val, a double containing a default value if there is no data in the initial value data set for the given time, t; and off, a long offset telling how much of the initial value data to skip past (the initial value data may be prefaced with parameters describing the data that follows).<p>
</a>
<a name="542811">
The return value of this function is the interpolated value of the initial value data set.<p>
</a>
<a name="542812">
<h3>4.9.5 </a>PA_SOURCE_VARIABLES</h3>
</a>
<A NAME="542813"><PRE>
</PRE><A NAME="542814"><PRE> void PA_source_variables(double t,
</PRE><A NAME="542815"><PRE> double dt)
</PRE><A NAME="542816"><PRE>
</PRE><a name="542817">
This function sets the values (by interpolation) of the database variables which have been identified with source variables. This function is called once per major time cycle in </a>PA_simulate. Those applications controlling their own time stepping must call this function if they wish to have PANACEA handle source data. In </a>PA_simulate, this function is called before the packages are executed.<p>
</a>
<a name="542818">
This function performs the following steps:<p>
</a>
<A NAME="542819"><PRE> </PRE>Loops over each source variable set up by </a>PA_init_system.
<BR><A NAME="542820"><PRE> </PRE>If the database variable corresponding to the source variable does not exist or has a
NULL data pointer no further action is performed.
<BR><A NAME="542821"><PRE> </PRE></a>PA_interp_src is called to interpolate the source variable data in time and fill the data
associated with the database variable.
<BR><a name="542822">
The input to this function is: t, a double containing the time at which the source variable are to be interpolated; and dt, a double containing the corresponding time step.<p>
</a>
<a name="542823">
This function returns no value.<p>
</a>
<a name="542824">
<h2>4.10 </a>Time History Data Management</h2>
</a>
<a name="542825">
The following functions define a service for the management of time history data.<p>
</a>
<a name="542826">
This facility implements a time history data management model designed with the following goals:<p>
</a>
<ul><a name="542827">
<li>Easy to use
</a>
<a name="542828">
<li>Flexible enough to accommodate virtually any code system requirements
</a>
<a name="542829">
<li>Support families of files
</a>
<a name="542830">
<li>Support restart from any cycle in a simulation (the instance index is the key to this)
</a>
<a name="542831">
<li>The raw time history data should also be comprehensible.
</a>
<a name="542832">
The model chosen centers on the definition of a time history data structure which is defined at run time. Each such structure has a single domain component and multiple range components. These correspond to a set of time plots for which data is written at a particular frequency as determined by the application. By defining however many such structures are required, code systems can manage many sets of time plots each at their own frequency. New sets can be added over the course of a simulation. These structures are set up via the </a>PA_th_def_rec call. Once defined, the application can buffer up any amount of time history data and then write it out with </a>PA_th_write. Thus applications determine how much data will be kept in the running code.<p>
</a>
<a name="542833">
The time history data is written out in families </a>PDB of files. A family of time history PDB files is started with a call to </a>PA_th_open. The function </a>PA_th_family is used to close out one member of the family and start the next if the current file’s size is above a user set threshold. Each file in a family maintains a link to the previous file in the family. This is very useful when applications restart a simulation from an earlier state and, potentially, follow a different branch of execution. Knowing the last time history file in any branch allows the unambiguous reconstruction of the time history data for that branch.<p>
</a>
<a name="544351">
In addition to the time history data, any sort of associated data may be defined via the attribute mechanism in </a>PDBLib. Additionally attributes may be assigned to particular instances of time history data structures via the </a>PA_th_wr_iattr call.<p>
</a>
<a name="542834">
Since PANACEA is a part of PACT, it supplies functions to transpose the time history data files into </a>ULTRA files (also a PACT tool). These functions are: </a>PA_th_trans_name; </a>PA_th_trans_link; and </a>PA_th_trans_family. In this way, applications may directly transpose their time history files if desired. The stand alone program </a>TOUL which transposes a family of time history files into a family of </a>ULTRA files simply calls these functions appropriately. NOTE: all files in the family must be closed before any transpose operation. Functions to merge an arbitrary list of ULTRA files or a family of ULTRA files are also provided. These functions are: </a>PA_merge_files and </a>PA_merge_family.<p>
</a>
<a name="542835">
This facility is substantially independent of the rest of PANACEA and can be used without any other parts of PANACEA.<p>
</a>
<a name="542836">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="542838">PA_th_open, </a>PA_th_def_rec, PA_th_write, PA_th_family
<P><A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="542841"></a>PA_merge_family, </a>PA_merge_files, </a>PA_th_trans_name, </a>PA_th_trans_link,
</a>PA_th_trans_family, </a>PA_th_wr_iattr
<P><a name="542842">
<p>
</a>
</ul><a name="544884">
<h3>4.10.1 PA_MERGE_FAMILY</h3>
</a>
<A NAME="544885"><PRE>
</PRE><A NAME="544886"><PRE> int </a>PA_merge_family(char *base,
</PRE><A NAME="544887"><PRE> char *family,
</PRE><A NAME="544888"><PRE> int nc)
</PRE><a name="544889">
Merge a family of ULTRA files into a single file or family of files. The ULTRA source files are specified here by family base name.<p>
</a>
<a name="544890">
ULTRA source files are assumed to follow the naming convention<p>
</a>
<A NAME="544891"><PRE> family.udd
</PRE><a name="544892">
where family is the base source file name supplied and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544893">
ULTRA target files produced by this function similarly follow the naming convention<p>
</a>
<A NAME="544894"><PRE> base.udd
</PRE><a name="544895">
where base is the base target file name supplied.<p>
</a>
<a name="544896">
Argument nc, determines how target files are familied by specifying the approximate number of curves per file. However, regardless of the value of nc, all curves from a given source file will reside in a single target file. If nc is zero, all curves will be merged into a single file.<p>
</a>
<a name="544897">
For efficiency this function currently assumes that all curves in a given source file share the domain of the first curve in that file. This is true for ULTRA files produced by the PANACEA time history transpose routines. Curves from arbitrary ULTRA files can be merged, albeit less efficiently, using the </a>save command in the </a>ULTRA utility.<p>
</a>
<a name="544898">
Input to this function is: base, an ASCII string containing the base target file name; family, an ASCII string containing the base source file name; and nc an integer approximate number of curves per ULTRA target file.<p>
</a>
<a name="544899">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="544900">
See also </a>PA_merge_files.<p>
</a>
<A NAME="544901"><PRE>
</PRE><A NAME="544902"><PRE> int </a>PA_merge_family(char *base,
</PRE><A NAME="544904"><PRE> char *family,
</PRE><A NAME="544905"><PRE> int nc)
</PRE><A NAME="544906"><B>
</B><HR><A NAME="544907"><PRE> #include “panace.h”
</PRE><A NAME="544908"><PRE>
</PRE><A NAME="544910"><PRE> .
</PRE><A NAME="544911"><PRE> .
</PRE><A NAME="544912"><PRE> .
</PRE><A NAME="544913"><PRE> /* merge files in family foo */
</PRE><A NAME="544918"><PRE> if (!</a>PA_merge_family(“bar”, “foo”, 0))
</PRE><A NAME="544919"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="544924"><PRE> .
</PRE><A NAME="544925"><PRE> .
</PRE><A NAME="544926"><PRE> .
</PRE><a name="544386">
<h3>4.10.2 PA_MERGE_FILES</h3>
</a>
<A NAME="544805"><PRE>
</PRE><A NAME="544814"><PRE> int </a>PA_merge_files(char *base,
</PRE><A NAME="544815"><PRE> int n,
</PRE><A NAME="544816"><PRE> char **names,
</PRE><A NAME="544817"><PRE> int nc)
</PRE><a name="544818">
</a>Merge a set of ULTRA files into a single file or family of files. The ULTRA source files are specified here explicitly by name.<p>
</a>
<a name="544819">
ULTRA target files produced by this function follow the naming convention<p>
</a>
<A NAME="544820"><PRE> base.udd
</PRE><a name="544821">
where base is the base target file name supplied and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544822">
Argument nc, determines how target files are familied by specifying the approximate number of curves per file. However, regardless of the value of nc, all curves from a given source file will reside in a single target file. If nc is zero, all curves will be merged into a single file.<p>
</a>
<a name="544823">
For efficiency this function currently assumes that all curves in a given source file share the domain of the first curve in that file. This is true for ULTRA files produced by the PANACEA time history transpose routines. Curves from arbitrary ULTRA files can be merged, albeit less efficiently, using the </a>save command in the </a>ULTRA utility.<p>
</a>
<a name="544824">
Input to this function is: base, an ASCII string containing the base file name; n, an integer number of file names supplied in names; names, an array of ASCII strings containing the full names of the ULTRA source files; and nc an integer approximate number of curves per ULTRA target file.<p>
</a>
<a name="544825">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="544826">
See also </a>PA_merge_family.<p>
</a>
<A NAME="544827"><PRE>
</PRE><A NAME="544828"><PRE> int </a>PA_merge_files(char *base,
</PRE><A NAME="544829"><PRE> int n,
</PRE><A NAME="544830"><PRE> char **names,
</PRE><A NAME="544831"><PRE> int nc)
</PRE><A NAME="544832"><B>
</B><HR><A NAME="544833"><PRE> #include “panace.h”
</PRE><A NAME="544834"><PRE>
</PRE><A NAME="544835"><PRE> char **names;
</PRE><A NAME="544836"><PRE> .
</PRE><A NAME="544837"><PRE> .
</PRE><A NAME="544838"><PRE> .
</PRE><A NAME="544870"><PRE> /* only merge foo.u09 through foo.u0b */
</PRE><A NAME="544871"><PRE> names = MAKE_N(char *, 3);
</PRE><A NAME="544872"><PRE> names[0] = SC_strsave(“foo.t09”);
</PRE><A NAME="544873"><PRE> names[1] = SC_strsave(“foo.t0a”);
</PRE><A NAME="544874"><PRE> names[2] = SC_strsave(“foo.t0b”);
</PRE><A NAME="544875"><PRE> if (!</a>PA_merge_files(“bar”, 3, names, 0))
</PRE><A NAME="544876"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="544877"><PRE> SFREE(names[0]);
</PRE><A NAME="544878"><PRE> SFREE(names[1]);
</PRE><A NAME="544879"><PRE> SFREE(names[2]);
</PRE><A NAME="544880"><PRE> SFREE(names);
</PRE><A NAME="544881"><PRE> .
</PRE><A NAME="544882"><PRE> .
</PRE><A NAME="544883"><PRE> .
</PRE><a name="542843">
<h3>4.10.3 PA_TH_DEF_REC</h3>
</a>
<A NAME="542844"><PRE>
</PRE><A NAME="542845"><PRE> defstr *</a>PA_th_def_rec(PDBfile *file,
</PRE><A NAME="542846"><PRE> char *name,
</PRE><A NAME="542847"><PRE> char *type,
</PRE><A NAME="542848"><PRE> int nmemb,
</PRE><A NAME="542849"><PRE> char **members,
</PRE><A NAME="542850"><PRE> char **labels)
</PRE><a name="542851">
Define a special type to be used for the purpose of gathering </a>time history data in such a fashion that a generic tool (e.g. TOUL) can be used to convert the data into arrays of time ordered data. This defines both a derived data type and an entry in the symbol table of the file to contain the data. PANACEA implicitly adds another entry which contains information that a transposer would use.<p>
</a>
<a name="544497">
The members must follow the rules for member specifications as described in the PDBLib User’s Manual with the exception that if no type is specified the type is taken to be “double”. Briefly, a member specification consists of a type, an identifier, and optional dimension specifications. Member identifiers must not contain white space characters or any of the following: ‘*’, ‘[‘, ‘]’, ‘(‘, ‘)’, or ‘.’. The first member is taken to be the domain data (x value) and the remaining members are taken to be ranges. Each data set of the specified type transposes into nmemb-1 curves, that is one x array and nmemb-1 y arrays.<p>
</a>
<a name="543176">
NOTE: A non-scalar member does not transpose into a set of curves. In such a case PDBView is used directly to manipulate the time history data since it has superior capabilities for allowing users to control the semantics of their data.<p>
</a>
<a name="542853">
Since a very common use for this capability is to generate curves for plotting purposes, the labels argument is provided for the application to supply curve labels. The labels argument may be NULL if the application wishes PANACEA to construct labels from the member.<p>
</a>
<a name="542854">
Input to </a>PA_th_def_rec is: file, a pointer to a PDBfile; name, an ASCII string containing the name of the data entry in the symbol table; type, an ASCII string containing the name of the new struct; nmemb, an integer specifying the number of members of the new type; members, an array of nmemb ASCII strings specifying the struct members; and labels, an array of nmemb-1 ASCII strings specifying labels for curves generated by the transposer.<p>
</a>
<a name="542855">
A pointer to the type’s defstr is returned if the call is successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="542856">
See also </a>PA_th_wr_iattr, </a>PA_th_write, and </a>PA_th_trans_family.<p>
</a>
<A NAME="542857"><PRE>
</PRE><A NAME="542858"><PRE> defstr *</a>PA_th_def_rec(PDBfile *file,
</PRE><A NAME="542859"><PRE> char *name,
</PRE><A NAME="542860"><PRE> char *type,
</PRE><A NAME="542861"><PRE> int nmemb,
</PRE><A NAME="542862"><PRE> char **members,
</PRE><A NAME="542863"><PRE> char **labels)
</PRE><A NAME="542864"><B>
</B><HR><A NAME="542865"><PRE> #include “panace.h”
</PRE><A NAME="542866"><PRE>
</PRE><A NAME="542867"><PRE> PDBfile *file;
</PRE><A NAME="542868"><PRE> defstr *ptr;
</PRE><A NAME="542869"><PRE> char **members;
</PRE><A NAME="542870"><PRE> .
</PRE><A NAME="542871"><PRE> .
</PRE><A NAME="542872"><PRE> .
</PRE><A NAME="542873"><PRE> members = MAKE_N(char *, 3);
</PRE><A NAME="542874"><PRE> members[0] = SC_strsave(“time”);
</PRE><A NAME="542875"><PRE> members[1] = SC_strsave(“d[20]”);
</PRE><A NAME="542876"><PRE> members[2] = SC_strsave(“p at x,y”);
</PRE><A NAME="542877"><PRE> ptr = </a>PA_th_def_rec(file, “t-data”, “t-struct”, 3, members, NULL);
</PRE><A NAME="542878"><PRE>
</PRE><A NAME="542879"><PRE> SFREE(members[0]);
</PRE><A NAME="542880"><PRE> SFREE(members[1]);
</PRE><A NAME="542881"><PRE> SFREE(members[2]);
</PRE><A NAME="542882"><PRE> SFREE(members);
</PRE><A NAME="542883"><PRE> .
</PRE><A NAME="542884"><PRE> .
</PRE><A NAME="542885"><PRE> .
</PRE><a name="541731">
<h3>4.10.4 PA_TH_FAMILY</h3>
</a>
<A NAME="544207"><PRE>
</PRE><A NAME="544223"><PRE> PDBfile *</a>PA_th_family(PDBfile *file)
</PRE><A NAME="544213"><PRE>
</PRE><a name="544217">
Check the current file’s size against the maximum size as specified in the </a>PA_th_open call. If the file is larger than the maximum size, close the file, open the next member of the file family, and return a pointer to the new file.<p>
</a>
<a name="544208">
Input to this function is: file, a pointer to a PDBfile.<p>
</a>
<a name="544218">
A pointer to a PDBfile is returned if the call is successful; otherwise, NULL is returned. The PDBfile pointer that is returned should be checked against the one passed in to tell whether a new file has been opened.<p>
</a>
<a name="544219">
See also </a>PA_th_def_rec, </a>PA_th_write, and </a>PA_th_open.<p>
</a>
<A NAME="544220"><PRE>
</PRE><A NAME="544221"><PRE> PDBfile *</a>PA_th_family(PDBfile *file)
</PRE><A NAME="544227"><B>
</B><HR><A NAME="544228"><PRE> #include “panace.h”
</PRE><A NAME="544229"><PRE>
</PRE><A NAME="544230"><PRE> PDBfile *oldfile, *newfile;
</PRE><A NAME="544233"><PRE> .
</PRE><A NAME="544234"><PRE> .
</PRE><A NAME="544235"><PRE> .
</PRE><A NAME="544240"><PRE> newfile = </a>PA_th_family(oldfile);
</PRE><A NAME="544245"><PRE> if (newfile != oldfile)
</PRE><A NAME="544222"><PRE> printf(“Next member of family opened\n”);
</PRE><A NAME="544246"><PRE> .
</PRE><A NAME="544247"><PRE> .
</PRE><A NAME="544248"><PRE> .
</PRE><a name="544209">
<h3>4.10.5 PA_TH_OPEN</h3>
</a>
<A NAME="544210"><PRE>
</PRE><A NAME="544212"><PRE> PDBfile *</a>PA_th_open(char *name,
</PRE><A NAME="544214"><PRE> char *mode,
</PRE><A NAME="544215"><PRE> long size,
</PRE><A NAME="544276"><PRE> char *prev)
</PRE><a name="544216">
Open a new time history data file. This implicitly defines a family of files. The name should be of the form: base.tdd where d is a base 36 digit (i.e. 0-9a-z). This is only a convention, but there are certain consequences for not following it in as much as the familying mechanism assumes that the last two characters form a base 36 number and increments it accordingly. As an application writes data to a time history file, periodic calls to </a>PA_th_family should be made to monitor the file size and when necessary close the current family member and open the next.<p>
</a>
<a name="544277">
Since simulations may be restarted and each code may have a different strategy for continuing time history collection in the event of a restart, it is necessary to allow for name changes in the family. The consequence of this is that each member of a file family must contain the name of the previous file in the family. In that way, the transpose process may unambiguously and under the control of the user or simulation follow a chain of time history files from the end point back to the beginning. The prev argument is used to supply this information. The family of files that follows will be in sequence from the name supplied. Only across restarts, which implies calls to PA_th_open, may the sequence name be changed. A call to PA_th_open may have NULL for prev which indicates the absolute beginning of the sequence, i.e. the transpose will stop in its search for files at this point.<p>
</a>
<a name="544224">
Input to this function is: name, an ASCII string specifying the name of the first file in the family for the current application; mode, an ASCII string specifying the mode of the file (typically this will be “w”); size, a long integer value specifying the target maximum file size for members of the family; and prev, an ASCII string specfiying the name of the previous file in the family sequence.<p>
</a>
<a name="544225">
A pointer to a PDBfile is returned if the call is successful; otherwise, NULL is returned. <p>
</a>
<a name="544226">
See also </a>PA_th_def_rec, </a>PA_th_write, and </a>PA_th_family.<p>
</a>
<A NAME="544231"><PRE>
</PRE><A NAME="544282"><PRE> PDBfile *</a>PA_th_open(char *name,
</PRE><A NAME="544283"><PRE> char *mode,
</PRE><A NAME="544284"><PRE> long size,
</PRE><A NAME="544296"><PRE> char *prev)
</PRE><A NAME="544238"><B>
</B><HR><A NAME="544239"><PRE> #include “panace.h”
</PRE><A NAME="544241"><PRE>
</PRE><A NAME="544242"><PRE> PDBfile *newfile;
</PRE><A NAME="544243"><PRE> .
</PRE><A NAME="544244"><PRE> .
</PRE><A NAME="544249"><PRE> .
</PRE><A NAME="544250"><PRE> newfile = </a>PA_th_open(“foo.t00”, “w”, 1000000L, NULL);
</PRE><A NAME="544251"><PRE> if (newfile == NULL)
</PRE><A NAME="544252"><PRE> printf(“Can’t open time history file\n”);
</PRE><A NAME="544253"><PRE> .
</PRE><A NAME="544254"><PRE> .
</PRE><A NAME="544255"><PRE> .
</PRE><a name="544982">
<h3>4.10.6 PA_TH_TRANS_FAMILY</h3>
</a>
<A NAME="544983"><PRE>
</PRE><A NAME="544984"><PRE> int </a>PA_th_trans_family(char *name,
</PRE><A NAME="544986"><PRE> int ord,
</PRE><A NAME="544985"><PRE> int nc)
</PRE><a name="544987">
Write an ULTRA file by </a>transposing the </a>time history data from a given set of time history files.<p>
</a>
<a name="544988">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544989"><PRE> name.tdd
</PRE><a name="544990">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544996">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="545004"><PRE> name.udd
</PRE><a name="545022">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="545005">
Input to this function is: name, an ASCII string containing the base name of the time history file family; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="545006">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="545007">
See also </a>PA_th_trans_link, </a>PA_th_trans_name, </a>PA_th_def_rec, and </a>PA_th_write.<p>
</a>
<A NAME="545008"><PRE>
</PRE><A NAME="545009"><PRE> int </a>PA_th_trans_family(char *name,
</PRE><A NAME="545023"><PRE> int ord,
</PRE><A NAME="545010"><PRE> int nc)
</PRE><A NAME="545011"><B>
</B><HR><A NAME="545012"><PRE> #include “panace.h”
</PRE><A NAME="545013"><PRE>
</PRE><A NAME="545014"><PRE> .
