1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805
|
<html><head><title></title></head>
<body>
<a name="932498">
<h1>1.0 </a>Introduction</h1>
</a>
<a name="936795">
</a>PDBLib is a small </a>library of </a>file management routines useful for storing and retrieving binary data in a portable format. It is intended to supply a flexible means of managing </a>binary databases without the user having to be concerned with the machines on which they are written or read.<p>
</a>
<a name="932499">
The specific goals for this library are:<p>
</a>
<ul><a name="932502">
<li>The </a>data files are portable. Using only simple binary file transfers, these files may be passed to any machine supporting an implementation of this library and the data in them immediately read.
</a>
<a name="932507">
<li>The </a>library routines are portable. The library is written in </a>C which is the most standardized language which also enjoys a broad range of implementations. In fact, a C compiler is probably the easiest piece of software to find for any given machine.
</a>
<a name="932511">
<li>The library will support </a>call-by-reference or </a>call-by-value interfaces. In this way the library can be used from </a>FORTRAN (a call-by-reference language) or C (a call-by-value language) programs.
</a>
<a name="932516">
<li> ‘Arbitrary’ </a>data structures may be defined to the PDB system so that there is maximum flexibility and ease of use for application programming. C </a>structs or FORTRAN </a>common blocks may be written or read as a whole. </a>Record structured variables are thus supported.
</a>
<a name="932522">
<li>Data files may be generated for a particular machine type. By default when files are created they are written with the format of the machine that does so. However, they can be written in the format of a designated machine. Thus a more powerful machine can prepare files for a less powerful one.
</a>
<a name="932525">
<li>The library will be small so that machines with as little memory as about 512 Kbytes will be able to profitably use the PDB system.
</a>
<a name="932536">
The binary data format of the files is not machine independent, but it is </a>portable. For the sake of efficiency, the data in any file is expressed in terms of some data format, e.g.</a> IEEE format with 32 bit integers and floats. When PDB files are passed around on machines with the same data format, the data reads and writes involve no </a>conversions. Only when one of these files is read on a machine with a different data format are conversions performed on the data it contains.<p>
</a>
<a name="932549">
This document is divided into several sections. The next section gives an overview of the use of </a>PDBLib and describes some programming practices which are necessary to the successful use of the library. It is followed by a section summarizing the C interface routines in PDBLib and a section giving a more formal and complete description of the C interface with information about normal and error return values, functionality, and rationale. Next are similar sections for the </a>FORTRAN interface routines. Subsequent sections discuss PDBLib design philosophy, data structures, examples, and related documentation.<p>
</a>
</ul><a name="932558">
<h1>2.0 </a>Overview of PDBLib</h1>
</a>
<a name="932569">
The functional PDBLib interface was designed as a minimal extension of the standard C library binary I/O interface. The relevant </a>C library functions are </a>fopen, </a>fclose, </a>fwrite, and </a>fread. The extensions are driven mainly by some missing features in C. Because C doesn’t handle data types as types, PDBLib must be told the type of a variable when it is written to a file. Because C variables don’t know about their dimensions, PDBLib must be given the dimensions when a variable is written out. On the other hand, because PDBLib knows both type and </a>dimension information about file variables, PDBLib requires less information from the programmer when reads are done.<p>
</a>
<a name="932575">
Since C doesn’t have the needed type handling facilities, data structures must be described to PDBLib. Therefore, in addition to the basic </a>I/O functions mentioned above, there is a function in PDBLib to be used when a C data structure or a FORTRAN common block must be described in a file.<p>
</a>
<a name="932585">