</PRE><A NAME="545015"><PRE> .
</PRE><A NAME="545016"><PRE> .
</PRE><A NAME="545017"><PRE> if (!</a>PA_th_trans_family(“foo”, 1, 1000))
</PRE><A NAME="545018"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="545019"><PRE> .
</PRE><A NAME="545020"><PRE> .
</PRE><A NAME="545021"><PRE> .
</PRE><a name="544394">
<h3>4.10.7 PA_TH_TRANS_LINK</h3>
</a>
<A NAME="544395"><PRE>
</PRE><A NAME="544396"><PRE> int </a>PA_th_trans_link(int n,
</PRE><A NAME="544397"><PRE> char **names,
</PRE><A NAME="544398"><PRE> int ord,
</PRE><A NAME="544399"><PRE> int nc)
</PRE><a name="544400">
</a>Write an ULTRA file by </a>transposing the </a>time history data from a specified set of time history files. The time history files are specified here by giving the names of files at the end of file family chains.<p>
</a>
<a name="544401">
On occasion, files in a family are lost. This breaks the chain of files as well as leaving gaps in the data. Since this function can take many file names, it can be used to take into account missing files by supplying the files at the top of the gap(s) of missing files. In the accompanying example it is assumed that the files foo.t09 through foo.t11 are missing.<p>
</a>
<a name="544402">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="544403">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544404"><PRE> name.tdd
</PRE><a name="544405">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544406">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544407"><PRE> name.udd
</PRE><a name="544408">
Input to this function is: n, an integer number of file names supplied in names; names, an array of ASCII strings containing the full names of the time history files; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="544409">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="544410">
See also </a>PA_th_trans_name, </a>PA_trans_family, </a>PA_th_def_rec, and </a>PA_th_write.<p>
</a>
<A NAME="544411"><PRE>
</PRE><A NAME="544412"><PRE> int </a>PA_th_trans_link(int n,
</PRE><A NAME="544413"><PRE> char **names,
</PRE><A NAME="544414"><PRE> int ord,
</PRE><A NAME="544415"><PRE> int nc)
</PRE><A NAME="544416"><B>
</B><HR><A NAME="544417"><PRE> #include “panace.h”
</PRE><A NAME="544418"><PRE>
</PRE><A NAME="544419"><PRE> char **names;
</PRE><A NAME="544420"><PRE> .
</PRE><A NAME="544421"><PRE> .
</PRE><A NAME="544422"><PRE> .
</PRE><A NAME="544423"><PRE> /* files foo.t09 through foo.t11 are missing */
</PRE><A NAME="544424"><PRE> names = MAKE_N(char *, 2);
</PRE><A NAME="544425"><PRE> names[0] = SC_strsave(“foo.t1f”);
</PRE><A NAME="544426"><PRE> names[1] = SC_strsave(“foo.t08”);
</PRE><A NAME="544427"><PRE> if (!</a>PA_th_trans_link(2, names, -1, 1000))
</PRE><A NAME="544428"><PRE> err_proc();
</PRE><A NAME="544429"><PRE> SFREE(names[0]);
</PRE><A NAME="544430"><PRE> SFREE(names[1]);
</PRE><A NAME="544431"><PRE> SFREE(names);
</PRE><A NAME="544432"><PRE> .
</PRE><A NAME="544433"><PRE> .
</PRE><A NAME="544434"><PRE> .
</PRE><a name="543123">
<h3>4.10.8 PA_TH_TRANS_NAME</h3>
</a>
<A NAME="543124"><PRE>
</PRE><A NAME="544389"><PRE> int </a>PA_th_trans_name(int n,
</PRE><A NAME="544390"><PRE> char **names,
</PRE><A NAME="544391"><PRE> int ord,
</PRE><A NAME="544392"><PRE> int nc)
</PRE><a name="544357">
</a>Write an ULTRA file by </a>transposing the </a>time history data from a specified set of time history files. The time history files are specified here explicitly by name.<p>
</a>
<a name="543125">
On occasion, it is desirable to transpose only selected files from a family. For example, a user may know that only certain times are of interest and doesn’t wish to see the entire data set. This function gives the finest level of control to the application about which files to transpose.<p>
</a>
<a name="544393">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="544358">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544359"><PRE> name.tdd
</PRE><a name="544360">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544361">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544362"><PRE> name.udd
</PRE><a name="544363">
Input to this function is: n, an integer number of file names supplied in names; names, an array of ASCII strings containing the full names of the time history files; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="544364">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="544365">
See also </a>PA_th_trans_link, </a>PA_trans_family, </a>PA_th_def_rec, and </a>PA_th_write.<p>
</a>
<A NAME="544366"><PRE>
</PRE><A NAME="544435"><PRE> int </a>PA_th_trans_name(int n,
</PRE><A NAME="544436"><PRE> char **names,
</PRE><A NAME="544437"><PRE> int ord,
</PRE><A NAME="544438"><PRE> int nc)
</PRE><A NAME="544369"><B>
</B><HR><A NAME="544370"><PRE> #include “panace.h”
</PRE><A NAME="544371"><PRE>
</PRE><A NAME="544372"><PRE> char **names;
</PRE><A NAME="544380"><PRE> .
</PRE><A NAME="544373"><PRE> .
</PRE><A NAME="544356"><PRE> .
</PRE><A NAME="544374"><PRE> /* only transpose foo.t09 through foo.t0b */
</PRE><A NAME="544375"><PRE> names = MAKE_N(char *, 3);
</PRE><A NAME="544388"><PRE> names[0] = SC_strsave(“foo.t09”);
</PRE><A NAME="544384"><PRE> names[1] = SC_strsave(“foo.t0a”);
</PRE><A NAME="544367"><PRE> names[2] = SC_strsave(“foo.t0b”);
</PRE><A NAME="544383"><PRE> if (!</a>PA_th_trans_name(3, names, 1, 1000))
</PRE><A NAME="544376"><PRE> err_proc();
</PRE><A NAME="544385"><PRE> SFREE(names[0]);
</PRE><A NAME="544368"><PRE> SFREE(names[1]);
</PRE><A NAME="544381"><PRE> SFREE(names[2]);
</PRE><A NAME="544377"><PRE> SFREE(names);
</PRE><A NAME="544387"><PRE> .
</PRE><A NAME="544378"><PRE> .
</PRE><A NAME="544379"><PRE> .
</PRE><a name="542957">
<h3>4.10.9 PA_TH_TRANSPOSE</h3>
</a>
<A NAME="542958"><PRE>
</PRE><A NAME="542959"><PRE> int </a>PA_th_transpose(char *name,
</PRE><A NAME="542960"><PRE> int nc)
</PRE><a name="544981">
</a>WARNING: This is a deprecated function. Use </a>PA_th_trans_family instead.<p>
</a>
<a name="542961">
Write an ULTRA file by </a>transposing the </a>time history data from a given set of time history files.<p>
</a>
<a name="542962">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="542963"><PRE> name.tdd
</PRE><a name="542964">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="542965">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="542966"><PRE> name.udd
</PRE><a name="542967">
Input to this function is: name, an ASCII string containing the base name of the time history file family; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="542968">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="542969">
See also </a>PA_th_trans_link, </a>PA_th_trans_name, </a>PA_th_def_rec, and </a>PA_th_write.<p>
</a>
<A NAME="542970"><PRE>
</PRE><A NAME="542971"><PRE> int </a>PA_th_transpose(char *name,
</PRE><A NAME="542972"><PRE> int nc)
</PRE><A NAME="542973"><B>
</B><HR><A NAME="542974"><PRE> #include “panace.h”
</PRE><A NAME="542975"><PRE>
</PRE><A NAME="542976"><PRE> .
</PRE><A NAME="542977"><PRE> .
</PRE><A NAME="542978"><PRE> .
</PRE><A NAME="542979"><PRE> if (!</a>PA_th_transpose(“foo”, 1000))
</PRE><A NAME="542980"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="542981"><PRE> .
</PRE><A NAME="542982"><PRE> .
</PRE><A NAME="542983"><PRE> .
</PRE><a name="542886">
<h3>4.10.10 PA_TH_WR_IATTR</h3>
</a>
<A NAME="542887"><PRE>
</PRE><A NAME="542888"><PRE> int </a>PA_th_wr_iattr(PDBfile *file,
</PRE><A NAME="542889"><PRE> char *var,
</PRE><A NAME="542890"><PRE> int inst,
</PRE><A NAME="542891"><PRE> char *attr,
</PRE><A NAME="542892"><PRE> void *avl)
</PRE><a name="542893">
Assign an </a>attribute value to an instance of a </a>time history data record.<p>
</a>
<a name="542894">
Input to this function is: file, a pointer to a PDBfile; var, an ASCII string containing the name of the data entry in the symbol table; inst, an integer instance index; attr, an ASCII string containing the name of the attribute; and avl, a pointer to the attribute value.<p>
</a>
<a name="542895">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="542896">
See also </a>PA_th_def_rec, </a>PA_th_write, and </a>PA_th_trans_family.<p>
</a>
<A NAME="542897"><PRE>
</PRE><A NAME="542898"><PRE>
</PRE><A NAME="542899"><PRE> int </a>PA_th_wr_iattr(PDBfile *file,
</PRE><A NAME="542900"><PRE> char *var,
</PRE><A NAME="542901"><PRE> int inst,
</PRE><A NAME="542902"><PRE> char *attr,
</PRE><A NAME="542903"><PRE> void *avl)
</PRE><A NAME="542904"><B>
</B><HR><A NAME="542905"><PRE> #include “panace.h”
</PRE><A NAME="542906"><PRE>
</PRE><A NAME="542907"><PRE> PDBfile *file;
</PRE><A NAME="542908"><PRE> double *vr
</PRE><A NAME="542909"><PRE> .
</PRE><A NAME="542910"><PRE> .
</PRE><A NAME="542911"><PRE> .
</PRE><A NAME="542912"><PRE> vr = MAKE_N(double, 9);
</PRE><A NAME="542913"><PRE> .
</PRE><A NAME="542914"><PRE> .
</PRE><A NAME="542915"><PRE> .
</PRE><A NAME="542916"><PRE> if (!</a>PA_th_wr_iattr(file, “t-data”, 3, “date”, “today”))
</PRE><A NAME="542917"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="542918"><PRE> .
</PRE><A NAME="542919"><PRE> .
</PRE><A NAME="542920"><PRE> .
</PRE><a name="542921">
<h3>4.10.11 PA_TH_WRITE</h3>
</a>
<A NAME="542922"><PRE>
</PRE><A NAME="542923"><PRE> int </a>PA_th_write(PDBfile *file,
</PRE><A NAME="542924"><PRE> char *name,
</PRE><A NAME="542925"><PRE> char *type,
</PRE><A NAME="544211"><PRE> int inst,
</PRE><A NAME="542926"><PRE> int nr,
</PRE><A NAME="542927"><PRE> void *vr)
</PRE><a name="542928">
</a>Write out nr instances of </a>time history data whose structure has been defined by </a>PA_th_def_rec. This function writes out nr complete instances of a time history record! Using this function an application can manage multiple sets of time history data which are written at different frequencies.<p>
</a>
<a name="542929">
The name and type arguments should match those used in defining the structure with </a>PA_th_def_rec.<p>
</a>
<a name="542930">
Input to this function is: file, a pointer to a PDBfile; name, an ASCII string containing the name of the data entry in the symbol table; type, an ASCII string containing the name of the time history domain struct; inst, an integer specifying the instance index of the first record in this call; nr, an integer specifying the number of instances of the structure pointed to by vr; and vr, a pointer to the data.<p>
</a>
<a name="542931">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="542932">
See also </a>PA_th_wr_iattr, </a>PA_th_def_rec, and </a>PA_th_trans_family.<p>
</a>
<A NAME="542933"><PRE>
</PRE><A NAME="542934"><PRE> int </a>PA_th_write(PDBfile *file,
</PRE><A NAME="542935"><PRE> char *name,
</PRE><A NAME="542936"><PRE> char *type,
</PRE><A NAME="544257"><PRE> int inst,
</PRE><A NAME="542937"><PRE> int nr,
</PRE><A NAME="542938"><PRE> void *vr)
</PRE><A NAME="542939"><B>
</B><HR><A NAME="542940"><PRE> #include “panace.h”
</PRE><A NAME="542941"><PRE>
</PRE><A NAME="542942"><PRE> PDBfile *file;
</PRE><A NAME="542943"><PRE> double *vr
</PRE><A NAME="542944"><PRE> .
</PRE><A NAME="542945"><PRE> .
</PRE><A NAME="542946"><PRE> .
</PRE><A NAME="542947"><PRE> vr = MAKE_N(double, 9);
</PRE><A NAME="542948"><PRE> .
</PRE><A NAME="542949"><PRE> .
</PRE><A NAME="542950"><PRE> .
</PRE><A NAME="542951"><PRE> if (!</a>PA_th_write(file, “t-data”, “t-struct”, 0, 3, vr))
</PRE><A NAME="542952"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="544258"><PRE> .
</PRE><A NAME="544259"><PRE> .
</PRE><A NAME="544260"><PRE> .
</PRE><A NAME="544261"><PRE> if (!</a>PA_th_write(file, “t-data”, “t-struct”, 3, 2, vr))
</PRE><A NAME="544262"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="542953"><PRE> .
</PRE><A NAME="542954"><PRE> .
</PRE><A NAME="542955"><PRE> .
</PRE><A NAME="544266"><PRE> if (!</a>PA_th_write(file, “t-data”, “t-struct”, 5, 3, vr))
</PRE><A NAME="544267"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="542956"><PRE> .
</PRE><A NAME="544263"><PRE> .
</PRE><A NAME="544264"><PRE> .
</PRE><a name="544703">
<h3>4.10.12 PA_TH_WR_MEMBER</h3>
</a>
<A NAME="544704"><PRE>
</PRE><A NAME="544721"><PRE> int </a>PA_th_wr_member(PDBfile *file,
</PRE><A NAME="544740"><PRE> char *name,
</PRE><A NAME="544741"><PRE> char *member,
</PRE><A NAME="544742"><PRE> char *type,
</PRE><A NAME="544743"><PRE> int inst,
</PRE><A NAME="544744"><PRE> void *vr)
</PRE><A NAME="544710"><PRE>
</PRE><a name="544705">
</a>Write out one member of a </a>time history data record whose structure has been defined by </a>PA_th_def_rec. This function writes out one member of a time history record. Its utility is most apparent when the member is an array which could be large or is part of a very large record.<p>
</a>
<a name="544713">
Input to this function is: file, a pointer to a PDBfile; name, an ASCII string containing the name of the data entry in the symbol table; member, an ASCII string containing the name of the time history record member; type, an ASCII string containing the name of the time history domain struct; inst, an integer specifying the instance index of the first record in this call; and vr, a pointer to the data.<p>
</a>
<a name="544714">
TRUE is returned if the call is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="544715">
See also </a>PA_th_wr_iattr, </a>PA_th_def_rec, and </a>PA_th_trans_family.<p>
</a>
<A NAME="544716"><PRE>
</PRE><A NAME="544717"><PRE> int </a>PA_th_wr_member(PDBfile *file,
</PRE><A NAME="544718"><PRE> char *name,
</PRE><A NAME="544750"><PRE> char *member,
</PRE><A NAME="544719"><PRE> char *type,
</PRE><A NAME="544720"><PRE> int inst,
</PRE><A NAME="544722"><PRE> void *vr)
</PRE><A NAME="544723"><B>
</B><HR><A NAME="544724"><PRE> #include “panace.h”
</PRE><A NAME="544725"><PRE>
</PRE><A NAME="544726"><PRE> PDBfile *file;
</PRE><A NAME="544727"><PRE> double *vr
</PRE><A NAME="544728"><PRE> .
</PRE><A NAME="544729"><PRE> .
</PRE><A NAME="544730"><PRE> .
</PRE><A NAME="544731"><PRE> vr = MAKE_N(double, 10000);
</PRE><A NAME="544732"><PRE> .
</PRE><A NAME="544733"><PRE> .
</PRE><A NAME="544734"><PRE> .
</PRE><A NAME="544735"><PRE> if (!PA_th_wr_member(file, “t-data”, “v_1”, “t-struct”, 1, vr))
</PRE><A NAME="544736"><PRE> printf(stderr, “%s\n”, PD_err);
</PRE><A NAME="544737"><PRE> .
</PRE><A NAME="544738"><PRE> .
</PRE><A NAME="544739"><PRE> .
</PRE><a name="542984">
<h2>4.11 Miscellaneous</h2>
</a>
<a name="542985">
<p>
</a>
<a name="542986">
<h3>4.11.1 Parsing Support</h3>
</a>
<a name="542987">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542990">
<li></a>PA_get_field(char *s, char *t, int optp)
</a>
<a name="542991">
<li></a>PA_stof(char *s)
</a>
<a name="542992">
<li></a>PA_stoi(char *s)
</a>
<a name="542993">
<p>
</a>
</ul><a name="542994">
<h3>4.11.2 Array Operations</h3>
</a>
<a name="542995">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="542998">
<li></a>PA_scale_array(double *p, int n, double f)
</a>
<a name="542999">
<li></a>PA_set_value(double *p, int n, double f)
</a>
<a name="543000">
<li></a>PA_copy_array(double *s, double *t, int n)
</a>
<a name="543001">
<li></a>PA_index_min(double *p, int n)
</a>
<a name="543002">
<li></a>PA_find_index(double *p, double f, int n)
</a>
<a name="543003">
<li></a>PA_max_value(double *p, int imin, int n)
</a>
<a name="543004">
<p>
</a>
</ul><a name="543005">
<h3>4.11.3 Error Handling</h3>
</a>
<a name="543006">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="543009">
<li></a>PA_ERR(int test, char *fmt, ...)
</a>
<a name="543010">
<p>
</a>
</ul><a name="543011">
<h3>4.11.4 Timing Routines</h3>
</a>
<a name="543012">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="543015">
<li></a>PA_MARK_TIME
</a>
<a name="543016">
Mark the current cpu time.<p>
</a>
<a name="543017">
<li></a>PA_ACCM_TIME(double x)
</a>
<a name="543018">
Accumulate the time since the previous MARK_TIME.<p>
</a>
<a name="543019">
<p>
</a>
</ul><a name="543020">
<h3>4.11.5 Comparison Routines</h3>
</a>
<a name="543021">
<p>
</a>
<A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><ul><a name="543024">
<li></a>PA_SAME(double x1, double y1, double x2, double y2)
</a>
<a name="543025">
Return TRUE if the points are within TOLERANCE distance of each other.<p>
</a>
<a name="543026">
<li></a>PA_CLOSETO(double x1, double x2)
</a>
<a name="543027">
Return TRUE if the numbers are within TOLERANCE of each other.<p>
</a>
<a name="543028">
<p>
</a>
</ul><a name="543029">
<h1>5.0 The PANACEA FORTRAN API</h1>
</a>
<a name="543030">
The FORTRAN interface to PANACEA has some global conventions. First, the function names adhere strictly to the FORTRAN77 naming convention of six characters. The names all begin with “PA” to identify them with PANACEA.<p>
</a>
<a name="543031">
Most functions return the value 1 if they complete without error and 0 otherwise.<p>
</a>
<a name="543032">
As in the C interface, the descriptions of the functions are sorted into service categories as follows:<p>
</a>
<A NAME="AUTOTAG;"><B>Database Definition and Control
</B><A NAME="AUTOTAG;"><B>Variable Definition
</B><A NAME="AUTOTAG;"><B>Control Definition
</B><A NAME="AUTOTAG;"><B>Unit Definition and Control
</B><A NAME="AUTOTAG;"><B>Database Access
</B><A NAME="AUTOTAG;"><B>Simulation Control
</B><A NAME="AUTOTAG;"><B>Plot Request Handling
</B><A NAME="AUTOTAG;"><B>Initial Value Problem Generation Support
</B><A NAME="AUTOTAG;"><B>Source Variable/Initial Value Data Handling
</B><A NAME="AUTOTAG;"><B>Time History Data Management
</B><A NAME="AUTOTAG;"><B>Miscellaneous
</B><a name="543044">
Within service category commands are segregated into two groups: Basic, PANACEA applications must invoke these functions at some appropriate point; and optional, these are provided for the benefit of the application but are not required.<p>
</a>
<a name="543045">
<p>
</a>
<a name="543046">
<h2>5.1 Database Definition and Control Functionality</h2>
</a>
<a name="543047">
These functions provide for overall control of the PANACEA database and packages.<p>
</a>
<a name="543048">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="543050"></a>PASPCK
<P><A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="AUTOTAG;"><B>
</B><a name="545030">
<h3>5.1.1 </a>PAGNSP</h3>
</a>
<A NAME="545031"><PRE>
</PRE><A NAME="545032"><PRE> PAGNSP(integer flag)
</PRE><a name="545033">
Returns the value of the name space flag in the argument flag. See the </a>PASNSP function for further information.<p>
</a>
<a name="545034">
<h3>5.1.2 </a>PASNSP</h3>
</a>
<A NAME="545035"><PRE>
</PRE><A NAME="545036"><PRE> PASNSP(integer flag)
</PRE><a name="545037">
If flag is TRUE then the </a>name space of PANACEA variables is maximized in that variables are defined to the database under a name made up from the package name, a hyphen, and the variable name. In this scheme, there is less potential for name conflicts. If flag is FALSE then variable are defined to the database simply by the variable name.<p>
</a>
<a name="543054">
<h3>5.1.3 </a>PASPCK</h3>
</a>
<A NAME="543055"><PRE>
</PRE><A NAME="543056"><PRE> PASPCK(pnc, pname)
</PRE><a name="543057">
This function sets the current package to be the named one. PANACEA uses the concept of current package to set a context for operations such as variable access and control use. That is to say that such operations are only meaningful when a particular package is in effect to provide information and procedures necessary to their function.<p>
</a>
<a name="543058">
Input to this function is: pnc, the number of characters in the package name; and pname the name of the package.<p>
</a>
<a name="543059">
This function returns 1 if successful and 0 otherwise.<p>
</a>
<a name="543060">
<h2>5.2 Variable Definers</h2>
</a>
<a name="543061">
<h2>5.3 Control Accessors/Definers</h2>
</a>
<a name="543062">
<h2>5.4 Unit Conversion/Definition Functionality</h2>
</a>
<a name="543063">
<h2>5.5 Database Access Functionality</h2>
</a>
<a name="543064">
This group of functions gives application packages access to the database variables or to non-database managed memory.<p>
</a>
<a name="543065">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="543067"></a>PACONN
<P><A NAME="543068"></a>PADCON
<P><A NAME="543069"></a>PALOCA
<P><A NAME="543070"></a>PAMCON
<P><A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="543073"></a>PALLOC
<P><a name="543074">
<p>
</a>
<a name="543075">
<h3>5.5.1 </a>PACONN</h3>
</a>
<A NAME="543076"><PRE>
</PRE><A NAME="543077"><PRE> PACONN(pv, pnc, vname, pf)
</PRE><a name="543078">
Connect the given pointer to the data associated with the named variable. PANACEA will record the address of the pointer pv if the flag, pf, is 1. In that case, if another operation causes PANACEA to change the size of or move the block of memory associated with the database variable, PANACEA will update the pointer pv to point to the new space. <p>
</a>
<a name="543079">
Sometimes a connection is made to a local pointer which is on the stack or otherwise temporary. In such a case it could be disastrous for PANACEA to change the contents of memory there. The flag lets the application programmer control this behavior.<p>
</a>
<a name="543080">
The arguments to this function are: pv, the pointer to be connected to the database variable vname; pnc, the number of characters in vname; vname, the name of the variable in the database; and pf, a flag specifying whether or not PANACEA is to record the address of pv so that it can be updated if the space to which it points is moved.<p>
</a>
<a name="543081">
This function returns 1 if successful and 0 otherwise.<p>
</a>
<a name="543082">
<h3>5.5.2 </a>PADCON</h3>
</a>
<A NAME="543083"><PRE>
</PRE><A NAME="543084"><PRE> PADCON(pv, pnc, vname)
</PRE><a name="543085">
Disconnect the pointer, pv, from the database variable named by name. The pointer is set to NULL (0x0) and future references to it will induce a crash or some other possibly undesirable behavior. PANACEA simply guarantees that the pointer will no longer be pointing to the memory block associated with the database variable.<p>
</a>
<a name="543086">
In the case of DMND variables, when the number of pointers connected to the database variable storage falls to zero the variable is written back out to disk. It can be connected to at a later time with </a>PACONN.<p>
</a>
<a name="543087">
The arguments to this function are: pv, the pointer to be disconnected from the database variable vname; pnc, the number of characters in vname; and vname, the name of the variable in the database.<p>
</a>
<a name="543088">
This function returns 1 if successful and 0 otherwise.<p>
</a>
<a name="543089">
<h3>5.5.3 </a>PALLOC</h3>
</a>
<A NAME="543090"><PRE>
</PRE><A NAME="543091"><PRE> PALLOC(pv, pnc, vname, pf, dim1, ...)
</PRE><a name="543092">
Define the dimensions for the named variable, allocate it, and set pv to point to the new space. Each dimension is ignored unless the corresponding dimension was NULL when the variable was defined.<p>
</a>
<a name="543093">
In certain applications even the application variable which will hold the value of some dimensions is unknown at the start of a simulation run. PANACEA allows for this maximal delay by permitting the application variable which holds the dimension value to be supplied with the request to allocate space. In this call the dimensions which were specified when the variable was defined are ignored.<p>
</a>
<a name="543094">
The arguments to this function are: pv, the pointer to be allocated and associated with the database variable vname; pnc, the number of characters in vname; vname, the name of the variable in the database; pf, a flag specifying whether or not PANACEA is to record the address of pv so that it can be updated if the space to which it points is moved; and dimi are the dimensions of the variable. They must match in number the dimension specifications used in the definition of the variable.<p>
</a>
<a name="543095">
This function returns 1 if successful and 0 otherwise.<p>
</a>
<a name="543096">
<p>
</a>
<a name="543097">
<h3>5.5.4 </a>PALOCA</h3>
</a>
<A NAME="543098"><PRE>
</PRE><A NAME="543099"><PRE> PALOCA(pv, pbpi, pn, dim1, ...)
</PRE><a name="543100">
Allocate some local space and set the pv to point to the new space.<p>
</a>
<a name="543101">
The arguments to this function are: pv, the pointer to be connected to the allocated space; pbpi, the number of bytes required for a single element of the variable; pn, the number of dimension for the variable; and dimi, the dimensions for the variable.<p>
</a>
<a name="543102">
This function returns 1 if successful and 0 otherwise.<p>
</a>
<a name="543103">
<h3>5.5.5 </a>PAMCON</h3>
</a>
<A NAME="543104"><PRE>
</PRE><A NAME="543105"><PRE> PAMCON(pnc, vn, pp, pn)
</PRE><a name="543106">
Connect the pointers in pp to the variables named by the entries in vn. There must be pn pointers in pp and pn strings in vn.<p>
</a>
<a name="543107">
The purpose of this routine is to connect a number of pointers to their corresponding database variables in a single operation. It is assumed that PANACEA will track all of these variables and update the pointers if the memory associated them is reallocated. This is equivalent to having the flag in </a>PACONN set to 1.<p>
</a>
<a name="543108">
The arguments to this function are: pnc, an array containing the length of the variable names in vn; vn, an array of names of the variables in the database; pp, an array of pointers to be connected to the database variables named in vn; and pn, the number of variables to be connected. Each of the arrays pnc, vn, and pp must be pn long.<p>
</a>
<a name="543109">
This function returns 1 if successful and 0 otherwise.<p>
</a>
<a name="543110">
<h2>5.6 Simulation Control</h2>
</a>
<a name="543111">
<h2>5.7 Plot Request Handling</h2>
</a>
<a name="543112">
<h2>5.8 Generation Support</h2>
</a>
<a name="543113">
<h2>5.9 Source Variable/Initial Value Data Handling</h2>
</a>
<a name="543114">
<h2>5.10 Time History Data Management</h2>
</a>
<a name="543115">
The following functions define a service for the management of time history data.<p>
</a>
<a name="543116">
This facility implements a time history data management model designed with the following goals:<p>
</a>
<ul><a name="543117">
<li>Easy to use
</a>
<a name="543118">
<li>Flexible enough to accommodate virtually any code system requirements
</a>
<a name="543119">
<li>Support families of files
</a>
<a name="543120">
<li>Support restart from any cycle in a simulation (the instance index is the key to this)
</a>
<a name="543121">
<li>The raw time history data should also be comprehensible.
</a>
<a name="543122">
The model chosen centers on the definition of a time history data structure which is defined at run time. Each such structure has a single domain component and multiple range components. These correspond to a set of time plots for which data is written at a particular frequency as determined by the application. By defining however many such structures are required, code systems can manage many sets of time plots each at their own frequency. New sets can be added over the course of a simulation. These structures are set up via the </a>PAAREC, </a>PABREC, and </a>PAEREC calls. Once defined, the application can buffer up any amount of time history data and then write it out with </a>PAWREC. Thus applications determine how much data will be kept in the running code.<p>
</a>
<a name="544352">
The time history data is written out in families </a>PDB of files. A family of time history PDB files is started with a call to </a>PATHOP. The function </a>PATHFM is used to close out one member of the family and start the next if the current file’s size is above a user set threshold. Each file in a family maintains a link to the previous file in the family. This is very useful when applications restart a simulation from an earlier state and, potentially, follow a different branch of execution. Knowing the last time history file in any branch allows the unambiguous reconstruction of the time history data for that branch.<p>
</a>
<a name="544353">
In addition to the time history data, any sort of associated data may be defined via the attribute mechanism in </a>PDBLib. Additionally attributes may be assigned to particular instances of time history data structures via the </a>PAWRIA call.<p>
</a>
<a name="544977">
Since PANACEA is a part of PACT, it supplies functions to transpose the time history data files into </a>ULTRA files (also a PACT tool). These functions are: </a>PATRNN; </a>PATRNL; and </a>PATRNF. In this way, applications may directly transpose their time history files if desired. The stand alone program </a>TOUL which transposes a family of time history files into a family of </a>ULTRA files simply calls these functions appropriately. NOTE: all files in the family must be closed before any transpose operation. Functions to merge an arbitrary list of ULTRA files or a family of ULTRA files are also provided. These functions are: </a>PAMRGN and </a>PAMRGF.<p>
</a>
<a name="544354">
<p>
</a>
<a name="544355">
This facility is substantially independent of the rest of PANACEA and can be used without any other parts of PANACEA.<p>
</a>
<a name="543126">
<p>
</a>
<A NAME="AUTOTAG;"><B>Basic Functions
</B><A NAME="543128"></a>PAAREC, </a>PABREC, </a>PAEREC, </a>PAWREC
<P><A NAME="AUTOTAG;"><B>
</B><A NAME="AUTOTAG;"><B>Optional Functions
</B><A NAME="543131">PAMRGF, PAMRGN, </a>PATRNN, </a>PATRNL, </a>PATRNF, </a>PAWRIA
<P></ul><a name="543132">
<h3>5.10.1 PAAREC</h3>
</a>
<A NAME="543133"><PRE>
</PRE><A NAME="543134"><PRE> integer </a>PAAREC(integer fileid,
</PRE><A NAME="543135"><PRE> integer recid,
</PRE><A NAME="543136"><PRE> integer nm,
</PRE><A NAME="543137"><PRE> char *memb,
</PRE><A NAME="543138"><PRE> integer nl,
</PRE><A NAME="543139"><PRE> char *labl)
</PRE><a name="543140">
Add a member to the definition of the </a>time history data structure specified.<p>
</a>
<a name="543141">
This function is a part of the process which defines a special derived type to be used for gathering time history data that a generic tool (e.g. TOUL) can convert into arrays of time ordered data.<p>
</a>
<a name="544546">
The member, memb. must follow the rules for member specifications as described in the PDBLib User’s Manual with the exception that if no type is specified the type is taken to be “double” (real*8). Briefly, a member specification consists of a type, an identifier, and optional dimension specifications. Member identifiers must not contain white space characters or any of the following: ‘*’, ‘[‘, ‘]’, ‘(‘, ‘)’, or ‘.’.<p>
</a>
<a name="543175">
NOTE: A non-scalar member does not transpose into a set of curves. In such a case PDBView is used directly to manipulate the time history data since it has superior capabilities for allowing users to control the semantics of their data.<p>
</a>
<a name="543143">
Since a very common use for this capability is to generate curves for plotting purposes, the labl argument is provided for the application to supply curve labels. The nl argument may be 0 if the application wishes PANACEA to construct labels from the member.<p>
</a>
<a name="543144">
Input to </a>PAAREC is: fileid, an integer identifying a PDB file; recid, an integer identifying a derived type definition started by </a>PABREC; nm, an integer number of characters in the member; memb, an ASCII string containing the name of the member; nl, an integer number of characters in the labl string; and labl, an ASCII string containing a curve label for this member versus the domain member.<p>
</a>
<a name="543145">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="543146">
See also </a>PABREC, </a>PAEREC, and </a>PAWREC.<p>
</a>
<A NAME="543147"><PRE>
</PRE><A NAME="543148"><PRE> integer </a>PAAREC(integer fileid,
</PRE><A NAME="543149"><PRE> integer recid,
</PRE><A NAME="543150"><PRE> integer nm,
</PRE><A NAME="543151"><PRE> char *memb,
</PRE><A NAME="543152"><PRE> integer nl,
</PRE><A NAME="543153"><PRE> char *labl)
</PRE><A NAME="543154"><B>
</B><HR><A NAME="543155"><PRE> integer paarec
</PRE><A NAME="543156"><PRE> integer fileid, recid
</PRE><A NAME="543157"><PRE> .
</PRE><A NAME="543158"><PRE> .
</PRE><A NAME="543159"><PRE> .
</PRE><A NAME="543160"><PRE> if (paarec(fileid, recid, 5, ‘d[20]’, 0, ‘ ‘) .eq. 0)
</PRE><A NAME="543161"><PRE> $ call errproc
</PRE><A NAME="543162"><PRE> .
</PRE><A NAME="543163"><PRE> .
</PRE><A NAME="543164"><PRE> .
</PRE><a name="543165">
<h3>5.10.2 PABREC</h3>
</a>
<A NAME="543166"><PRE>
</PRE><A NAME="543167"><PRE> integer PABREC(integer fileid,
</PRE><A NAME="543168"><PRE> integer nf,
</PRE><A NAME="543169"><PRE> char *name,
</PRE><A NAME="543170"><PRE> integer nt,
</PRE><A NAME="543171"><PRE> char *type,
</PRE><A NAME="543172"><PRE> integer nd,
</PRE><A NAME="543173"><PRE> char *domain)
</PRE><a name="543174">
Begin the definition of a special type to be used for gathering </a>time history data that a generic tool (e.g. </a>TOUL) can convert into arrays of time ordered data. This begins a process which defines both a derived data type and an entry in the symbol table of the file to contain the data. PANACEA implicitly adds another entry which contains information that a transposer would use.<p>
</a>
<a name="543142">
The name of the domain member is supplied here since each time history struct has only one domain variable (x data).<p>
</a>
<a name="544670">
The domain must follow the rules for member specifications as described in the PDBLib User’s Manual with the exception that if no type is specified the type is taken to be “double”. Briefly, a member specification consists of a type, an identifier, and optional dimension specifications. Member identifiers must not contain white space characters or any of the following: ‘*’, ‘[‘, ‘]’, ‘(‘, ‘)’, or ‘.’. The first member is taken to be the domain data (x value) and the remaining members are taken to be ranges. Each data set of the specified type transposes into nmemb-1 curves, that is one x array and nmemb-1 y arrays.<p>
</a>
<a name="542852">
Input to </a>PABREC is: fileid, an integer identifying a PDB file; nf, an integer number of characters in name; name, an ASCII string containing the name of the data entry in the symbol table; nt, an integer number of characters in the type string; type, an ASCII string containing the name of the new derived type; nd, an integer number of characters in the domain string; and domain, an ASCII string labelling the domain member.<p>
</a>
<a name="543177">
A non-zero integer identifier for this time history record structure is returned if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="543178">
See also </a>PAAREC, </a>PAEREC, and </a>PAWREC.<p>
</a>
<A NAME="543179"><PRE>
</PRE><A NAME="543180"><PRE> integer PABREC(integer fileid,
</PRE><A NAME="543181"><PRE> integer nf,
</PRE><A NAME="543182"><PRE> char *name,
</PRE><A NAME="543183"><PRE> integer nt,
</PRE><A NAME="543184"><PRE> char *type,
</PRE><A NAME="543185"><PRE> integer nd,
</PRE><A NAME="543186"><PRE> char *domain)
</PRE><A NAME="543187"><B>
</B><HR><A NAME="543188"><PRE> integer pabrec
</PRE><A NAME="543189"><PRE> integer fileid, recid
</PRE><A NAME="543190"><PRE> .
</PRE><A NAME="543191"><PRE> .
</PRE><A NAME="543192"><PRE> .
</PRE><A NAME="543193"><PRE> recid = pabrec(fileid, 6, ‘t-data’, 8, ‘t-struct’, 4, ‘time’)
</PRE><A NAME="543194"><PRE> .
</PRE><A NAME="543195"><PRE> .
</PRE><A NAME="543196"><PRE> .
</PRE><a name="543197">
<h3>5.10.3 PAEREC</h3>
</a>
<A NAME="543198"><PRE>
</PRE><A NAME="543199"><PRE> integer </a>PAEREC(integer fileid,
</PRE><A NAME="543200"><PRE> integer recid)
</PRE><a name="543201">
Complete the definition of a </a>time history data structure and enter the definition in the PDB file.<p>
</a>
<a name="543202">
Input to </a>PAEREC is: fileid, an integer identifying a PDB file; and recid, an integer identifying a derived type definition started by </a>PABREC.<p>
</a>
<a name="543203">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="543204">
See also </a>PAAREC, </a>PABREC, and </a>PAWREC.<p>
</a>
<A NAME="543205"><PRE>
</PRE><A NAME="543206"><PRE> integer </a>PAEREC(integer fileid,
</PRE><A NAME="543207"><PRE> integer recid)
</PRE><A NAME="543208"><B>
</B><HR><A NAME="543209"><PRE> integer paerec
</PRE><A NAME="543210"><PRE> integer fileid, recid
</PRE><A NAME="543211"><PRE> .
</PRE><A NAME="543212"><PRE> .
</PRE><A NAME="543213"><PRE> .
</PRE><A NAME="543214"><PRE> if (</a>paerec(fileid, recid) .eq. 0)
</PRE><A NAME="543215"><PRE> $ call errproc
</PRE><A NAME="543216"><PRE> .
</PRE><A NAME="543217"><PRE> .
</PRE><A NAME="543218"><PRE> .
</PRE><a name="544903">
<h3>5.10.4 PAMRGF</h3>
</a>
<A NAME="544909"><PRE>
</PRE><A NAME="544914"><PRE> integer </a>PAMRGF(integer nb,
</PRE><A NAME="544991"><PRE> char *base,
</PRE><A NAME="544992"><PRE> integer nf,
</PRE><A NAME="544915"><PRE> char *family,
</PRE><A NAME="544916"><PRE> integer nc)
</PRE><a name="544917">
Merge a family of ULTRA files into a single file or family of files. The ULTRA source files are specified here by family base name.<p>
</a>
<a name="544920">
ULTRA source files are assumed to follow the naming convention<p>
</a>
<A NAME="544921"><PRE> family.udd
</PRE><a name="544922">
where family is the base source file name supplied and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544923">
ULTRA target files produced by this function similarly follow the naming convention<p>
</a>
<A NAME="544927"><PRE> base.udd
</PRE><a name="544928">
where base is the base target file name supplied.<p>
</a>
<a name="544929">
Argument nc, determines how target files are familied by specifying the approximate number of curves per file. However, regardless of the value of nc, all curves from a given source file will reside in a single target file. If nc is zero, all curves will be merged into a single file.<p>
</a>
<a name="544930">
For efficiency this function currently assumes that all curves in a given source file share the domain of the first curve in that file. This is true for ULTRA files produced by the PANACEA time history transpose routines. Curves from arbitrary ULTRA files can be merged, albeit less efficiently, using the </a>save command in the </a>ULTRA utility.<p>
</a>
<a name="544931">
Input to this function is: nb, an integer number of characters in base; base, an ASCII string containing the base target file name; nf, an integer number of characters in famly; family, an ASCII string containing the base source file name; and nc an integer approximate number of curves per ULTRA target file.<p>
</a>
<a name="544932">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544933">
See also </a>PAMRGN.<p>
</a>
<A NAME="544934"><PRE>
</PRE><A NAME="544935"><PRE> integer </a>PAMRGF(integer nb,
</PRE><A NAME="544993"><PRE> char *base,
</PRE><A NAME="544994"><PRE> integer nf,
</PRE><A NAME="544936"><PRE> char *family,
</PRE><A NAME="544937"><PRE> integer nc)
</PRE><A NAME="544938"><B>
</B><HR><A NAME="544995"><PRE> integer pamrgf
</PRE><A NAME="544997"><PRE> .
</PRE><A NAME="544998"><PRE> .
</PRE><A NAME="544999"><PRE> .
</PRE><A NAME="545000"><PRE> if (</a>pamrgf(3, ‘bar’, 3, ‘foo’, 1000) .eq. 0)
</PRE><A NAME="545001"><PRE> $ call errproc
</PRE><A NAME="545002"><PRE> .
</PRE><A NAME="545003"><PRE> .
</PRE><A NAME="544939"><PRE> .