Next, to give the user the most flexibility and efficiency regarding </a>data conversions, PDBLib has a function which lets the user specify the binary data format of the file. In this way, a file can be targeted for a particular machine type. A common use for this might be when a powerful machine produces some data which is going to be reprocessed on a less powerful machine. The more powerful machine which writes the file might target the file for the less powerful one so that the conversions are done by the faster machine and not the slower one.<p>
</a>
<a name="932591">
Finally, in some applications with structures, some members of a structure may be pointers, and the actual type to which a pointer points may be changed by a cast depending on some other member’s value. PDBLib supports the notion of a ‘</a>cast’ in that it can be told to ignore the type of a structure member and get the actual type from another member when it writes out the structure.<p>
</a>
<a name="932599">
Because all of the information about files and their contents is contained in PDBLib structures and </a>hash tables, the </a>C API (Application Program Interface) has no inquiry functions. Users can extract information directly from the </a>PDBfile structure and they can use the hash table lookup function, </a>SC_def_lookup, to get access to the </a>syment and </a>defstr structures which describe variables and types, respectively.<p>
</a>
<a name="932605">
The </a>FORTRAN API to PDBLib has many of the same functions as the C API plus several more inquiry functions. These functions are necessary because FORTRAN cannot easily work with structures.<p>
</a>
<a name="932619">
There are also routines to manage </a>data </a>attributes. An </a>attribute table will be created for a PDB file the first time </a>PD_def_attribute is called. The attribute table is kept in the </a>PDBfile structure. Variables can be added to PDB files solely for their attribute values. Attributes can be given to entire variables or any part of them. This works because the attribute table is a separate hash table, like the symbol table, which associates names with attribute values. It also is used to manage the attributes themselves. It is not exactly clear why one should use these attributes. Most of the utility of attributes is already inherent in the structures or records which can by built with PDBLib’s mechanism for defining derived types. Since the structure handling mechanisms are much more efficient, the reason for using attributes instead of structures should be very clear in the mind of the application programmer.<p>
</a>
<a name="934624">
<h2>2.1 </a></a>Compiling and Loading</h2>
</a>
<a name="934626">
To compile your C programs you must use<p>
</a>
<A NAME="934702"><PRE> #include <pdb.h>
</PRE><a name="934721">
in the source files which deal with the interpreter.<p>
</a>
<a name="934723">
To link your application you must use the following libraries in the order specified.<p>
</a>
<dl>
<a name="934729">
<dt>-lpdb -lpml -lscore [-lm ...]
</a>
<a name="935243">
Although this is expressed as if for a UNIX linker, the order would be the same for any system with a single pass linker. The items in [] are optional or system dependent.<p>
</a>
<a name="935318">
Each system has different naming conventions for its libraries and the reader is assumed to understand the appropriate naming conventions as well as knowing how to tell the linker to find the installed PACT libraries on each system that they use.<p>
</a>
</dl>
<a name="934623">
<h2>2.2 </a>Memory Management Considerations</h2>
</a>
<a name="932632">
PDBLib is capable of correctly handling data that is indirectly referenced through arbitrary levels of </a>pointers. In order to do this it is necessary to put an extra layer of memory management over the standard C library routines. The basic requirement is that given a pointer, one would like to know how many bytes of data it points to. The functions, </a>SC_alloc, </a>SC_realloc, </a>SC_strsave, </a>SC_free, and </a>SC_arrlen, built on top of the standard C library functions, </a>malloc and </a>free, provide this capability. For C programmers, </a>macros are provided which offer a nice and intuitive way of using these functions (they also provide an </a>abstraction barrier against the details of any memory management scheme). These functions and macros are documented in the </a>SCORE User’s Manual.<p>