</PRE><a name="544940">
<h3>5.10.5 PAMRGN</h3>
</a>
<A NAME="544941"><PRE>
</PRE><A NAME="544942"><PRE> integer </a>PAMRGN(integer nb,
</PRE><A NAME="544943"><PRE> char *base,
</PRE><A NAME="544944"><PRE> integer nn,
</PRE><A NAME="544945"><PRE> char *names,
</PRE><A NAME="544946"><PRE> integer nc)
</PRE><a name="544956">
</a>Merge a set of ULTRA files into a single file or family of files. The ULTRA source files are specified here explicitly by name.<p>
</a>
<a name="544957">
ULTRA target files produced by this function follow the naming convention<p>
</a>
<A NAME="544958"><PRE> base.udd
</PRE><a name="544959">
where base is the base target file name supplied and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544960">
Argument nc, determines how target files are familied by specifying the approximate number of curves per file. However, regardless of the value of nc, all curves from a given source file will reside in a single target file. If nc is zero, all curves will be merged into a single file.<p>
</a>
<a name="544961">
For efficiency this function currently assumes that all curves in a given source file share the domain of the first curve in that file. This is true for ULTRA files produced by the PANACEA time history transpose routines. Curves from arbitrary ULTRA files can be merged, albeit less efficiently, using the </a>save command in the </a>ULTRA utility.<p>
</a>
<a name="544962">
Input to this function is: nb, an integer number of characters in base; base, an ASCII string containing the base file name; nn, an integer number of characters in names; names, an ASCII string containing the space delimited full names of the ULTRA source files; and nc an integer approximate number of curves per ULTRA target file.<p>
</a>
<a name="544947">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544964">
See also </a>PAMRGF.<p>
</a>
<A NAME="544965"><PRE>
</PRE><A NAME="544966"><PRE> integer </a>PAMRGN(integer nb,
</PRE><A NAME="544948"><PRE> char *base,
</PRE><A NAME="544967"><PRE> integer nn,
</PRE><A NAME="544968"><PRE> char *names,
</PRE><A NAME="544969"><PRE> integer nc)
</PRE><A NAME="544970"><B>
</B><HR><A NAME="544949"><PRE> integer pamrgn
</PRE><A NAME="544950"><PRE> character*8 names(3)
</PRE><A NAME="544951"><PRE> .
</PRE><A NAME="544952"><PRE> .
</PRE><A NAME="544953"><PRE> .
</PRE><A NAME="544954"><PRE> c merge files foo.u09 through foo.u0b
</PRE><A NAME="544955"><PRE> names(1) = ‘foo.u09 ’
</PRE><A NAME="544963"><PRE> names(2) = ‘foo.u0a ’
</PRE><A NAME="544976"><PRE> names(3) = ‘foo.u0b ’
</PRE><A NAME="544971"><PRE> if (</a>pamrgn(3, ‘bar’, 24, names, 1000) .eq. 0)
</PRE><A NAME="544972"><PRE> $ call errproc
</PRE><A NAME="544973"><PRE> .
</PRE><A NAME="544974"><PRE> .
</PRE><A NAME="544975"><PRE> .
</PRE><a name="544256">
<h3>5.10.6 PATHFM</h3>
</a>
<A NAME="544273"><PRE>
</PRE><A NAME="544322"><PRE> integer </a>PATHFM(integer fileid)
</PRE><a name="544274">
Check the current file’s size against the maximum size as specified in the </a>PATHOP call. If the file is larger than the maximum size, close the file, open the next member of the file family, and return an id for the new file.<p>
</a>
<a name="544275">
Input to this function is: fileid, an integer file identifier.<p>
</a>
<a name="544303">
An integer PDBfile identifier is returned if the call is successful; otherwise, -1 is returned and an error message may be retrieved by invoking function </a>PFGERR. The return value should be checked against the original one to see whether or not a new file has been opened.<p>
</a>
<a name="544304">
See also </a>PABREC, </a>PAAREC, </a>PAEREC, </a>PAWREC, and </a>PATHOP.<p>
</a>
<A NAME="544305"><PRE>
</PRE><A NAME="544306"><PRE> integer </a>PATHFM(integer fileid)
</PRE><A NAME="544311"><B>
</B><HR><A NAME="544312"><PRE> integer pathfm
</PRE><A NAME="544313"><PRE> integer nfid, fid
</PRE><A NAME="544307"><PRE> .
</PRE><A NAME="544314"><PRE> .
</PRE><A NAME="544315"><PRE> .
</PRE><A NAME="544316"><PRE> nfid = </a>pathfm(fid)
</PRE><A NAME="544317"><PRE> if (nfid .eq. -1)
</PRE><A NAME="544309"><PRE> $ call errproc
</PRE><A NAME="544310"><PRE>
</PRE><A NAME="544308"><PRE> if (nfid .ne. fid)
</PRE><A NAME="544318"><PRE> $ fid = nfid
</PRE><A NAME="544319"><PRE> .
</PRE><A NAME="544320"><PRE> .
</PRE><A NAME="544321"><PRE> .
</PRE><a name="544265">
<h3>5.10.7 PATHOP</h3>
</a>
<A NAME="544268"><PRE>
</PRE><A NAME="544298"><PRE> integer </a>PATHOP(integer nf,
</PRE><A NAME="544299"><PRE> char *name,
</PRE><A NAME="544300"><PRE> integer nm,
</PRE><A NAME="544301"><PRE> char *mode,
</PRE><A NAME="544302"><PRE> integer sz,
</PRE><A NAME="544278"><PRE> integer np,
</PRE><A NAME="544279"><PRE> char *prev)
</PRE><a name="544269">
Open a new time history data file. This implicitly defines a family of files. The name should be of the form: base.tdd where d is a base 36 digit (i.e. 0-9a-z). This is only a convention, but there are certain consequences for not following it in as much as the familying mechanism assumes that the last two characters form a base 36 number and increments it accordingly. As an application writes data to a time history file, periodic calls to </a>PATHFM should be made to monitor the file size and when necessary close the current family member and open the next.<p>
</a>
<a name="544329">
Since simulations may be restarted and each code may have a different strategy for continuing time history collection in the event of a restart, it is necessary to allow for name changes in the family. The consequence of this is that each member of a file family must contain the name of the previous file in the family. In that way, the transpose process may unambiguously and under the control of the user or simulation follow a chain of time history files from the end point back to the beginning. The prev argument is used to supply this information. The family of files that follows will be in sequence from the name supplied. Only across restarts, which implies calls to PATHOP, may the sequence name be changed. A call to PATHOP may have 0 for np which indicates the absolute beginning of the sequence, i.e. the transpose will stop in its search for files at this point.<p>
</a>
<a name="544270">
Input to this function is: nf, an integer number of characters in name; name, an ASCII string specifying the name of the first file in the family for the current application; nm, an integer number of characters in mode; mode, an ASCII string specifying the mode of the file (typically this will be “w”); and sz, an integer value specifying the target maximum file size for members of the family.<p>
</a>
<a name="544271">
An integer PDBfile identifier is returned if the call is successful; otherwise, -1 is returned and an error message may be retrieved by invoking function </a>PFGERR. <p>
</a>
<a name="544272">
See also </a>PABREC, </a>PAAREC, </a>PAEREC, </a>PAWREC, and </a>PATHFM.<p>
</a>
<A NAME="544281"><PRE>
</PRE><A NAME="544280"><PRE> integer </a>PATHOP(integer nf,
</PRE><A NAME="544323"><PRE> char *name,
</PRE><A NAME="544324"><PRE> integer nm,
</PRE><A NAME="544325"><PRE> char *mode,
</PRE><A NAME="544326"><PRE> integer sz,
</PRE><A NAME="544327"><PRE> integer np,
</PRE><A NAME="544328"><PRE> char *prev)
</PRE><A NAME="544285"><B>
</B><HR><A NAME="544286"><PRE> integer pathop
</PRE><A NAME="544287"><PRE> .
</PRE><A NAME="544288"><PRE> .
</PRE><A NAME="544289"><PRE> .
</PRE><A NAME="544290"><PRE> fid = </a>pathop(3, ‘foo’, 1, ‘w’, 1000000, 4, ‘blat’)
</PRE><A NAME="544295"><PRE> if (fid .eq. -1)
</PRE><A NAME="544291"><PRE> $ call errproc
</PRE><A NAME="544292"><PRE> .
</PRE><A NAME="544293"><PRE> .
</PRE><A NAME="544294"><PRE> .
</PRE><a name="543219">
<h3>5.10.8 PATHTL</h3>
</a>
<A NAME="543220"><PRE>
</PRE><A NAME="543221"><PRE> integer </a>PATHTL(char *names,
</PRE><A NAME="543222"><PRE> integer ord,
</PRE><A NAME="543223"><PRE> int nc)
</PRE><a name="543224">
</a>WARNING: This is a deprecated function. Use </a>PATRNL instead.<p>
</a>
<a name="544840">
Write an ULTRA file by </a>transposing the </a>time history data from a specified set of time history files. The time history files are specified here by giving the names of files at the end of file family chains.<p>
</a>
<a name="543225">
On occasion, files in a family are lost. This breaks the chain of files as well as leaving gaps in the data. Since this function can take many file names, it can be used to take into account missing files by supplying the files at the top of the gap(s) of missing files. In the accompanying example it is assumed that the files foo.t09 through foo.t11 are missing.<p>
</a>
<a name="543226">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="543227">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="543228"><PRE> name.tdd
</PRE><a name="543229">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="543230">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="543231"><PRE> name.udd
</PRE><a name="543232">
Input to this function is: names, an ASCII string containing the space delimited full names of the time history files; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="543233">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="543234">
See also </a>PATRNN and </a>PATRNF.<p>
</a>
<A NAME="543235"><PRE>
</PRE><A NAME="543236"><PRE> integer </a>PATHTL(char *names,
</PRE><A NAME="543237"><PRE> integer ord,
</PRE><A NAME="543238"><PRE> int nc)
</PRE><A NAME="543239"><B>
</B><HR><A NAME="543240"><PRE> integer pathtl
</PRE><A NAME="543241"><PRE> character*8 names(2)
</PRE><A NAME="543242"><PRE> .
</PRE><A NAME="543243"><PRE> .
</PRE><A NAME="543244"><PRE> .
</PRE><A NAME="543245"><PRE> c files foo.t09 through foo.t11 are missing
</PRE><A NAME="543246"><PRE> names(1) = ‘foo.t1f ’
</PRE><A NAME="544382"><PRE> names(2) = ‘foo.t08 ’
</PRE><A NAME="544439"><PRE> if (</a>pathtl(names, -1, 1000) .eq. 0)
</PRE><A NAME="544440"><PRE> $ call errproc
</PRE><A NAME="544441"><PRE> .
</PRE><A NAME="544442"><PRE> .
</PRE><A NAME="544443"><PRE> .
</PRE><a name="544444">
<h3>5.10.9 PATHTN</h3>
</a>
<A NAME="544445"><PRE>
</PRE><A NAME="544446"><PRE> integer </a>PATHTN(char *names,
</PRE><A NAME="544447"><PRE> integer ord,
</PRE><A NAME="544448"><PRE> int nc)
</PRE><a name="544839">
WARNING: This is a deprecated function. Use </a>PATRNN instead.<p>
</a>
<a name="544449">
</a>Write an ULTRA file by </a>transposing the </a>time history data from a specified set of time history files. The time history files are specified here explicitly by name.<p>
</a>
<a name="544450">
On occasion, it is desirable to transpose only selected files from a family. For example, a user may know that only certain times are of interest and doesn’t wish to see the entire data set. This function gives the finest level of control to the application about which files to transpose.<p>
</a>
<a name="544451">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="544453">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544454"><PRE> name.tdd
</PRE><a name="544455">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544456">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544457"><PRE> name.udd
</PRE><a name="544458">
Input to this function is: names, an ASCII string containing the space delimited full names of the time history files; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="544459">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544460">
See also </a>PATRNL and </a>PATRNF.<p>
</a>
<A NAME="544461"><PRE>
</PRE><A NAME="544462"><PRE> integer </a>PATHTN(char *names,
</PRE><A NAME="544463"><PRE> integer ord,
</PRE><A NAME="544464"><PRE> int nc)
</PRE><A NAME="544465"><B>
</B><HR><A NAME="544466"><PRE> integer pathtn
</PRE><A NAME="544467"><PRE> character*16 names(4)
</PRE><A NAME="544468"><PRE> .
</PRE><A NAME="544469"><PRE> .
</PRE><A NAME="544470"><PRE> .
</PRE><A NAME="544471"><PRE> c only transpose foo.t09 through foo.t0b
</PRE><A NAME="544472"><PRE> names(1) = ‘foo.t09 ’
</PRE><A NAME="544473"><PRE> names(2) = ‘foo.t0a ’
</PRE><A NAME="544474"><PRE> names(3) = ‘foo.t0b ’
</PRE><A NAME="544475"><PRE> names(4) = ‘ ’
</PRE><A NAME="544476"><PRE> if (</a>pathtn(names, 1, 1000) .eq. 0)
</PRE><A NAME="544477"><PRE> $ call errproc
</PRE><A NAME="544478"><PRE> .
</PRE><A NAME="544479"><PRE> .
</PRE><A NAME="544480"><PRE> .
</PRE><a name="544481">
<h3>5.10.10 PATHTR</h3>
</a>
<A NAME="544482"><PRE>
</PRE><A NAME="544483"><PRE> integer </a>PATHTR(integer nf,
</PRE><A NAME="544484"><PRE> char *name,
</PRE><A NAME="544485"><PRE> integer nc)
</PRE><a name="544841">
</a>WARNING This is a deprecated function. Use </a>PATRNF instead.<p>
</a>
<a name="544486">
Write an </a>ULTRA file by </a>transposing the </a>time history data from a given set of time history files.<p>
</a>
<a name="544487">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544488"><PRE> name.tdd
</PRE><a name="544489">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544490">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544491"><PRE> name.udd
</PRE><a name="544492">
Input to this function is: nf, an integer number of characters in name; name, an ASCII string containing the base name of the time history file family; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="544494">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544495">
See also </a>PATRNL and </a>PATRNN.<p>
</a>
<A NAME="544496"><PRE>
</PRE><A NAME="544520"><PRE> integer </a>PATHTR(integer nf,
</PRE><A NAME="544521"><PRE> char *name,
</PRE><A NAME="544522"><PRE> integer nc)
</PRE><A NAME="544523"><B>
</B><HR><A NAME="544524"><PRE> integer pathtr
</PRE><A NAME="544525"><PRE> .
</PRE><A NAME="544526"><PRE> .
</PRE><A NAME="544527"><PRE> .
</PRE><A NAME="544528"><PRE> if (</a>pathtr(3, ‘foo’, 1000) .eq. 0)
</PRE><A NAME="544529"><PRE> $ call errproc
</PRE><A NAME="544530"><PRE> .
</PRE><A NAME="544531"><PRE> .
</PRE><A NAME="544532"><PRE> .
</PRE><a name="544842">
<h3>5.10.11 PATRNF</h3>
</a>
<A NAME="544843"><PRE>
</PRE><A NAME="544844"><PRE> integer </a>PATRNF(integer nf,
</PRE><A NAME="544845"><PRE> char *name,
</PRE><A NAME="544978"><PRE> integer ord,
</PRE><A NAME="544846"><PRE> integer nc)
</PRE><a name="544847">
</a>Write an </a>ULTRA file by </a>transposing the </a>time history data from a given set of time history files.<p>
</a>
<a name="544848">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544849"><PRE> name.tdd
</PRE><a name="544850">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544851">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544852"><PRE> name.udd
</PRE><a name="544979">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="544853">
Input to this function is: nf, an integer number of characters in name; name, an ASCII string containing the base name of the time history file family; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="544854">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544855">
See also </a>PATRNL and </a>PATRNN.<p>
</a>
<A NAME="544856"><PRE>
</PRE><A NAME="544857"><PRE> integer </a>PATRNF(integer nf,
</PRE><A NAME="544858"><PRE> char *name,
</PRE><A NAME="544980"><PRE> integer ord,
</PRE><A NAME="544859"><PRE> integer nc)
</PRE><A NAME="544860"><B>
</B><HR><A NAME="544861"><PRE> integer patrnf
</PRE><A NAME="544862"><PRE> .
</PRE><A NAME="544863"><PRE> .
</PRE><A NAME="544864"><PRE> .
</PRE><A NAME="544865"><PRE> if (</a>patrnf(3, ‘foo’, 1, 1000) .eq. 0)
</PRE><A NAME="544866"><PRE> $ call errproc
</PRE><A NAME="544867"><PRE> .
</PRE><A NAME="544868"><PRE> .
</PRE><A NAME="544869"><PRE> .
</PRE><a name="544706">
<h3>5.10.12 PATRNL</h3>
</a>
<A NAME="544707"><PRE>
</PRE><A NAME="544708"><PRE> integer </a>PATRNL(int nn,
</PRE><A NAME="544811"><PRE> char *names,
</PRE><A NAME="544709"><PRE> integer ord,
</PRE><A NAME="544711"><PRE> int nc)
</PRE><a name="544712">
</a>Write an ULTRA file by </a>transposing the </a>time history data from a specified set of time history files. The time history files are specified here by giving the names of files at the end of file family chains.<p>
</a>
<a name="544745">
On occasion, files in a family are lost. This breaks the chain of files as well as leaving gaps in the data. Since this function can take many file names, it can be used to take into account missing files by supplying the files at the top of the gap(s) of missing files. In the accompanying example it is assumed that the files foo.t09 through foo.t11 are missing.<p>
</a>
<a name="544746">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="544747">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544748"><PRE> name.tdd
</PRE><a name="544749">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544751">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544752"><PRE> name.udd
</PRE><a name="544753">
Input to this function is: nn, an integer number of characters in names; names, an ASCII string containing the space delimited full names of the time history files; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="544754">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544755">
See also </a>PATRNN and </a>PATRNF.<p>
</a>
<A NAME="544756"><PRE>
</PRE><A NAME="544757"><PRE> integer </a>PATRNL(int nn,
</PRE><A NAME="544769"><PRE> char *names,
</PRE><A NAME="544758"><PRE> integer ord,
</PRE><A NAME="544759"><PRE> int nc)
</PRE><A NAME="544760"><B>
</B><HR><A NAME="544761"><PRE> integer patrnl
</PRE><A NAME="544762"><PRE> character*8 names(2)
</PRE><A NAME="544763"><PRE> .
</PRE><A NAME="544764"><PRE> .
</PRE><A NAME="544765"><PRE> .
</PRE><A NAME="544766"><PRE> c files foo.t09 through foo.t11 are missing
</PRE><A NAME="544767"><PRE> names(1) = ‘foo.t1f ’
</PRE><A NAME="544768"><PRE> names(2) = ‘foo.t08 ’
</PRE><A NAME="544770"><PRE> if (</a>patrnl(16, names, -1, 1000) .eq. 0)
</PRE><A NAME="544771"><PRE> $ call errproc
</PRE><A NAME="544772"><PRE> .
</PRE><A NAME="544773"><PRE> .
</PRE><A NAME="544774"><PRE> .
</PRE><a name="544775">
<h3>5.10.13 PATRNN</h3>
</a>
<A NAME="544776"><PRE>
</PRE><A NAME="544777"><PRE> integer </a>PATRNN(int nn,
</PRE><A NAME="544812"><PRE> char *names,
</PRE><A NAME="544778"><PRE> integer ord,
</PRE><A NAME="544779"><PRE> int nc)
</PRE><a name="544780">
</a>Write an ULTRA file by </a>transposing the </a>time history data from a specified set of time history files. The time history files are specified here explicitly by name.<p>
</a>
<a name="544781">
On occasion, it is desirable to transpose only selected files from a family. For example, a user may know that only certain times are of interest and doesn’t wish to see the entire data set. This function gives the finest level of control to the application about which files to transpose.<p>
</a>
<a name="544782">
There is the possibility inherent in this model of handling file families that two or more files to be processed will have data for some regions in time. Because of the underlying PDB machinery, the data from the last file processed will predominate. Also, since the files are linked together from latest to earliest, it is sometimes necessary to require that the files be processed in the opposite order in which they are specified. The ord argument is used for this purpose. A value of 1 causes the files to be processed in the order in which they are specified while a value of -1 causes them to be processed in reverse order.<p>
</a>
<a name="544783">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544784"><PRE> name.tdd
</PRE><a name="544785">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544786">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544787"><PRE> name.udd
</PRE><a name="544788">
Input to this function is: nn, an integer number of characters in names; names, an ASCII string containing the space delimited full names of the time history files; ord, an integer flag specifying the order of processing; and nc a maximum number of curves per file in the ULTRA file family.<p>
</a>
<a name="544789">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544790">
See also </a>PATRNL and </a>PATRNF.<p>
</a>
<A NAME="544791"><PRE>
</PRE><A NAME="544792"><PRE> integer </a>PATRNN(int nn,
</PRE><A NAME="544813"><PRE> char *names,
</PRE><A NAME="544793"><PRE> integer ord,
</PRE><A NAME="544794"><PRE> int nc)
</PRE><A NAME="544795"><B>
</B><HR><A NAME="544796"><PRE> integer patrnn
</PRE><A NAME="544797"><PRE> character*8 names(3)
</PRE><A NAME="544798"><PRE> .
</PRE><A NAME="544799"><PRE> .
</PRE><A NAME="544800"><PRE> .
</PRE><A NAME="544801"><PRE> c only transpose foo.t09 through foo.t0b
</PRE><A NAME="544802"><PRE> names(1) = ‘foo.t09 ’
</PRE><A NAME="544803"><PRE> names(2) = ‘foo.t0a ’
</PRE><A NAME="544804"><PRE> names(3) = ‘foo.t0b ’
</PRE><A NAME="544806"><PRE> if (</a>patrnn(24, names, 1, 1000) .eq. 0)
</PRE><A NAME="544807"><PRE> $ call errproc
</PRE><A NAME="544808"><PRE> .
</PRE><A NAME="544809"><PRE> .
</PRE><A NAME="544810"><PRE> .
</PRE><a name="543247">
<h3>5.10.14 PAWREC</h3>
</a>
<A NAME="543248"><PRE>
</PRE><A NAME="543249"><PRE> integer </a>PAWREC(integer fileid,
</PRE><A NAME="543250"><PRE> integer recid,
</PRE><A NAME="543251"><PRE> integer inst,
</PRE><A NAME="543252"><PRE> integer nr,
</PRE><A NAME="543253"><PRE> vr)
</PRE><a name="543254">
</a>Write out nr instances of </a>time history data whose structure has been defined by </a>PABREC, </a>PAAREC, and </a>PAEREC. This function writes out nr complete instances of a time history record! Using this function an application can manage multiple sets of time history data which are written at different frequencies.<p>
</a>
<a name="543255">
Input to this function is: fileid, an integer identifying a PDB file; recid, an integer identifier specifying a time history record type; inst, an integer specifying the instance index of the records to be written; nr, an integer specifying the number of instances of the structure pointed to by vr; and vr, the data to be written.<p>
</a>
<a name="543256">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="543257">
See also </a>PAAREC, </a>PABREC, </a>PAEREC, and </a>PAWRIA.<p>
</a>
<A NAME="543258"><PRE>
</PRE><A NAME="543259"><PRE> integer </a>PAWREC(integer fileid,
</PRE><A NAME="543260"><PRE> integer recid,
</PRE><A NAME="543261"><PRE> integer inst,
</PRE><A NAME="543262"><PRE> integer nr,
</PRE><A NAME="543263"><PRE> vr)
</PRE><A NAME="543264"><B>
</B><HR><A NAME="543265"><PRE> integer pawrec
</PRE><A NAME="543266"><PRE> integer fileid, recid
</PRE><A NAME="543267"><PRE> real*8 vr(9)
</PRE><A NAME="543268"><PRE> .
</PRE><A NAME="543269"><PRE> .
</PRE><A NAME="543270"><PRE> .
</PRE><A NAME="543271"><PRE> if (</a>pawrec(fileid, recid, 14, 3, vr) .eq. 0)
</PRE><A NAME="543272"><PRE> $ call errproc
</PRE><A NAME="543273"><PRE> .
</PRE><A NAME="543274"><PRE> .
</PRE><A NAME="543275"><PRE> .
</PRE><a name="544668">
<h3>5.10.15 PAWMEM</h3>
</a>
<A NAME="544674"><PRE>
</PRE><A NAME="544683"><PRE> integer </a>PAWMEM(integer fileid,
</PRE><A NAME="544675"><PRE> integer recid,
</PRE><A NAME="544684"><PRE> integer nc,
</PRE><A NAME="544685"><PRE> char *name,
</PRE><A NAME="544676"><PRE> integer inst,
</PRE><A NAME="544682"><PRE> vr)
</PRE><A NAME="544671"><PRE>
</PRE><a name="544677">
Write out one member of a </a>time history data record whose structure has been defined by </a>PABREC, </a>PAAREC, and </a>PAEREC. This function writes out one member of a time history record. Its utility is most apparent when the member is an array which could be large or is part of a very large record.<p>
</a>
<a name="544678">
Input to this function is: fileid, an integer identifying a PDB file; recid, an integer identifier specifying a time history record type; nc, an integer number of characters in the member string; member, an ASCII string naming the member desired; inst, an integer specifying the instance number; and vr, the data to be written.<p>
</a>
<a name="544679">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="544680">
See also </a>PAAREC, </a>PABREC, </a>PAEREC, and </a>PAWRIA.<p>
</a>
<A NAME="544672"><PRE>
</PRE><A NAME="544681"><PRE> integer </a>PAWMEM(integer fileid,
</PRE><A NAME="544686"><PRE> integer recid,
</PRE><A NAME="544687"><PRE> integer nc,
</PRE><A NAME="544700"><PRE> char *name,
</PRE><A NAME="544701"><PRE> integer inst,
</PRE><A NAME="544702"><PRE> vr)
</PRE><A NAME="544673"><PRE>
</PRE><A NAME="544688"><B>
</B><HR><A NAME="544689"><PRE> integer pawmem
</PRE><A NAME="544690"><PRE> integer fileid, recid
</PRE><A NAME="544691"><PRE> real*8 vr(100,100)
</PRE><A NAME="544692"><PRE> .
</PRE><A NAME="544693"><PRE> .
</PRE><A NAME="544694"><PRE> .
</PRE><A NAME="544695"><PRE> if (</a>pawmem(fileid, recid, 3, ‘v_1’, 14, vr) .eq. 0)
</PRE><A NAME="544696"><PRE> $ call errproc
</PRE><A NAME="544697"><PRE> .
</PRE><A NAME="544698"><PRE> .
</PRE><A NAME="544699"><PRE> .
</PRE><a name="543276">
<h3>5.10.16 PAWRIA</h3>
</a>
<A NAME="543277"><PRE>
</PRE><A NAME="543278"><PRE> integer </a>PAWRIA(integer fileid,
</PRE><A NAME="543279"><PRE> integer nv,
</PRE><A NAME="543280"><PRE> char *var
</PRE><A NAME="543281"><PRE> integer inst,
</PRE><A NAME="543282"><PRE> integer na,
</PRE><A NAME="543283"><PRE> char *attr,
</PRE><A NAME="543284"><PRE> value)
</PRE><a name="543285">
</a>Assign an attribute value to the indicated</a> time history data instance.<p>
</a>
<a name="543286">
Input to this function is: fileid, an integer identifying a PDB file; nv, an integer number of characters in the string var; var, an ASCII string naming the time history data entry; inst, an integer specifying the instance index of the records to be written; na, an integer specifying the number of characters in the attribute name; attr, an ASCII string containing the name of an attribute; and; and value, the attribute value.<p>
</a>
<a name="543287">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="543288">
See also </a>PAAREC, </a>PABREC, </a>PAEREC, and </a>PAWREC.<p>
</a>
<A NAME="543289"><PRE>
</PRE><A NAME="543290"><PRE> integer </a>PAWRIA(integer fileid,
</PRE><A NAME="543291"><PRE> integer nv,
</PRE><A NAME="543292"><PRE> char *var
</PRE><A NAME="543293"><PRE> integer inst,
</PRE><A NAME="543294"><PRE> integer na,
</PRE><A NAME="543295"><PRE> char *attr,
</PRE><A NAME="543296"><PRE> value)
</PRE><A NAME="543297"><B>
</B><HR><A NAME="543298"><PRE> integer pawria
</PRE><A NAME="543299"><PRE> integer fileid
</PRE><A NAME="543300"><PRE> character*8 datestr
</PRE><A NAME="543301"><PRE>
</PRE><A NAME="543302"><PRE> .
</PRE><A NAME="543303"><PRE> .
</PRE><A NAME="543304"><PRE> .
</PRE><A NAME="543305"><PRE> if (</a>pawria(fileid, 6, ‘t-data’, 3, 4, ‘date’, datestr)
</PRE><A NAME="543306"><PRE> $ .eq. 0) call errproc
</PRE><A NAME="543307"><PRE> .
</PRE><A NAME="543308"><PRE> .
</PRE><A NAME="543309"><PRE> .
</PRE><a name="544498">
<h3>5.10.17 FORTRAN API </a>Time History Example</h3>
</a>
<a name="544504">
Here is an example of using the time history functionality of PANACEA.<p>
</a>
<A NAME="544499"><CODE></CODE><A NAME="544500"><CODE></CODE><A NAME="544501"><CODE></CODE><A NAME="544502"><CODE></CODE><A NAME="544503"><CODE></CODE><A NAME="544669"><CODE></CODE><A NAME="544505"><CODE></CODE><A NAME="544506"><CODE></CODE><A NAME="544507"><CODE></CODE><A NAME="544508"><CODE></CODE><A NAME="544509"><CODE></CODE><A NAME="544510"><CODE></CODE><A NAME="544511"><CODE></CODE><A NAME="544512"><CODE></CODE><A NAME="544513"><CODE></CODE><A NAME="544514"><CODE></CODE><A NAME="544515"><CODE></CODE><A NAME="544516"><CODE></CODE><A NAME="544517"><CODE></CODE><A NAME="544518"><CODE></CODE><A NAME="544519"><CODE></CODE><A NAME="544533"><CODE></CODE><A NAME="544534"><CODE></CODE><A NAME="544535"><CODE></CODE><A NAME="544536"><CODE></CODE><A NAME="544537"><CODE></CODE><A NAME="544538"><CODE></CODE><A NAME="544539"><CODE></CODE><A NAME="544540"><CODE></CODE><A NAME="544541"><CODE></CODE><A NAME="544542"><CODE></CODE><A NAME="544543"><CODE></CODE><A NAME="544544"><CODE></CODE><A NAME="544493"><CODE></CODE><A NAME="544545"><CODE></CODE><A NAME="544547"><CODE></CODE><A NAME="544548"><CODE></CODE><A NAME="544549"><CODE></CODE><A NAME="544550"><CODE></CODE><A NAME="544551"><CODE></CODE><A NAME="544552"><CODE></CODE><A NAME="544553"><CODE></CODE><A NAME="544554"><CODE></CODE><A NAME="544555"><CODE></CODE><A NAME="544556"><CODE></CODE><A NAME="544557"><CODE></CODE><A NAME="544558"><CODE></CODE><A NAME="544559"><CODE></CODE><A NAME="544560"><CODE></CODE><A NAME="544561"><CODE></CODE><A NAME="544562"><CODE></CODE><A NAME="544563"><CODE></CODE><A NAME="544564"><CODE></CODE><A NAME="544565"><CODE></CODE><A NAME="544566"><CODE></CODE><A NAME="544567"><CODE></CODE><A NAME="544568"><CODE></CODE><A NAME="544569"><CODE></CODE><A NAME="544570"><CODE></CODE><A NAME="544571"><CODE></CODE><A NAME="544572"><CODE></CODE><A NAME="544573"><CODE></CODE><A NAME="544574"><CODE></CODE><A NAME="544575"><CODE></CODE><A NAME="544576"><CODE></CODE><A NAME="544577"><CODE></CODE><A NAME="544578"><CODE></CODE><A NAME="544579"><CODE></CODE><A NAME="544580"><CODE></CODE><A NAME="544581"><CODE></CODE><A NAME="544582"><CODE></CODE><A NAME="544583"><CODE></CODE><A NAME="544584"><CODE></CODE><A NAME="544585"><CODE></CODE><A NAME="544586"><CODE></CODE><A NAME="544587"><CODE></CODE><A NAME="544588"><CODE></CODE><A NAME="544589"><CODE></CODE><A NAME="544590"><CODE></CODE><A NAME="544591"><CODE></CODE><A NAME="544592"><CODE></CODE><A NAME="544593"><CODE></CODE><A NAME="544594"><CODE></CODE><A NAME="544595"><CODE></CODE><A NAME="544596"><CODE></CODE><A NAME="544597"><CODE></CODE><A NAME="544598"><CODE></CODE><A NAME="544599"><CODE></CODE><A NAME="544600"><CODE></CODE><A NAME="544601"><CODE></CODE><A NAME="544602"><CODE></CODE><A NAME="544603"><CODE></CODE><A NAME="544604"><CODE></CODE><A NAME="544605"><CODE></CODE><A NAME="544606"><CODE></CODE><A NAME="544607"><CODE></CODE><A NAME="544608"><CODE></CODE><A NAME="544609"><CODE></CODE><A NAME="544610"><CODE></CODE><A NAME="544611"><CODE></CODE><A NAME="544612"><CODE></CODE><A NAME="544613"><CODE></CODE><A NAME="544614"><CODE></CODE><A NAME="544615"><CODE></CODE><A NAME="544616"><CODE></CODE><A NAME="544617"><CODE></CODE><A NAME="544618"><CODE></CODE><A NAME="544619"><CODE></CODE><A NAME="544620"><CODE></CODE><A NAME="544621"><CODE></CODE><A NAME="544622"><CODE></CODE><A NAME="544623"><CODE></CODE><A NAME="544624"><CODE></CODE><A NAME="544625"><CODE></CODE><A NAME="544626"><CODE></CODE><A NAME="544627"><CODE></CODE><A NAME="544628"><CODE></CODE><A NAME="544629"><CODE></CODE><A NAME="544630"><CODE></CODE><A NAME="544631"><CODE></CODE><A NAME="544632"><CODE></CODE><A NAME="544633"><CODE></CODE><A NAME="544634"><CODE></CODE><A NAME="544635"><CODE></CODE><A NAME="544636"><CODE></CODE><A NAME="544637"><CODE></CODE><A NAME="544638"><CODE></CODE><A NAME="544639"><CODE></CODE><A NAME="544640"><CODE></CODE><A NAME="544641"><CODE></CODE><A NAME="544642"><CODE></CODE><A NAME="544643"><CODE></CODE><A NAME="544644"><CODE></CODE><A NAME="544645"><CODE></CODE><A NAME="544646"><CODE></CODE><A NAME="544647"><CODE></CODE><A NAME="544648"><CODE></CODE><A NAME="544649"><CODE></CODE><A NAME="544650"><CODE></CODE><A NAME="544651"><CODE></CODE><A NAME="544652"><CODE></CODE><A NAME="544653"><CODE></CODE><A NAME="544654"><CODE></CODE><A NAME="544655"><CODE></CODE><A NAME="544656"><CODE></CODE><A NAME="544657"><CODE></CODE><A NAME="544658"><CODE></CODE><A NAME="544659"><CODE></CODE><A NAME="544660"><CODE></CODE><A NAME="544661"><CODE></CODE><A NAME="544662"><CODE></CODE><A NAME="544663"><CODE></CODE><A NAME="544664"><CODE></CODE><A NAME="544665"><CODE></CODE><A NAME="544666"><CODE></CODE><A NAME="544667"><CODE></CODE><a name="543310">
<h2>5.11 Miscellaneous</h2>
</a>
<a name="543311">
<h1>6.0 PANACEA Initial Value Problem Generators</h1>
</a>
<a name="543312">
<p>
</a>
<a name="543313">
<h2>6.1 Generic Commands Supplied by PANACEA</h2>
</a>
<a name="543314">
<p>
</a>
<A NAME="543315"><BR><B></a>dump
</B><BR><a name="543316">
Build the database and write a restart dump.<p>
</a>
<A NAME="543317"><BR><B></a>end
</B><BR><a name="543318">
Shutdown the generator.<p>
</a>
<A NAME="543319"><BR><B></a>graph
</B><BR><a name="543320">
Specify a plot request.<p>
</a>
<A NAME="543321"><BR><B></a>name
</B><BR><a name="543322">
Set the value of a name for the current package.<p>
</a>
<A NAME="543323"><BR><B></a>package
</B><BR><a name="543324">
Specify the package to which subsequent SWITCH, PARAMETER, and NAME commands apply.<p>
</a>
<A NAME="543325"><BR><B></a>parameter
</B><BR><a name="543326">
Set the value of a parameter for the current package.<p>
</a>
<A NAME="543327"><BR><B></a>read
</B><BR><a name="543328">
Read a file of generator commands.<p>
</a>
<A NAME="543329"><BR><B></a>s
</B><BR><a name="543330">
Continuation of last specify command.<p>
</a>
<A NAME="543331"><BR><B></a>specify
</B><BR><a name="543332">
Specify an initial value constraint (BC, SRC, or <variable>). The precise syntax for this command is:<p>
</a>
<A NAME="543333">specify <</a>bc name | </a>src name | name> spec-list
<P><A NAME="543334">
<P><A NAME="543335">spec-list := spec-list spec | spec
<P><A NAME="543336">spec := </a>from file |
<P><A NAME="543337"> </a>interpolate |
<P><A NAME="543338"> </a>discrete |
<P><A NAME="543339"> </a>in name |
<P><A NAME="543340"> </a>at value |
<P><A NAME="543341"> </a>along value |
<P><A NAME="543342"> value
<P><a name="543343">
The specifications at and along are simply put their associated value into the array of floating point numbers which the specify command constructs. In short, they are for the clarity of the input command. The in specification invokes the </a>PA_reg_hook to map a name to a number which goes in the array which specify builds. The intention again is to provide an additional level of clarity by allowing users of a PANACEA code to be able to specify at least some information by name. Any value can be denoted by an alias which is defined by a call to </a>PA_alias.<p>
</a>
<a name="543344">
The array of number which this command builds up can be handed back to those part of the packages which query the initial value specifications.<p>
</a>
<A NAME="543345"><BR><B></a>switch
</B><BR><a name="543346">
Set the value of a switch for the current package.<p>
</a>
<a name="544232">
<h1>7.0 PANACEA Supplied Physical Constants</h1>
</a>
<a name="543348">
PANACEA provides a service for handling physical units in simulation packages. It is geared toward solving problems associated with importing and exporting packages between PANACEA codes and toward letting the code developer and code users have control over the systems of units in which problems are run and debugged.<p>
</a>
<a name="543349">
Part of this service hinges on providing fundamental physical constants which the code developer can use in expressions appearing in the set of equations which their packages solve. Coupled with a complete definition of the set of units (see the next section) PANACEA is able to change the values of its physical constants to reflect the system of units in which the user or code developer wishes to work.<p>
</a>
<a name="543350">
At the beginning of a code run, these constants are initialized with their CGS values as indicated below. Once the system of units is defined (either by the input deck for the initial value problem generator or from the restart dump for the main simulation code) all of these constants are converted into the defined system of units.<p>
</a>
<a name="543351">
The constants given below are divided into three categories: ones with no units (pure numbers); those with physical units that cannot be expressed in terms of more fundamental physical constants; and those which can be expressed in terms of more fundamental constants.<p>
</a>
<a name="543352">
<p>
</a>
<a name="543353">
<h3>7.0.1 Pure Numbers</h3>
</a>
<a name="543354">
<p>
</a>
<A NAME="543355"><BR><B></a> alpha
</B><BR><a name="543356">
Fine structure constant = 7.297353080e-3<p>
</a>
<A NAME="543357"><BR><B></a> Coulomb
</B><BR><a name="543358">
Coulomb in fundamental charges = 6.241506363e18<p>
</a>
<A NAME="543359"><BR><B></a> N0
</B><BR><a name="543360">
Avogadro’s number = 6.02213665e23<p>
</a>
<a name="543361">
<p>
</a>
<a name="543362">
<p>
</a>
<a name="543363">
<h3>7.0.2 Fundamental Physical Constants</h3>
</a>
<a name="543364">
<p>
</a>
<A NAME="543365"><BR><B></a> c
</B><BR><a name="543366">
Speed of light (cm/sec) = 2.99792458e10<p>
</a>
<A NAME="543367"><BR><B></a> Gn
</B><BR><a name="543368">
Newtonian gravitational constant (cm3/g-sec2) = 6.673231e-8<p>
</a>
<A NAME="543369"><BR><B></a> Hbar
</B><BR><a name="543370">
Planck’s constant divided by 2Pi (erg-sec) = 1.05457267e-27<p>
</a>
<A NAME="543371"><BR><B> </a>kBoltz
</B><BR><a name="543372">
Boltzman constant (erg/K) = 1.380658e-16<p>
</a>
<A NAME="543373"><BR><B></a> M_e
</B><BR><a name="543374">
electron mass (g) = 9.109389754e-28<p>
</a>
<a name="543375">
<p>
</a>
<a name="543376">
<h3>7.0.3 Derived Physical Constants</h3>
</a>
<a name="543377">
<p>
</a>
<A NAME="543378"><BR><B></a> e
</B><BR><a name="543379">
Electron charge, sqrt(alpha*Hbar*c) (esu) = 4.80320680e-10<p>
</a>
<A NAME="543380"><BR><B></a> eV_erg
</B><BR><a name="543381">
eV to erg, 1.0e7/Coulomb (erg/eV) = 1.60217733e-12<p>
</a>
<A NAME="543382"><BR><B></a> HbarC
</B><BR><a name="543383">
Hbar*c (eV-cm) = 1.97327054e-5<p>
</a>
<A NAME="543384"><BR><B></a> M_a
</B><BR><a name="543385">
Atomic mass unit, 1/N0 (g) = 1.660540210e-24<p>
</a>
<A NAME="543386"><BR><B></a> M_e_eV
</B><BR><a name="543387">
Electron mass, Me*c*c/eV_erg (eV) = 5.10999065e5<p>
</a>
<A NAME="543388"><BR><B></a> Ryd
</B><BR><a name="543389">
Rydberg, (M_e*c2*alpha2)/2 (eV) = 13.605698140<p>
</a>
<a name="543390">
<p>
</a>
<a name="543391">
In addition to theses constants, the constants #define’d by PML are available to PANACEA packages. These are:<p>
</a>
<a name="543392">
<p>
</a>
<A NAME="543393"><BR><B></a>DEG_RAD
</B><BR><a name="543394">
Conversion from degrees to radians = 0.017453292519943295<p>
</a>
<A NAME="543395"><BR><B></a>PI
</B><BR><a name="543396">
<img src="chars/pi.gif"> = 3.1415926535897931<p>
</a>
<A NAME="543397"><BR><B></a>RAD_DEG
</B><BR><a name="543398">
Conversion from radians to degrees = 57.295779513082323<p>
</a>
<a name="543399">
<p>
</a>
<a name="543400">
<h1>8.0 </a>Physical Units in PANACEA</h1>
</a>
<a name="543401">
In PANACEA the view is taken that all expressions involving fundamental physical constants should be expressed in terms of scalar variables representing those constants, NOT as numerical constants. There are two main reasons for this: PANACEA can offer the code developer many options for converting between systems of units; and the expressions involving such constants are self-documenting.<p>
</a>
<a name="543402">
A critical part of PANACEA’s ability to perform these services is its ability to specify and manipulate the physical units which a simulation package requires. PANACEA starts with a reasonable set of physical units:<p>
</a>