</a>
<a name="932638">
A brief discussion of the procedure for </a>writing and </a>reading </a>indirectly referenced data follows. Although the discussion will use integers as an example, the ideas apply to all data types, primitive or derived.<p>
</a>
<a name="932640">
Consider the following:<p>
</a>
<a name="932435">
<dd> int a[10], *b;<P>
</a>
<a name="932646">
<dd> b = MAKE_N(int, 10);<P>
</a>
<a name="932661">
Both a and b are pointers to 10 integers (</a>macro </a>MAKE_N is used to allocate the necessary space). The difference as far as an application is concerned is that the space that a points to was set aside by the compiler at compile time (for all practical purposes) while the space the b points to is created at run time. There is no possibility, given the definition of the C language, of asking the pointer a how many bytes it points to. On the other hand, since b is dynamically allocated, an extra layer of memory management could be provided so that a function, </a>SC_arrlen, could be defined to return the number of bytes that a dynamically allocated space has. In particular,<p>
</a>
<a name="932662">
<dd> SC_arrlen(a) => -1 (indicating an error)<P>
</a>
<a name="932664">
<dd> SC_arrlen(b) => 10<P>
</a>
<a name="932666">
<dd> SC_arrlen(b+5) => -1 (indicating an error)<P>
</a>
<a name="932673">
These functions and macros can be found in </a>SCORE. The general utility of something like </a>SC_arrlen made it desirable to put it in the lowest possible level library. This could be used for example, to implement some </a>dynamic </a>array </a>bound checking.<p>
</a>
<a name="932679">
PDBLib uses this idea to be able to trace down arbitrary layers of </a>indirection and obtain at each level the exact number of bytes to write out to a file. Of course, it also writes this information out so that the correct amount of space can be allocated by read operations as well as re-creating the correct </a>connectivity of </a>data structures.<p>
</a>
<a name="932691">
Great care must be taken that pointers to fixed arrays not be imbedded in a chain of indirects unless their dimension specifications are included either in the I/O request or the definition of a structure. This point cannot be over-emphasized! The extra memory management layer may fail to detect a </a>statically allocated array and return an erroneous byte count. This in turn will cause very obscure incorrect behavior (in the worst of circumstances) or a direct crash (the best outcome possible).<p>
</a>
<a name="932645">
Also, note that </a>subsets of </a>dynamically allocated arrays cannot know how many bytes they contain and hence care should be taken in their use. <p>
</a>
<a name="932697">
The example on the following page shows the different ways that </a>statically allocated arrays, </a>dynamically allocated arrays, </a>statically allocated </a>arrays of pointers, and </a>dynamically allocated arrays of pointers are handled by PDBLib. Note: The function </a>SC_strsave invokes the </a>MAKE_N </a>macro.<p>
</a>
<A NAME="932694"><PRE> /* define variables in pairs - one to write and one to read into */
</PRE><A NAME="932703"><PRE> PDBfile *strm;
</PRE><A NAME="932704"><PRE> char *a, *b;
</PRE><A NAME="932705"><PRE> char c[10], d[10];
</PRE><A NAME="932706"><PRE> char *e[3], *f[3];
</PRE><A NAME="932707"><PRE> char **s, **t;
</PRE><A NAME="932708"><PRE>
</PRE><A NAME="932709"><PRE> s = </a>MAKE_N(char *, 2);
</PRE><A NAME="932710"><PRE>
</PRE><A NAME="932711"><PRE> /* fill </a>statically and </a>dynamically allocated arrays */
</PRE><A NAME="932713"><PRE> strcpy(c, “bar”);
</PRE><A NAME="932546"><PRE> a = </a>SC_strsave(“foo”);
</PRE><A NAME="932714"><PRE>
</PRE><A NAME="932717"><PRE> /* fill </a>statically and </a>dynamically allocated arrays of pointers */
</PRE><A NAME="932720"><PRE> e[0] = SC_strsave(“Foo”);
</PRE><A NAME="932721"><PRE> e[1] = NULL;
</PRE><A NAME="932722"><PRE> e[2] = SC_strsave(“Bar”);
</PRE><A NAME="932712"><PRE> s[0] = SC_strsave(“Hello”);
</PRE><A NAME="932718"><PRE> s[1] = SC_strsave(“world”);
</PRE><A NAME="932723"><PRE>
</PRE><A NAME="932724"><PRE> /* write these variables out
</PRE><A NAME="932725"><PRE> * note the dimension specifications and the type
</PRE><A NAME="932726"><PRE> */
</PRE><A NAME="932727"><PRE> </a>PD_write(strm, “c(10)”, “char”, c);