<A NAME="543403"><PRE> Type Macro Variable
</PRE><A NAME="543404"><PRE> </a>angle </a>RAD </a>PA_radian
</PRE><A NAME="543405"><PRE> </a>STER </a>PA_steradian
</PRE><A NAME="543406"><PRE> </a>charge </a>Q </a>PA_electric_charge
</PRE><A NAME="543407"><PRE> </a>energy </a>EV </a>PA_eV
</PRE><A NAME="543408"><PRE> </a>ERG </a>PA_erg
</PRE><A NAME="543409"><PRE> </a>length </a>CM </a>PA_cm
</PRE><A NAME="543410"><PRE> </a>mass </a>G </a>PA_gram
</PRE><A NAME="543411"><PRE> </a>number </a>MOLE </a>PA_mole
</PRE><A NAME="543412"><PRE> </a>temperature </a>K </a>PA_kelvin
</PRE><A NAME="543413"><PRE> </a>time </a>SEC </a>PA_sec
</PRE><A NAME="543414"><PRE> </a>volume </a>CC </a>PA_cc
</PRE><a name="543415">
The code developer can define new units with a call to </a>PA_def_unit. PA_def_unit takes a numerical value and a list of previously defined units and returns the index of a newly defined unit. For example, the units CM, SEC, ERG and CC are defined as: <p>
</a>
<A NAME="543416"><PRE> PA_cm = PA_def_unit(1.0, UNITS);
</PRE><A NAME="543417"><PRE> PA_sec = PA_def_unit(1.0, UNITS);
</PRE><A NAME="543418"><PRE> PA_erg = PA_def_unit(1.0, G, CM, CM, PER, SEC, SEC, UNITS);
</PRE><A NAME="543419"><PRE> PA_cc = PA_def_unit(1.0, CM, CM, CM, UNITS);
</PRE><a name="543420">
In this way both primitive units, i.e. units which don’t depend on any previously defined unit, and compound units may be defined and used by PANACEA code systems.<p>
</a>
<a name="543421">
In the table above, the macro designation means that the name refers to a #define’d constant and the variable designation means that the name refers to a global scalar variable. In C it turns out to be useful to have both the macro and variable forms. So codes which are going to define units should have a set of #define’s corresponding to their PA_def_unit calls. In the case of the above example:<p>
</a>
<A NAME="543422"><PRE> #define CM PA_cm
</PRE><A NAME="543423"><PRE> #define SEC PA_sec
</PRE><A NAME="543424"><PRE> #define ERG PA_erg
</PRE><A NAME="543425"><PRE> #define CC PA_cc
</PRE><a name="543426">
would be the appropriate sort of association.<p>
</a>
<a name="543427">
In the PANACEA model there are three systems of units: CGS; internal; and external. The physical constants are initialized in CGS units. The user of a PANACEA code specifies input and receives output in the external unit system. In the simulation routines quantities are expressed in the internal system of units.<p>
</a>
<a name="543428">
There are two arrays of double precision floating point numbers which keep the conversion factors for each of the defined units. The array unit keeps the conversion factors between CGS and internal units. The array convrsn keeps the conversion factors between CGS and external units. For example, suppose a code function needs a length in the three systems of units and these are held in the variables: length_internal, length_cgs, and length_external. The values of length_internal and length_external can be obtained from length_cgs as follows:<p>
</a>
<A NAME="543429"><PRE> length_internal = length_cgs*unit[CM]
</PRE><A NAME="543430"><PRE> length_external = length_cgs*convrsn[CM]
</PRE><a name="543431">
The two situations in which this is most useful is during initial value problem generation when the data which has been read in has not yet been used to create the data structures and arrays to be used in the simulation itself and during the simulation when data from source files is brought in.<p>
</a>
<a name="543432">
PANACEA applies conversions automatically when putting out data for post processing purposes. It also lets the code developer specify what the units of the state files (restart dumps) is to be and handles any necessary conversions.<p>
</a>
<a name="543433">
An example of setting up unit systems is given below. This routine is invoked by the initial value problem generator. Depending on the value of the argument the internal system of units is defined to be “natural units” with Hbar and c both 1 or a modified CGS system with temperatures in eV.<p>
</a>
<a name="543434">
<p>
</a>
<A NAME="543435"><PRE> /* INIT_CONT - initialize the controls */
</PRE><A NAME="543436"><PRE>
</PRE><A NAME="543437"><PRE> init_cont(def_unit_flag)
</PRE><A NAME="543438"><PRE> int def_unit_flag;
</PRE><A NAME="543439"><PRE> {PA_def_units(FALSE);
</PRE><A NAME="543440"><PRE>
</PRE><A NAME="543441"><PRE> /* set up the physical constants in CGS units */
</PRE><A NAME="543442"><PRE> PA_physical_constants_cgs();
</PRE><A NAME="543443"><PRE>
</PRE><A NAME="543444"><PRE> /* define the internal system of units
</PRE><A NAME="543445"><PRE> * if def_unit_flag it TRUE, “natural units” with Hbar = c = 1
</PRE><A NAME="543446"><PRE> * are defined
</PRE><A NAME="543447"><PRE> */
</PRE><A NAME="543448"><PRE> if (def_unit_flag)
</PRE><A NAME="543449"><PRE> {unit[G] = g_icm;
</PRE><A NAME="543450"><PRE> unit[SEC] = c;
</PRE><A NAME="543451"><PRE> unit[K] = eV_icm*(kBoltz/eV_erg);
</PRE><A NAME="543452"><PRE> unit[EV] = eV_icm*unit[Q]*unit[Q]/unit[CM];}
</PRE><A NAME="543453"><PRE>
</PRE><A NAME="543454"><PRE> /* the alternate internal system of units is the modified CGS system
</PRE><A NAME="543455"><PRE> * with temperatures in eV
</PRE><A NAME="543456"><PRE> */
</PRE><A NAME="543457"><PRE> else
</PRE><A NAME="543458"><PRE> unit[K] = kBoltz/eV_erg;
</PRE><A NAME="543459"><PRE>
</PRE><A NAME="543460"><PRE> /* define the external units to be modified CGS with
</PRE><A NAME="543461"><PRE> * temperatures in eV
</PRE><A NAME="543462"><PRE> */
</PRE><A NAME="543463"><PRE> convrsn[K] = kBoltz/eV_erg;
</PRE><A NAME="543464"><PRE>
</PRE><A NAME="543465"><PRE> /* make the conversion factors consistent with these changes */
</PRE><A NAME="543466"><PRE> PA_set_conversions(TRUE);
</PRE><A NAME="543467"><PRE>
</PRE><A NAME="543468"><PRE> /* set up the physical constants in the external system of units */
</PRE><A NAME="543469"><PRE> PA_physical_constants_ext();
</PRE><A NAME="543470"><PRE>
</PRE><A NAME="543471"><PRE> return;}
</PRE><a name="543472">
<p>
</a>
<a name="543473">
In the above example, pay special attention to the calls to </a>PA_def_units, </a>PA_physical_constants_cgs, </a>PA_set_conversions, and </a>PA_physical_constants_ext. The call to </a>PA_def_units causes PANACEA to define all of its units and initialize the unit and convrsn arrays. The call to PA_physical_constants_cgs initializes the physical constants in CGS units. The call to PA_set_conversions passes over </a>unit and </a>convrsn and makes the entire set of units consistent with the changes made between the PA_def_units call and the </a>PA_set_conversions call. Lastly, the call to </a>PA_physical_constants_ext converts the physical constants to the external system of units.<p>
</a>
<a name="543474">
At this point the initial value problem generator has as consistent set of units and physical constants. If the user changes the systems of units in the input deck, the calls to PA_set_conversions and PA_physical_constants_ext should be repeated to keep every thing consistent.<p>
</a>
<a name="543475">
In the main simulation code everything is taken care of by PANACEA. In the process of reading the state file (restart dump), calls to </a>PA_def_units, PA_set_conversions, and </a>PA_physical_constants_cgs are made by PANACEA. The only difference is that at the end of the process of reading the restart dump, PANACEA calls </a>PA_physical_constants_int to convert the physical constants to the internal system of units.<p>
</a>
<a name="543476">
<h1>9.0 Source Data Handling in PANACEA</h1>
</a>
<a name="543477">
<h1>10.0 The PANACEA Cookbook</h1>
</a>
<a name="543478">
The purpose of this section is to provide some concrete guidance to users who want to get started with PANACEA. The first two subsections describe how to analyze a simulation code with a view to building a new code from scratch or to converting an existing code to use PANACEA services. The last subsection gives extracts of the source code to the PANACEA code system, ABC. The extracts were taken to exemplify the PANACEA interface and to give complete (i.e. with full detail) functions which define PANACEA packages.<p>
</a>
<a name="543479">
<h2>10.1 Building a PANACEA Code System</h2>
</a>
<a name="543480">
The first place to start when building a PANACEA code is at the top. Since PANACEA is a model of a simulation code, the new code should be conceptualized in terms of the PANACEA model.<p>
</a>
<a name="543481">
Break down the simulation into conceptual packages. That is, decide how to best modularize your code system at the level of systems of equations to be simulated. Try to think in terms of giving a package to another code developer so that he or she has everything that is needed to generate, run, and post process data for the package.<p>
</a>
<a name="543482">
Define each variable in terms of type, attributes (RESTART, REQU, etc.), and the package which will own it. PANACEA can perform its services only for variables in the database. Other variables which are temporary, local, or for some other reason do not belong in the database should be identified and allotted to the packages which will handle them.<p>
</a>
<a name="543483">
Decide how to handle issues associated with computational meshes. If feasible plan on putting mesh handling routines (routines that deal only with meshes - no physics) into one global package. Remember that mesh handling includes mesh generation or the facility to link to a mesh generator in the initial value problem generator.<p>
</a>
<a name="543484">
For each identified package do the following steps:<p>
</a>
<A NAME="543485"><B>Eliminate dimensional numeric constants
</B><BR><a name="543486">
Replace dimensional numeric constants with variables whose values are constructed from the fundamental physical constants supplied by PANACEA (or plan on defining additional constants - see the section on Physical Units in PANACEA).<p>
</a>
<a name="543487">
For example, replace an expression such as<p>
</a>
<A NAME="543488"><PRE> x = 2.99e10*t;
</PRE><a name="543489">
with<p>
</a>
<A NAME="543490"><PRE> x = c*t;
</PRE><a name="543491">
When this process is complete, the only numeric constants in the code should be pure numbers, i.e. dimensionless.<p>
</a>
<A NAME="543492"><B>Build a function to define the package variables
</B><BR><a name="543493">
With each package there will be a set of variables which the package owns. A helpful way to identify these is to ask what would be required to hand this package to another code system. Variables will fall into three main classes: RESTART, RUNTIME, and EDIT. The variable dimensions are typically stored in the swtch array for the package for efficiency in handling the state file.<p>
</a>
<a name="543494">
<p>
</a>
<A NAME="543495"><PRE> def_foo(pck)
</PRE><A NAME="543496"><PRE> PA_package *pck;
</PRE><A NAME="543497"><PRE> {P_dim_1 = &swtch[4];
</PRE><A NAME="543498"><PRE> P_dim_2 = &swtch[5];
</PRE><A NAME="543499"><PRE> P_dim_3 = &Two_I;
</PRE><A NAME="543500"><PRE> P_dim_4 = &Three_I;
</PRE><A NAME="543501"><PRE>
</PRE><A NAME="543502"><PRE> /* RESTART VARIABLES */
</PRE><A NAME="543503"><PRE> PA_def_var(“foo_var_1”, SC_INTEGER_S, NULL, NULL,
</PRE><A NAME="543504"><PRE> SCOPE, RESTART, CLASS, OPTL, ATTRIBUTE,
</PRE><A NAME="543505"><PRE> P_dim_1, DIMENSION, UNITS);
</PRE><A NAME="543506"><PRE>
</PRE><A NAME="543507"><PRE> /* RUNTIME VARIABLES */
</PRE><A NAME="543508"><PRE> PA_def_var(“foo_var_2”, SC_DOUBLE_S, NULL, NULL,
</PRE><A NAME="543509"><PRE> ATTRIBUTE,
</PRE><A NAME="543510"><PRE> P_dim_2, P_dim_3, DIMENSION, UNITS);
</PRE><A NAME="543511"><PRE>
</PRE><A NAME="543512"><PRE> /* EDIT VARIABLES */
</PRE><A NAME="543513"><PRE> PA_def_var(“foo_var_3”, SC_INTEGER_S, NULL, NULL,
</PRE><A NAME="543514"><PRE> SCOPE, EDIT, CLASS, PSEUDO, ATTRIBUTE,
</PRE><A NAME="543515"><PRE> P_dim_4, DIMENSION, UNITS);
</PRE><A NAME="543516"><PRE>
</PRE><A NAME="543517"><PRE> return(TRUE);}
</PRE><a name="543518">
<p>
</a>
<a name="543519">
Note: 1) the use of PA_def_var; 2) the way dimensions are handled.<p>
</a>
<A NAME="543520"><B>Build a function to define the controls
</B><BR><a name="543521">
With each package there will be a set of controlling parameters. PANACEA provides for an array of integer parameters, double precision parameters, and ASCII strings associated with each package. This permits efficient handling of these controls and does not hamper the code developer in associating them with named scalar variables.<p>
</a>
<a name="543522">
Define the controls for the package and write the function to allocate them and initialize them.<p>
</a>
<A NAME="543523"><PRE>
</PRE><A NAME="543524"><PRE> cont_foo(pck)
</PRE><A NAME="543525"><PRE> PA_package *pck;
</PRE><A NAME="543526"><PRE> {static int n_names = 2, n_params = 2, n_swtches = 5;
</PRE><A NAME="543527"><PRE>
</PRE><A NAME="543528"><PRE> PA_mk_control(pck, “foo”, n_names, n_params, n_swtches);
</PRE><A NAME="543529"><PRE>
</PRE><A NAME="543530"><PRE> swtch[1] = TRUE; /* main switch - use this package if TRUE */
</PRE><A NAME="543531"><PRE> swtch[2] = 1; /* option #1 */
</PRE><A NAME="543532"><PRE> swtch[3] = 0; /* option #2 */
</PRE><A NAME="543533"><PRE> swtch[4] = 0; /* number of bar_1 values */
</PRE><A NAME="543534"><PRE> swtch[5] = 0; /* number of bar_2 values */
</PRE><A NAME="543535"><PRE>
</PRE><A NAME="543536"><PRE> param[1] = 1.0; /* multiplier 1 */
</PRE><A NAME="543537"><PRE> param[2] = 1.0; /* multiplier 2 */
</PRE><A NAME="543538"><PRE>
</PRE><A NAME="543539"><PRE> return(TRUE);}
</PRE><A NAME="543540"><PRE>
</PRE><a name="543541">
Note: 1) the use of PA_mk_control; and 2) the static integers n_names, n_params and n_swtches which define the length of the swtch, name, and param arrays respectively.<p>
</a>
<A NAME="543542"><B>Build the package initializer function
</B><BR><a name="543543">
This function will be executed once at start up and should connect database variables with local pointers as well as allocating local variables which will endure for the entire simulation run.<p>
</a>
<A NAME="543544"><PRE>
</PRE><A NAME="543545"><PRE> int *loc_var_1;
</PRE><A NAME="543546"><PRE> double *loc_var_2;
</PRE><A NAME="543547"><PRE>
</PRE><A NAME="543548"><PRE> foo_init(pck)
</PRE><A NAME="543549"><PRE> PA_package *pck;
</PRE><A NAME="543550"><PRE> {N_foo_1 = swtch[2];
</PRE><A NAME="543551"><PRE> N_foo_2 = swtch[3];
</PRE><A NAME="543552"><PRE>
</PRE><A NAME="543553"><PRE> /* PA_CONNECT for database variables */
</PRE><A NAME="543554"><PRE> PA_CONNECT(foo_var_1, “variable_1”, int *, TRUE);
</PRE><A NAME="543555"><PRE>
</PRE><A NAME="543556"><PRE> /* MAKE_N for non-database local variables */
</PRE><A NAME="543557"><PRE> loc_var_1 = MAKE_N(int, N_foo_1);
</PRE><A NAME="543558"><PRE> loc_var_2 = MAKE_N(double, N_foo_1*N_foo_2);
</PRE><A NAME="543559"><PRE>
</PRE><A NAME="543560"><PRE> return(TRUE);}
</PRE><A NAME="543561"><PRE>
</PRE><a name="543562">
Note: 1) the use of PA_CONNECT and MAKE_N; and 2) the dimension constants extracted from the swtch array.<p>
</a>
<A NAME="543563"><B>Build a wrapper for the main entry point
</B><BR><a name="543564">
Since many packages will want to vote on the timestep for the next major computational cycle and since it will be useful for most packages to monitor their performance, it will be a good idea to build a wrapper function around the package main entry point. It is also a good place to invoke initializations which occur every time the main entry point is invoked as well as clean up after it has been executed.<p>
</a>
<A NAME="543565"><PRE>
</PRE><A NAME="543566"><PRE> main_foo(pck)
</PRE><A NAME="543567"><PRE> PA_package *pck;
</PRE><A NAME="543568"><PRE> {int foo_z;
</PRE><A NAME="543569"><PRE> double foo_dt;
</PRE><A NAME="543570"><PRE> static int first = TRUE;
</PRE><A NAME="543571"><PRE>
</PRE><A NAME="543572"><PRE> /* check that this package was requested */
</PRE><A NAME="543573"><PRE> if (swtch[1] == FALSE)
</PRE><A NAME="543574"><PRE> return;
</PRE><A NAME="543575"><PRE>
</PRE><A NAME="543576"><PRE> if (first)
</PRE><A NAME="543577"><PRE> pck->space = (double) Ssp_alloc;
</PRE><A NAME="543578"><PRE>
</PRE><A NAME="543579"><PRE> PA_MARK_TIME;
</PRE><A NAME="543580"><PRE>
</PRE><A NAME="543581"><PRE> init_cycle();
</PRE><A NAME="543582"><PRE>
</PRE><A NAME="543583"><PRE> /* do the real work of foo*/
</PRE><A NAME="543584"><PRE> foo_work(&foo_dt, &foo_z);
</PRE><A NAME="543585"><PRE>
</PRE><A NAME="543586"><PRE> /* record the hydro timestep vote */
</PRE><A NAME="543587"><PRE> pck->dt = foo_dt;
</PRE><A NAME="543588"><PRE> pck->dt_zone = foo_z;
</PRE><A NAME="543589"><PRE>
</PRE><A NAME="543590"><PRE> PA_ACCM_TIME(pck->time);
</PRE><A NAME="543591"><PRE>
</PRE><A NAME="543592"><PRE> if (first)
</PRE><A NAME="543593"><PRE> {pck->space = (double) Ssp_alloc - pck->space;
</PRE><A NAME="543594"><PRE> first = FALSE;};
</PRE><A NAME="543595"><PRE>
</PRE><A NAME="543596"><PRE> return;}
</PRE><A NAME="543597"><PRE>
</PRE><a name="543598">
Note: the use of PA_MARK_TIME and PA_ACCM_TIME.<p>
</a>
<a name="543599">
The above list covers the main simulation code. Most simulation codes will need to have some means of building initial state files (restart dumps). This means writing the following additional routines for the initial value problem generator code:<p>
</a>
<a name="543600">
<p>
</a>
<A NAME="543601"><B>Build functions to handle each command
</B><BR><a name="543602">
Each input command that the initial value problem generator will have to parse requires a function which does the actual parsing and takes the appropriate actions. One function may handle many different commands, but it is best to keep the functions simple and that usually makes the correspondence between commands and functions one to one. For an existing code, the coding for these routines probably already exists but may have to be reorganized.<p>
</a>
<A NAME="543603"><PRE>
</PRE><A NAME="543604"><PRE> void command_1h()
</PRE><A NAME="543605"><PRE> {char *token_1, *token_2;
</PRE><A NAME="543606"><PRE> int i1, i2;
</PRE><A NAME="543607"><PRE>
</PRE><A NAME="543608"><PRE> token_1 = PA_get_field(“TOKEN_1”, “COMMAND_1”, REQU);
</PRE><A NAME="543609"><PRE> token_2 = PA_get_field(“TOKEN_2”, “COMMAND_1”, REQU);
</PRE><A NAME="543610"><PRE>
</PRE><A NAME="543611"><PRE> i1 = PA_stoi(PA_get_field(“INTEGER_1”, “COMMAND_1”, REQU));
</PRE><A NAME="543612"><PRE> i2 = PA_stoi(PA_get_field(“INTEGER_2”, “COMMAND_1”, REQU));
</PRE><A NAME="543613"><PRE>
</PRE><A NAME="543614"><PRE> N_foo_1 = i1;
</PRE><A NAME="543615"><PRE> N_foo_2 = i1*i2;
</PRE><A NAME="543616"><PRE>
</PRE><A NAME="543617"><PRE> return;}
</PRE><A NAME="543618"><PRE>
</PRE><a name="543619">
Note: the use of PA_get_field and PA_stoi.<p>
</a>
<A NAME="543620"><B>Build a function which installs the commands
</B><BR><a name="543621">
Not all packages require specific generator commands. The generic commands supplied by PANACEA may be sufficient. However, if commands have been defined in the previous step they must be made known to PANACEA. All commands are installed in a hash table which is used by PANACEA to process ASCII input files or interactive commands.<p>
</a>
<a name="543622">
<p>
</a>
<A NAME="543623"><PRE> foo_cmmnds()
</PRE><A NAME="543624"><PRE> {PA_inst_c(“command_1”, NULL, FALSE, 0, command_1h,
</PRE><A NAME="543625"><PRE> PA_zargs, commands);
</PRE><A NAME="543626"><PRE>
</PRE><A NAME="543627"><PRE> /* optionally initialize some constants */
</PRE><A NAME="543628"><PRE> N_foo_1 = 0;
</PRE><A NAME="543629"><PRE> N_foo_2 = 0;
</PRE><A NAME="543630"><PRE>
</PRE><A NAME="543631"><PRE> return;}
</PRE><A NAME="543632"><PRE>
</PRE><a name="543633">
Note: the use of PA_inst_c and the reference to the function command_1h.<p>
</a>
<A NAME="543634"><B>Build a function to intern the package variable in the database
</B><BR><a name="543635">
Before a state (restart) dump can be made two things must happen. First, the data read in from the input deck must be transformed into data structures usable by the simulation routines. Second, those data structures must be made available to the database, a process called interning. A function is supplied by the code developer whose responsibility is to ensure that the package’s contribution to the database is complete and ready to be dumped.<p>
</a>
<a name="543636">
<p>
</a>
<A NAME="543637"><PRE> intern_foo()
</PRE><A NAME="543638"><PRE> {
</PRE><A NAME="543639"><PRE> swtch[4] = N_foo_1;
</PRE><A NAME="543640"><PRE> swtch[5] = N_foo_2;
</PRE><A NAME="543641"><PRE>
</PRE><A NAME="543642"><PRE> PA_INTERN(foo_var_1, “variable_1”, int);
</PRE><A NAME="543643"><PRE>
</PRE><A NAME="543644"><PRE> return;}
</PRE><a name="543645">
Note: 1) the use of PA_INTERN; and 2) the setting of the control array values (here swtch).<p>
</a>
<a name="543646">
<p>
</a>
<a name="543647">
With this done the only remaining task is to produce the counterparts to A.C, the source file which contains the main entry point for the initial value generator program, and B.C, the source file which contains the main entry point for the run time simulation program. Whether they are written in C or FORTRAN is immaterial. Fundamentally, they define the packages for the code system, initialize everything (or have PANACEA do it), read the input, pass control to whatever routines coordinate the main activity of the code, and do the appropriate clean up at the end.<p>
</a>
<a name="543648">
<p>
</a>
<A NAME="543649"><B>Install the package in the generator code
</B><BR><a name="543650">
Make the foo package known to the PANACEA initial value problem generator code, A.<p>
</a>
<A NAME="543651"><PRE>
</PRE><A NAME="543652"><PRE> PA_gen_package(“foo”, foo_cmmnds, NULL, NULL, def_foo,
</PRE><A NAME="543653"><PRE> cont_foo, intern_foo);
</PRE><a name="543654">
<p>
</a>
<A NAME="543655"><B>Install the foo package in the simulation code
</B><BR><a name="543656">
Make the foo package known to the PANACEA main simulation code, B.<p>
</a>
<A NAME="543657"><PRE>
</PRE><A NAME="543658"><PRE> PA_run_time_package(“foo”, NULL, NULL, def_foo, cont_foo,
</PRE><A NAME="543659"><PRE> init_foo, main_foo, NULL, NULL);
</PRE><a name="543660">
This may seem like quite a lot of work. For an existing code, in some sense it is akin to starting over and building a new code, but the big advantage is that most of the coding already exists, has been tested, and has a base of test input problems. On the other hand, the payoff can be quite large rather quickly. The output data for the code will be completely portable. There is at least one existing system for visualizing the data produced which is very flexible and available on all sorts of computer platforms. Furthermore, for code systems which share the same computational meshes, there may be readily available routines that will provide interim or permanent capabilities (mesh generators, common packages, etc.).<p>
</a>
<a name="543661">
<h2>10.2 The Monolithic Approach</h2>
</a>
<a name="543662">
One way to approach converting an existing code system into a PANACEA code system is to start by viewing the entire simulation code as a single, global package. The advantage is that a few relatively simple pieces of interface coding will get the conversion going fairly quickly. Since there will be small amounts of interface coding, the connections to PANACEA services can be written one by one and tested before proceeding. The entire process becomes more of an evolutionary one than a major code rewrite exercise.<p>
</a>
<a name="543663">
The basic steps are the same as outlined in the previous section. The advantage is that each of those steps only has to be done once (to start with).<p>
</a>
<a name="543664">
Once the monolithic code is running reliably, the smaller more modular packages can be extracted from the original global package. This process amounts to splitting the monolithic interface apart into a series of smaller interfaces. Once all of the identifiable packages have been extracted from the original monolithic package, the remainder should be a fairly natural PANACEA style global package.<p>
</a>
<a name="543665">
<h2>10.3 ABC: A PANACEA Code</h2>
</a>
<a name="543666">
ABC is a simple 2d hydrodynamics code which shows how a PANACEA code system is structured. The A code is an initial value problem generator, the B code is the main simulation code, and the C code is a post processing code which transforms PANACEA output files for a particular visualization system.<p>
</a>
<a name="543667">
Although ABC was constructed solely as a test of PANACEA, it still illustrates some of the important points that must be addressed when building a PANACEA code. The construction of a PANACEA package is logically the same whether the entire package is being built from scratch or whether an existing package is being turned into a PANACEA package.<p>
</a>
<a name="543668">
The parts of the source to ABC which should provide helpful examples of the material documented in this manual are given here. The actual code for ABC is available and interested readers can contact the author for copies of it.<p>
</a>
<a name="543347">
<h1>11.0 TOUL</h1>
</a>
<a name="544236">
TOUL is a stand alone utility to transpose time history files written by PANACEA into a family of ULTRA files. <p>
</a>
<a name="544237">
A </a>family of time history files is conventionally named<p>
</a>
<A NAME="544297"><PRE> name.tdd
</PRE><a name="544330">
where name is the base file name and dd are base 36 digits (0-9a-z).<p>
</a>
<a name="544331">
The resulting </a>family of ULTRA files will be named<p>
</a>
<A NAME="544332"><PRE> name.udd
</PRE><a name="544333">
Its usage is:<p>
</a>
<A NAME="544334">toul [-d] [-h] [+/-o] [-f files | -l files | base]
<P><A NAME="544335"> -d Turn on debug mode for memory info
<P><A NAME="544336"> -f Use explicitly specified TH files
<P><A NAME="544337"> -h Print this help message and exit
<P><A NAME="544338"> -l Use internal links in TH files
<P><A NAME="544339"> +o Process TH files in the order specified (default)
<P><A NAME="544340"> -o Process TH files in reverse order
<P><a name="544341">
See the discussions of </a>PA_th_trans_link, </a>PA_th_trans_name, </a>PATRNL, and </a>PATRNN for additional information regarding the -f, -l, -o, and +o options.<p>
</a>
<a name="544342">
There are a few distinct modes of using TOUL.<p>
</a>
<a name="544343">
First, if you have a complete set of time history files with a single base name, you can supply the base name to TOUL. For example, suppose you have a set of time history files foo.t00 through foo.t1s. You can type:<p>
</a>
<A NAME="544344">toul foo
<P><a name="544345">
This will result in a family of ULTRA files beginning with foo.u00.<p>
</a>
<a name="544346">
Second, you may have a family of files from which some are missing or because of a restart you may have a different base name for some files in the family. You can use the -l option in such cases. For example, suppose that files foo.t09 through foo.t12 are missing in the previous example. You can type:<p>
</a>
<A NAME="544347">toul -l foo.t1s foo.t08
<P><a name="544348">
The curves in the resulting ULTRA files will have a gap corresponding to the missing data from foo.t09 through foo.t12.<p>
</a>
<a name="544349">
Third, you may wish to transpose an explicit set of file. You can use the -f option to accomplish this. For example, suppose that you just want to see the data from foo.t1e through foo.t1g in the ongoing example. You can type:<p>
</a>
<A NAME="544350">toul -f foo.t1e foo.t1f foo.t1g
<P><a name="544452">
Because this is the most general level on which you can approach the transposition process, the resulting curves in the ULTRA files can look a little strange. You may have to get used to the gaps that might result from pieces of data widely spaced in time.<p>
</a>
<a name="543669">
<h1>12.0 PANACHE</h1>
</a>
<a name="543670">
PANACHE is a tool to automate the process of building interface coding between numerical simulation code packages and PANACEA. PANACHE does this by processing a dictionary which contains compact and concise descriptions of variables, functions, commands, and actions.<p>
</a>
<a name="543671">
A dictionary contains three basic kinds of information: global code system declarations; one or more package descriptions; and directives for generating and possibly compiling the code system.<p>
</a>
<a name="543672">
When the dictionary has been read in and processed, PANACHE will generate: for each package defined, the interface between the package and PANACEA; and the module(s) which contain the main routine(s) and some related high level control functions.<p>
</a>
<a name="543673">
The code generated this way can be compiled and linked with the simulation packages into the component parts of a simulation code system (generator and simulation codes or a combined code).<p>
</a>
<a name="543674">
Certain conventions are used for sake of clarity.<p>
</a>
<A NAME="543675"><PRE> [...]* means zero or more of the items in the brackets
</PRE><A NAME="543676"><PRE> [...]+ means one or more of the items in the brackets
</PRE><A NAME="543677"><PRE> The following variables are pre-defined in PANACHE:
</PRE><A NAME="543678"><PRE> </a>NULL - used to indicate a null pointer (ala NULL in C).
</PRE><a name="543679">
<h2>12.1 </a>Commands</h2>
</a>
<a name="543680">
This section describes the commands which PANACHE understands. It uses these commands to build up an internal view of the simulation code system as well as the package interfaces. A set of such commands defining a code system and its interface is called a </a>dictionary.<p>
</a>
<a name="543681">
<h3>12.1.1 </a>Global Definition Commands</h3>
</a>
<a name="543682">
These commands define information that is not particular to a single package but is global to the entire simulation system.<p>
</a>
<a name="543683">
PANACEA contains various routines which can control a simulation. These routines do NOT purport to be completely general. They are however fairly general and in any case can be used as templates for code systems which need to do something different. PANACHE will let you use these generic routines if you supply certain information.<p>
</a>
<a name="543684">
The system scalars define the time step controls used by the high level PANACEA simulation managers. The system files define the naming of state files, post-processor files, edit files, and PVA files. <p>
</a>
<a name="543685">
The system variables are REQUIRED if you do not specify your own simulation manager routines. If you want to use your own routines, you must specify one of the following two sets of system functions:<p>
</a>
<A NAME="543686"><PRE> “generator-init-problem”
</PRE><A NAME="543687"><PRE> “simulation-init-problem”
</PRE><A NAME="543688"><PRE> “simulation-run-problem”
</PRE><A NAME="543689"><PRE> “simulation-fin-problem”
</PRE><a name="543690">
or<p>
</a>
<A NAME="543691"><PRE> “combined-init-problem”
</PRE><A NAME="543692"><PRE> “combined-run-problem”
</PRE><A NAME="543693"><PRE> “combined-fin-problem”
</PRE><a name="543694">
<p>
</a>
<A NAME="543695"><BR><B></a>system-scalars
</B><BR><a name="543696">
Specify scalar variables which contain global information required by PANACEA.<p>
</a>
<A NAME="543697"><I>Usage: </I>(system-scalars
<P><A NAME="543698"> t ; system time
<P><A NAME="543699"> tstart ; system start time
<P><A NAME="543700"> tstop ; system stop time
<P><A NAME="543701"> dtf ; system time step fraction
<P><A NAME="543702"> dtfmin ; minimum time step fraction
<P><A NAME="543703"> dtfmax ; maximum time step fraction
<P><A NAME="543704"> dtfinc ; maximum time step fractional increase
<P><A NAME="543705"> cycle ; system time cycle number
<P><A NAME="543706"> nzones) ; number of computational units (zones)
<P><A NAME="543707"><BR><B></a>system-files
</B><BR><a name="543708">
Specify ASCII variables which contain the names of files used by PANACEA.<p>
</a>
<A NAME="543709"><I>Usage: </I>(system-files
<P><A NAME="543710"> sfname ; state file name
<P><A NAME="543711"> edname ; edit file name
<P><A NAME="543712"> ppname ; pp file name
<P><A NAME="543713"> pvname) ; PVA file name
<P><A NAME="543714"><BR><B></a>system-functions
</B><BR><a name="543715">
Specify functions which PANACEA will call under certain conditions. Each function is paired with a name. All pairs are optional, but functions must be paired with the names. The current meaningful names for PANACEA are:<p>
</a>
<A NAME="543716">“</a>generator-init-problem”
<P><A NAME="543717">“</a>simulation-init-problem”
<P><A NAME="543718">“</a>simulation-run-problem”
<P><A NAME="543719">“</a>simulation-fin-problem”
<P><A NAME="543720">“</a>combined-init-problem”
<P><A NAME="543721">“</a>combined-run-problem”
<P><A NAME="543722">“</a>combined-fin-problem”
<P><A NAME="543723">“</a>generator-termination”
<P><A NAME="543724">“</a>simulation-termination”
<P><A NAME="543725">“</a>interrupt-handler”
<P><A NAME="543726">“</a>generator-error-handler”
<P><A NAME="543727">“</a>region-name-to-index”
<P><A NAME="543728">“</a>pre-intern”
<P><A NAME="543729">“</a>domain-builder”
<P><A NAME="543730">“</a>mapping-builder”
<P><a name="543731">
Only specified functions can be called. PANACEA doesn’t attempt to call it if you don’t define it. Any functions used here that are not PANACEA functions (PANACEA functions all begin with ‘PA_’ or ‘_PA_’) must be declared in a </a>declare-function statement.<p>
</a>
<A NAME="543732"><I>Usage: </I>(system-functions [name function]+)
<P><A NAME="543733"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543734"> “generator-termination” global_end_graphics
<P><A NAME="543735"> “simulation-termination” B_term
<P><A NAME="543736"> “interrupt-handler” PA_interrupt_handler
<P><A NAME="543737"> “generator-error-handler” A_gen_err
<P><A NAME="543738"> “region-name-to-index” part_reg
<P><A NAME="543739"> “pre-intern” load_reg
<P><A NAME="543740"> “domain-builder” LR_build_domain
<P><A NAME="543741"> “mapping-builder” LR_build_mapping)
<P><a name="543742">
<h3>12.1.2 </a>Package Definition Commands</h3>
</a>
<a name="543743">
These commands are used for specifying package level details of the interface between PANACEA and the simulation package.<p>
</a>
<A NAME="543744"><BR><B></a>command
</B><BR><a name="543745">
Defines generator commands.<p>
</a>
<A NAME="543746"><I>Usage: </I>(command [name spec]+)
<P><A NAME="543747"> spec := function handler |
<P><A NAME="543748"> type array index
<P><A NAME="543749"> type := integer | real | string
<P><a name="543750">
The second form of spec allows an application to name an element of an array as a command which sets the value of the element.<p>
</a>
<A NAME="543751"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543752"> side sideh PA_zargs
<P><A NAME="543753"> dimension integer swtch 1)
<P><A NAME="543754"><BR><B></a>control
</B><BR><a name="543755">
Defines PANACEA control items.<p>
</a>
<A NAME="543756"><I>Usage: </I>(control [type index val comment]+)
<P><A NAME="543757"> type := ascii | integer | real
<P><A NAME="543758"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543759"> real 1 0.0 “current problem time (internal units)”
<P><A NAME="543760"> ascii 8 </a>NULL “input deck name (ASCII)”
<P><A NAME="543761"> integer 14 0 “generation time mesh dumps if TRUE”)
<P><A NAME="543762"><BR><B></a>declare-function
</B><BR><a name="543763">
Declare one or more functions pertaining to the package. These functions may be ones that are defined in hand coded routines but need to be referenced in generated code. They may also be given so that a complete package header can be generated. At this writing declarations involving pointers must be enclosed in quotes.<p>
</a>
<A NAME="543764"><I>Usage: </I>(declare-function [function-spec]+)
<P><A NAME="543765"> function-spec := type name arg-list
<P><A NAME="543766"> arg-list := (arg*)
<P><A NAME="543767"> arg := “type [‘*‘]*name”
<P><A NAME="543768"> type := any defined type (e.g. double)
<P><A NAME="543769">
<P><A NAME="543770"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543771"> void load_reg ()
<P><A NAME="543772"> “char *” foo (“int s” “double t”)
<P><A NAME="543773"><BR><B></a>declare-variable
</B><BR><a name="543774">
Declare one or more variables pertaining to the package. These variables may be ones that are referenced in hand coded routines but need to be referenced and or defined in generate code. They may also be given so that a complete package header can be generated. At this writing declarations involving pointers must be enclosed in quotes.<p>
</a>
<a name="543775">
NOTE: these are NOT database variable definitions, see </a>def-var for that purpose. These are variables which the compiler must be able to correctly understand. Database variables are created at run time and are mainly irrelevant to the compiler.<p>
</a>
<A NAME="543776"><I>Usage: </I>(declare-variable [variable-spec]+)
<P><A NAME="543777"> variable-spec := [class] type name dims initial-value
<P><A NAME="543778"> class := static | extern | const
<P><A NAME="543779"> type := any defined type (e.g. double)