</PRE><A NAME="932728"><PRE> PD_write(strm, “a”, “char *”, &a);
</PRE><A NAME="932729"><PRE> PD_write(strm, “e(3)”, “char *”, e);
</PRE><A NAME="932730"><PRE> PD_write(strm, “s”, “char **”, &s);
</PRE><A NAME="932731"><PRE>
</PRE><A NAME="932732"><PRE> /* read the file variables into fresh memory spaces
</PRE><A NAME="932733"><PRE> * note that the pointers to the pointers are passed in since the
</PRE><A NAME="932734"><PRE> * space is to be allocated and the value of the pointer here must
</PRE><A NAME="932735"><PRE> * be set to point to the new space
</PRE><A NAME="932736"><PRE> */
</PRE><A NAME="932737"><PRE> </a>PD_read(strm, “c”, d);
</PRE><A NAME="932738"><PRE> PD_read(strm, “a”, &b);
</PRE><A NAME="932739"><PRE> PD_read(strm, “e”, f);
</PRE><A NAME="932740"><PRE> PD_read(strm, “s”, &t);
</PRE><a name="933055">
<h2>2.3 PDB Syntax</h2>
</a>
<a name="933058">
This section contains discussion of some PDB concepts that are used elsewhere in this manual.<p>
</a>
<a name="934301">
In the following discussion and elsewhere in the manual a BNF style notation is used. In such places the following constructs are used:<p>
</a>
<dl>
<a name="934302">
<dt>| or
</a>
<a name="934311">
<dt>[] items between the brackets are optional
</a>
<a name="934303">
<dt>[]* zero or more instances of the items between the brackets
</a>
<a name="934309">
<dt>[]+ one or more instances of the items between the brackets
</a>
<a name="934310">
<dt>“x” literal x
</a>
<a name="933464">
Since a data entry can be of a structured type, in general, a data entry is a tree. A part of the data tree is specified by a path to that part. A path specification is of the form:<p>
</a>
<a name="933060">
<dt>path := node_spec | path.node_spec
</a>
<a name="933061">
<dt>node_spec := name[“[“ index_expr “]”]* | name[“(“ index_expr “)”]*
</a>
<a name="933926">
<dt>name := entry-name | member-name
</a>
<a name="933062">
The last node specified is referred to as the terminal node.<p>
</a>
<a name="933056">
<p>
</a>
</dl>
<a name="932745">
<h2>2.4 </a>PDBLib </a>Rules</h2>
</a>
<a name="932749">
There are a few crucial rules to be followed with PDBLib. If they are not obeyed, PDBLib may crash or the results desired will not occur.<p>
</a>
<A NAME="932755">The following </a>reserved characters are not allowed in variable names or </a>defstr </a>member
names: ‘</a>.’, ‘</a>(‘, ‘</a>)’, ‘</a>[‘, and ‘</a>]’. They are reserved by the grammar of the </a>data description
language which follows some C and some FORTRAN conventions.
<BR><A NAME="933265">In each read and write operation, the type of the argument corresponding to the variable
to be written or read must be a pointer to an object of the type specified for the entry.
For example,
<BR><A NAME="932759"><PRE> int *a, *b;
</PRE><A NAME="932762"><PRE> .
</PRE><A NAME="932763"><PRE> .
</PRE><A NAME="932765"><PRE> </a>PD_write(strm, “a”, “integer *”, &a);
</PRE><A NAME="932767"><PRE> </a>PD_read(strm, “a”, &b);
</PRE><A NAME="932768"><PRE> .
</PRE><A NAME="932770"><PRE> .
</PRE><A NAME="932776">When using </a>pointers and </a>dynamically </a>allocated memory with PDBLib, use </a>SC_alloc,
</a>SC_realloc, </a>SC_strsave, </a>MAKE, </a>MAKE_N, </a>REMAKE, or </a>REMAKE_N to allocate
memory. These functions and macros are documented in the </a>SCORE User’s Manual.
<BR><A NAME="934312">When </a>reading or </a>writing part of a variable, especially a structured variable, the terminal
node must be of primitive type or a structure containing no indirections and whose
descendant members contain no indirections. Furthermore, the path to the desired part
must contain one array reference for each level of </a>indirection traversed. For example,
<BR><A NAME="932784"><PRE> char **s, c;
</PRE><A NAME="932785"><PRE>
</PRE><A NAME="932786"><PRE> /* fill s so that s[0] = “Hello” and s[1] = “World” */
</PRE><A NAME="932787"><PRE> .
</PRE><A NAME="932788"><PRE> .
</PRE><A NAME="932790"><PRE> </a>PD_write(strm, “s”, “char **”, &s);
</PRE><A NAME="932791"><PRE>
</PRE><A NAME="932792"><PRE> /* read the ‘o’ in “Hello” */
</PRE><A NAME="932793"><PRE> </a>PD_read(strm, “s[0][4]”, &c);
</PRE><A NAME="932794"><PRE>
</PRE><A NAME="932795"><PRE> /* read the ‘o’ in “World” */
</PRE><A NAME="932796"><PRE> PD_read(strm, “s[1][1]”, &c);
</PRE><A NAME="932780"><PRE> .
</PRE><A NAME="932797"><PRE> .