<P><A NAME="543780"> dims := ()
<P><A NAME="543781"> initial-value := number
<P><A NAME="543782">
<P><A NAME="543783"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543784"> double bar ()
<P><A NAME="543785"> static int foo 3)
<P><A NAME="543786"><BR><B></a>def-var
</B><BR><a name="543787">
Define one or more database variables.<p>
</a>
<A NAME="543788"><I>Usage: </I>(def-var variable-spec type
<P><A NAME="543789"> mesh-spec
<P><A NAME="543790"> [attribute-list
<P><A NAME="543791"> [unit-list
<P><A NAME="543792"> [init-val
<P><A NAME="543793"> [init-fnc
<P><A NAME="543794"> [data-pointer]]]]])
<P><A NAME="543795">
<P><A NAME="543796"> variable-spec := variable | ([variable]+)
<P><A NAME="543797"> type := any defined type (e.g. double)
<P><A NAME="543798"> mesh-spec := mesh | ([mesh]+)
<P><A NAME="543799"> attribute-list := [attribute]*
<P><A NAME="543800"> attribute := scope | class | persist |
<P><A NAME="543801"> allocation | center
<P><A NAME="543802"> scope := restart | runtime | demand | edit | defn
<P><A NAME="543803"> class := requ | optl | pseudo
<P><A NAME="543804"> persist := keep | cache-f | cache-r | rel
<P><A NAME="543805"> allocation := static | dynamic
<P><A NAME="543806"> center := zone | node | edge | face | un-centered
<P><A NAME="543807">
<P><A NAME="543808"> unit-list := (unit*)
<P><A NAME="543809"> unit := user-defined-unit | per |
<P><A NAME="543810"> rad | ster | mole | Q | cm | sec | g |
<P><A NAME="543811"> eV | K | erg | cc
<P><A NAME="543812"> init-val := a declare-variable’d name
<P><A NAME="543813"> init-fnc := a declare-function’d name
<P><A NAME="543814"> data-pointer := a declare-variable’d name
<P><A NAME="543815">
<P><A NAME="543816"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543817"> (def-var lindex long spatial (restart))
<P><A NAME="543818"> (def-var knob-a integer ()
<P><A NAME="543819"> (restart static)
<P><A NAME="543820"> ()
<P><A NAME="543821"> kav () knoba)
<P><A NAME="543822"> (def-var cache-f-4 double spatial
<P><A NAME="543823"> (restart cache-r zone)
<P><A NAME="543824"> (K)
<P><A NAME="543825"> pi)
<P><A NAME="543826"><BR><B></a>generate
</B><BR><a name="543827">
Causes PANACHE to generate compilable code from the currently defined dictionary.<p>
</a>
<A NAME="543828"><I>Usage: </I>(generate language type name1 [name2])
<P><A NAME="545024"> language := C | C++ | F77
<P><A NAME="545025"> type := + | -
<P><a name="543830">
The language argument allows the user to specify the target language of the generated code. At this time only C and C++ are support. Plans are for future versions to produce Fortran77 code. If type is ‘+’ use SX extensions; and if ‘-’ use PANACEA only. The argument name1 is the name of the generator code if name2 is also given; otherwise it is the name of the combined code. name2 is the name of the simulation code if given. Two names implies two codes and one name implies a combined code.<p>
</a>
<A NAME="543831"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543832"> (generate C - fubar)
<P><A NAME="543833"> (generate C++ + a b)
<P><A NAME="543834"> (generate C++ - a b)
<P><A NAME="543835"><BR><B></a>include
</B><BR><a name="545026">
Specify one or more header files to be included by the header for the current package.<p>
</a>
<A NAME="545027"><I>Usage: </I>(include [file]*)
<P><a name="545028">
The files are the literal names of header files which the preprocessor must be able to find as specified.<p>
</a>
<A NAME="545029"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543829"><BR><B></a>mesh
</B><BR><a name="543836">
Define a mesh for the package. A mesh here corresponds to an array dimension.<p>
</a>
<A NAME="543837"><I>Usage: </I>(mesh [mesh-spec]+)
<P><A NAME="543838"> mesh-spec := name variable
<P><A NAME="543839">
<P><A NAME="543840"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543841"><BR><B></a>package
</B><BR><a name="543842">
Begins the definition of the named package. The definition continues until the next package command or until a generate command. The package name must be a legal C or Fortran identifier since it will be used to generate function and variable names.<p>
</a>
<A NAME="543843"><I>Usage: </I>(package name)
<P><A NAME="543844"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543845"><BR><B></a>package-functions
</B><BR><a name="543846">
Defines the package functions that will be called by PANACEA. The following list shows all of the package functions available in PANACEA:<p>
</a>
<a name="543847">
“</a>install-generator-commands”<p>
</a>
<a name="543848">
“</a>install-type-definitions”<p>
</a>
<a name="543849">
“</a>intern-variables”<p>
</a>
<a name="543850">
“</a>define-units”<p>
</a>
<a name="543851">
“</a>define-variables”<p>
</a>
<a name="543852">
“</a>define-controls”<p>
</a>
<a name="543853">
“</a>initialize”<p>
</a>
<a name="543854">
“</a>main-entry”<p>
</a>
<a name="543855">
“</a>post-process-output”<p>
</a>
<a name="543856">
“</a>finish”<p>
</a>
<a name="543857">
“</a>install-pp-commands”<p>
</a>
<a name="543858">
As with the </a>system-function command, package functions must be paired with the name by which PANACHE knows them. Functions which PANACHE will generate need not be defined this way since PANACHE will implicitly define them.<p>
</a>
<A NAME="543859"><I>Usage: </I>(package-functions [name function ... ])
<P><A NAME="543860"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543861"> “intern-variables” global_intern
<P><A NAME="543862"> “initialize” global_init
<P><A NAME="543863"> “main-entry” global_main)
<P><A NAME="543864"><BR><B></a>typedef
</B><BR><a name="543865">
Define a </a>structured data type. Database variables may be declared to be of any type (or any depth of </a>pointers) which is either </a>primitive or typedef’d. The primitive types are: </a>char, </a>short, </a>int, </a>long, </a>float, </a>double. Pointers are denoted with *’s as in C.<p>
</a>
<A NAME="543866"><I>Usage: </I>(typedef name [member]+)
<P><A NAME="543867"> member := “type [*]*member_name”
<P><A NAME="543868"> type := any defined type (e.g. double)
<P><A NAME="543869"><I>EXAMPLE: </I><PRE></PRE><BR><A NAME="543870"> “int *a”
<P><A NAME="543871"> “double b”)
<P><a name="543872">
<h2>12.2 Example: ABC Dictionary</h2>
</a>
<a name="543873">
In this section we present a sample dictionary. This dictionary generates the interface coding for the ABC PANACEA test code. The actual listing is broken down into sections to allow for discussion.<p>
</a>
<a name="543874">
<h3>12.2.1 The ABC System Information</h3>
</a>
<a name="543875">
In many PANACEA codes there is some information about the entire code system which does not belong to any one package. Global time information is one example. The system of file families managed by PANACEA is another. At this point, this information is required to generate coding for the main routines where the A and B (or the combined AB code) start up.<p>
</a>
<a name="543876">
<p>
</a>
<A NAME="543877"><CODE></CODE><A NAME="543878"><CODE></CODE><A NAME="543879"><CODE></CODE><A NAME="543880"><CODE></CODE><A NAME="543881"><CODE></CODE><A NAME="543882"><CODE></CODE><A NAME="543883"><CODE></CODE><A NAME="543884"><CODE></CODE><A NAME="543885"><CODE></CODE><A NAME="543886"><CODE></CODE><A NAME="543887"><CODE></CODE><A NAME="543888"><CODE></CODE><A NAME="543889"><CODE></CODE><A NAME="543890"><CODE></CODE><A NAME="543891"><CODE></CODE><A NAME="543892"><CODE></CODE><A NAME="543893"><CODE></CODE><A NAME="543894"><CODE></CODE><A NAME="543895"><CODE></CODE><A NAME="543896"><CODE></CODE><A NAME="543897"><CODE></CODE><A NAME="543898"><CODE></CODE><A NAME="543899"><CODE></CODE><A NAME="543900"><CODE></CODE><A NAME="543901"><CODE></CODE><A NAME="543902"><CODE></CODE><A NAME="543903"><CODE></CODE><A NAME="543904"><CODE></CODE><A NAME="543905"><CODE></CODE><A NAME="543906"><CODE></CODE><A NAME="543907"><CODE></CODE><A NAME="543908"><CODE></CODE><A NAME="543909"><CODE></CODE><A NAME="543910"><CODE></CODE><A NAME="543911"><CODE></CODE><A NAME="543912"><CODE></CODE><A NAME="543913"><CODE></CODE><A NAME="543914"><CODE></CODE><A NAME="543915"><CODE></CODE><A NAME="543916"><CODE></CODE><A NAME="543917"><CODE></CODE><A NAME="543918"><CODE></CODE><a name="543919">
<h3>12.2.2 The ABC Global Package</h3>
</a>
<a name="543920">
The global package in the PANACEA model has a special place in that it may provide for a computational mesh or some other central activity. This package provides a 2d mesh generator for the 2d hydrodynamics package in the next section.<p>
</a>
<a name="543921">
<p>
</a>
<A NAME="543922"><CODE></CODE><A NAME="543923"><CODE></CODE><A NAME="543924"><CODE></CODE><A NAME="543925"><CODE></CODE><A NAME="543926"><CODE></CODE><A NAME="543927"><CODE></CODE><A NAME="543928"><CODE></CODE><A NAME="543929"><CODE></CODE><A NAME="543930"><CODE></CODE><A NAME="543931"><CODE></CODE><A NAME="543932"><CODE></CODE><A NAME="543933"><CODE></CODE><A NAME="543934"><CODE></CODE><A NAME="543935"><CODE></CODE><A NAME="543936"><CODE></CODE><A NAME="543937"><CODE></CODE><A NAME="543938"><CODE></CODE><A NAME="543939"><CODE></CODE><A NAME="543940"><CODE></CODE><A NAME="543941"><CODE></CODE><A NAME="543942"><CODE></CODE><A NAME="543943"><CODE></CODE><A NAME="543944"><CODE></CODE><A NAME="543945"><CODE></CODE><A NAME="543946"><CODE></CODE><A NAME="543947"><CODE></CODE><A NAME="543948"><CODE></CODE><A NAME="543949"><CODE></CODE><A NAME="543950"><CODE></CODE><A NAME="543951"><CODE></CODE><A NAME="543952"><CODE></CODE><A NAME="543953"><CODE></CODE><A NAME="543954"><CODE></CODE><A NAME="543955"><CODE></CODE><A NAME="543956"><CODE></CODE><A NAME="543957"><CODE></CODE><A NAME="543958"><CODE></CODE><A NAME="543959"><CODE></CODE><A NAME="543960"><CODE></CODE><A NAME="543961"><CODE></CODE><A NAME="543962"><CODE></CODE><A NAME="543963"><CODE></CODE><A NAME="543964"><CODE></CODE><A NAME="543965"><CODE></CODE><A NAME="543966"><CODE></CODE><A NAME="543967"><CODE></CODE><A NAME="543968"><CODE></CODE><A NAME="543969"><CODE></CODE><A NAME="543970"><CODE></CODE><A NAME="543971"><CODE></CODE><A NAME="543972"><CODE></CODE><A NAME="543973"><CODE></CODE><A NAME="543974"><CODE></CODE><A NAME="543975"><CODE></CODE><A NAME="543976"><CODE></CODE><A NAME="543977"><CODE></CODE><A NAME="543978"><CODE></CODE><A NAME="543979"><CODE></CODE><A NAME="543980"><CODE></CODE><A NAME="543981"><CODE></CODE><A NAME="543982"><CODE></CODE><A NAME="543983"><CODE></CODE><A NAME="543984"><CODE></CODE><A NAME="543985"><CODE></CODE><A NAME="543986"><CODE></CODE><A NAME="543987"><CODE></CODE><A NAME="543988"><CODE></CODE><A NAME="543989"><CODE></CODE><A NAME="543990"><CODE></CODE><A NAME="543991"><CODE></CODE><A NAME="543992"><CODE></CODE><A NAME="543993"><CODE></CODE><A NAME="543994"><CODE></CODE><A NAME="543995"><CODE></CODE><A NAME="543996"><CODE></CODE><A NAME="543997"><CODE></CODE><A NAME="543998"><CODE></CODE><A NAME="543999"><CODE></CODE><A NAME="544000"><CODE></CODE><A NAME="544001"><CODE></CODE><A NAME="544002"><CODE></CODE><A NAME="544003"><CODE></CODE><A NAME="544004"><CODE></CODE><A NAME="544005"><CODE></CODE><A NAME="544006"><CODE></CODE><A NAME="544007"><CODE></CODE><A NAME="544008"><CODE></CODE><A NAME="544009"><CODE></CODE><A NAME="544010"><CODE></CODE><A NAME="544011"><CODE></CODE><A NAME="544012"><CODE></CODE><A NAME="544013"><CODE></CODE><A NAME="544014"><CODE></CODE><A NAME="544015"><CODE></CODE><A NAME="544016"><CODE></CODE><A NAME="544017"><CODE></CODE><A NAME="544018"><CODE></CODE><A NAME="544019"><CODE></CODE><A NAME="544020"><CODE></CODE><A NAME="544021"><CODE></CODE><A NAME="544022"><CODE></CODE><A NAME="544023"><CODE></CODE><a name="544024">
<h3>12.2.3 The ABC Hydro Package</h3>
</a>
<a name="544025">
The ABC hydro package is a simple 2d hydro package which does actual hydrodynamics so that certain meaningful tests of PANACEA can be carried out (especially regarding post processing and package control functions).<p>
</a>
<a name="544026">
<p>
</a>
<A NAME="544027"><CODE></CODE><A NAME="544028"><CODE></CODE><A NAME="544029"><CODE></CODE><A NAME="544030"><CODE></CODE><A NAME="544031"><CODE></CODE><A NAME="544032"><CODE></CODE><A NAME="544033"><CODE></CODE><A NAME="544034"><CODE></CODE><A NAME="544035"><CODE></CODE><A NAME="544036"><CODE></CODE><A NAME="544037"><CODE></CODE><A NAME="544038"><CODE></CODE><A NAME="544039"><CODE></CODE><A NAME="544040"><CODE></CODE><A NAME="544041"><CODE></CODE><A NAME="544042"><CODE></CODE><A NAME="544043"><CODE></CODE><A NAME="544044"><CODE></CODE><A NAME="544045"><CODE></CODE><A NAME="544046"><CODE></CODE><A NAME="544047"><CODE></CODE><A NAME="544048"><CODE></CODE><A NAME="544049"><CODE></CODE><A NAME="544050"><CODE></CODE><A NAME="544051"><CODE></CODE><A NAME="544052"><CODE></CODE><A NAME="544053"><CODE></CODE><A NAME="544054"><CODE></CODE><A NAME="544055"><CODE></CODE><A NAME="544056"><CODE></CODE><A NAME="544057"><CODE></CODE><A NAME="544058"><CODE></CODE><A NAME="544059"><CODE></CODE><A NAME="544060"><CODE></CODE><A NAME="544061"><CODE></CODE><A NAME="544062"><CODE></CODE><A NAME="544063"><CODE></CODE><A NAME="544064"><CODE></CODE><A NAME="544065"><CODE></CODE><A NAME="544066"><CODE></CODE><A NAME="544067"><CODE></CODE><A NAME="544068"><CODE></CODE><A NAME="544069"><CODE></CODE><A NAME="544070"><CODE></CODE><A NAME="544071"><CODE></CODE><A NAME="544072"><CODE></CODE><A NAME="544073"><CODE></CODE><A NAME="544074"><CODE></CODE><a name="544075">
<h3>12.2.4 The ABC Miscellaneous Package</h3>
</a>
<a name="544076">
This package is used to test various facets of PANACEA functionality. It has almost no significance as far as a simulation goes. It demonstrates more of the ways in which the dictionary defining function of PANACHE can be used.<p>
</a>
<a name="544077">
<p>
</a>
<A NAME="544078"><CODE></CODE><A NAME="544079"><CODE></CODE><A NAME="544080"><CODE></CODE><A NAME="544081"><CODE></CODE><A NAME="544082"><CODE></CODE><A NAME="544083"><CODE></CODE><A NAME="544084"><CODE></CODE><A NAME="544085"><CODE></CODE><A NAME="544086"><CODE></CODE><A NAME="544087"><CODE></CODE><A NAME="544088"><CODE></CODE><A NAME="544089"><CODE></CODE><A NAME="544090"><CODE></CODE><A NAME="544091"><CODE></CODE><A NAME="544092"><CODE></CODE><A NAME="544093"><CODE></CODE><A NAME="544094"><CODE></CODE><A NAME="544095"><CODE></CODE><A NAME="544096"><CODE></CODE><A NAME="544097"><CODE></CODE><A NAME="544098"><CODE></CODE><A NAME="544099"><CODE></CODE><A NAME="544100"><CODE></CODE><A NAME="544101"><CODE></CODE><A NAME="544102"><CODE></CODE><A NAME="544103"><CODE></CODE><A NAME="544104"><CODE></CODE><A NAME="544105"><CODE></CODE><A NAME="544106"><CODE></CODE><A NAME="544107"><CODE></CODE><A NAME="544108"><CODE></CODE><A NAME="544109"><CODE></CODE><A NAME="544110"><CODE></CODE><A NAME="544111"><CODE></CODE><A NAME="544112"><CODE></CODE><A NAME="544113"><CODE></CODE><A NAME="544114"><CODE></CODE><A NAME="544115"><CODE></CODE><A NAME="544116"><CODE></CODE><A NAME="544117"><CODE></CODE><A NAME="544118"><CODE></CODE><A NAME="544119"><CODE></CODE><A NAME="544120"><CODE></CODE><A NAME="544121"><CODE></CODE><A NAME="544122"><CODE></CODE><A NAME="544123"><CODE></CODE><A NAME="544124"><CODE></CODE><A NAME="544125"><CODE></CODE><A NAME="544126"><CODE></CODE><A NAME="544127"><CODE></CODE><A NAME="544128"><CODE></CODE><A NAME="544129"><CODE></CODE><A NAME="544130"><CODE></CODE><A NAME="544131"><CODE></CODE><A NAME="544132"><CODE></CODE><A NAME="544133"><CODE></CODE><A NAME="544134"><CODE></CODE><A NAME="544135"><CODE></CODE><A NAME="544136"><CODE></CODE><A NAME="544137"><CODE></CODE><A NAME="544138"><CODE></CODE><A NAME="544139"><CODE></CODE><A NAME="544140"><CODE></CODE><A NAME="544141"><CODE></CODE><A NAME="544142"><CODE></CODE><A NAME="544143"><CODE></CODE><A NAME="544144"><CODE></CODE><A NAME="544145"><CODE></CODE><A NAME="544146"><CODE></CODE><A NAME="544147"><CODE></CODE><A NAME="544148"><CODE></CODE><A NAME="544149"><CODE></CODE><A NAME="544150"><CODE></CODE><A NAME="544151"><CODE></CODE><A NAME="544152"><CODE></CODE><A NAME="544153"><CODE></CODE><A NAME="544154"><CODE></CODE><A NAME="544155"><CODE></CODE><A NAME="544156"><CODE></CODE><A NAME="544157"><CODE></CODE><A NAME="544158"><CODE></CODE><A NAME="544159"><CODE></CODE><A NAME="544160"><CODE></CODE><A NAME="544161"><CODE></CODE><A NAME="544162"><CODE></CODE><A NAME="544163"><CODE></CODE><a name="544164">
<h3>12.2.5 Completing ABC</h3>
</a>
<a name="544165">
Once the system level information and the packages have been defined, PANACHE can be directed to generate the source code for a variety of configurations and in this case the compilation executed.<p>
</a>
<a name="544166">
<p>
</a>
<A NAME="544167"><CODE></CODE><A NAME="544168"><CODE></CODE><A NAME="544169"><CODE></CODE><A NAME="544170"><CODE></CODE><A NAME="544171"><CODE></CODE><A NAME="544172"><CODE></CODE><A NAME="544173"><CODE></CODE><A NAME="544174"><CODE></CODE><A NAME="544175"><CODE></CODE><A NAME="544176"><CODE></CODE><A NAME="544177"><CODE></CODE><A NAME="544178"><CODE></CODE><A NAME="544179"><CODE></CODE><a name="544180">
<p>
</a>
<a name="544181">
<h1>13.0 Other Documentation</h1>
</a>
<a name="544182">
PANACEA is a part of the PACT portable code development and visualization tool set. It depends on most of PACT. Readers may find useful material in the other PACT documents.<p>
</a>
<a name="544183">
The list of PACT Documents is:<p>
</a>
<A NAME="544184"><PRE> PACT User’s Guide, UCRL-MA-112087
</PRE><A NAME="544185"><PRE> SCORE User’s Manual, UCRL-MA-108976 Rev.1
</PRE><A NAME="544186"><PRE> PPC User’s Manual UCRL-MA-108964 Rev.1
</PRE><A NAME="544187"><PRE> PML User’s Manual, UCRL-MA-108965 Rev.1
</PRE><A NAME="544188"><PRE> PDBLib User’s Manual, M-270 Rev.2
</PRE><A NAME="544189"><PRE> PGS User’s Manual, UCRL-MA-108966 Rev.1
</PRE><A NAME="544190"><PRE> PANACEA User’s Manual, M-276 Rev.2 (this document)
</PRE><A NAME="544191"><PRE> ULTRA II User’s Manual, UCRL-MA-108967 Rev.1
</PRE><A NAME="544192"><PRE> PDBDiff User’s Manual, UCRL-MA-108975 Rev.1
</PRE><A NAME="544193"><PRE> PDBView User’s Manual, UCRL-MA-108968 Rev.1
</PRE><A NAME="544194"><PRE> SX User’s Manual, UCRL-MA-112315
</PRE><a name="544195">
Some additional references to work that readers may find interesting and useful are:<p>
</a>
<a name="544196">
1. Harold Ableson, and Gerald Jay Sussman, Structure and Interpretation of Computer Programs, MIT Press, Cambridge, Mass. (1986).<p>
</a>
<a name="544197">
2. G. O. Cook, Jr., “ALPAL, A Program to Generate Physics Simulation Codes from Natural Descriptions”, Int. J. Mod. Phys. C 1, 1990.<p>
</a>
<a name="544198">
<p>
</a>
<p><hr>
</body></html>
|