</PRE><a name="932799">
<h1>3.0 </a>Summary of the </a>C </a>API</h1>
</a>
<a name="932821">
There is a hierarchy of routines in PDBLib from high to low level. The high level routines form the API while the lower level routines are modularized to perform the actual work. It should be noted that the lower level routines are sufficiently well modularized so as to make it possible to build entirely different API’s for PDBLib. <p>
</a>
<a name="932588">
The </a>high level PDBLib routines have a strict </a>naming convention. All high level routines begin with ‘</a>PD_’. Some routines have several related forms. These are referred to as families of functions. For example the PD_write family.<p>
</a>
<a name="932477">
Most of these routines put an </a>error message into a global variable called </a>PD_err. The error messages include the name of the routine in which they are made thus eliminating the need for error codes which must be cross referenced with some other document. In this way application programs can check for error conditions themselves and decide in what manner to use the PDBLib error messages instead of having error messages printed by the system routines. Error messages are not stacked and must be processed by the application before any other PDBLib calls are made in order to avoid potential overwrites. See the descriptions of individual routines for more information about error handling and messages. <p>
</a>
<a name="933585">
Programs written in C must include a </a>header which makes certain declarations and definitions needed to use the library. Much in the same spirit as one includes </a>stdio.h to use </a>printf and others, include </a>pdb.h as follows:<p>
</a>
<A NAME="932478"><PRE> </a>#</a>include “pdb.h”
</PRE><a name="932702">
The file </a>pdb.h </a>#</a>include’s some other files which must either be in your directory space or pointed to in some manner which your compiler can recognize. The auxiliary #include files are </a>schash.c, </a>scstd.h, and </a>score.h. These files are a part of the </a>SCORE package which you must have to use PDBLib.<p>
</a>
<a name="932446">
<h2>3.1 Some Guidance in Using the C API to PDBLib</h2>
</a>
<a name="932447">
PDBLib offers a great deal of flexibility to its users. In some cases the flexibility results in a bewildering assortment of function calls from which the application developer must choose. This section is intended to offer some guidance and enable developers to home in on the functions they need to use.<p>
</a>
<a name="932448">
<h3>3.1.1 Opening, Creating and Closing PDB Files</h3>
</a>
<a name="932450">
These are the most fundamental operations involving PDBLib. The function </a>PD_open is used to either open an existing file or create a new one. </a>PD_close is used to close a PDB file so that it can be recognized by PDBLib for future operations.<p>
</a>
<a name="932451">
PDBLib allows applications to specify the binary format in which a newly created file will be written. </a>PD_target does this work. It is not necessary to invoke </a>PD_target before creating a new PDB file. In this case the binary format is that appropriate for the host system.<p>
</a>
<a name="932452">
During the run of an application code, PDBLib can complete the information in an open PDB file so that in the event of a code crash, the file will be a valid PDB file. This functionality is provided by </a>PD_flush.<p>
</a>
<a name="932453">
<h3>3.1.2 Writing Data to PDB Files</h3>
</a>
<a name="932456">
The following paragraphs describe a sequence of increasingly more elaborate output operations for PDB files. They are all compatible with one another so users can select the ones which match their needs best. The most straightforward operations are first.<p>
</a>
<a name="932457">
There are two forms for the most basic data writing operations. These have to do with how the application wants to handle the dimension specifications. The two functions are </a>PD_write and </a>PD_write_alt.<p>
</a>
<a name="932461">
PDBLib supports the notion of writing data of one type out into a file as another type. More precisely, an integer type of data can be written to a file in the format of any other integer type, and similarly for floating point types. The application must take all responsibility for ensuring the appropriateness of this type of conversion (e.g. underflows and overflows). The functions which support this are </a>PD_write_as and </a>PD_write_as_alt.<p>
</a>
<a name="932462">
PDBLib allows applications to append data to existing entries. This is handy in situations where the total amount of data is not known in advance, but a logical ordering of the data is apparent which matches the order in which data will be written. The functions which do this are the </a>PD_append family of functions.<p>
</a>
<a name="932463">
Finally, PDBLib allows applications to reserve space on disk and then let subsequent writes fill in that space with values. This is handy in instances where an application knows a logical structure for a data set but needs to write it out in smaller pieces and not necessarily in the order implied by its logical structure. The functions which let applications reserve space are </a>PD_defent and </a>PD_defent_alt. Reserved spaces may be written to with any of the </a>PD_write family of commands.<p>
</a>
<a name="932464">
<h3>3.1.3 Reading Data from PDB Files</h3>
</a>
<a name="932465">
Since data in a file has a definite size and shape, the reading operations in PDBLib are somewhat simpler than the writing operation. The </a>PD_read family of operations which is the counterpart of the </a>PD_write family does all of the work in reading data from files.<p>
</a>
<a name="932466">
<h3>3.1.4 Defining New Data Types</h3>
</a>
<a name="932490">
To aid application developers in using structured data PDBLib lets applications define new data types in a PDBfile. New data types may either be derived from other existing data types or they may be primitive (integer types, floating point types, or byte sequences). To define derived types applications should use </a>PD_defstr or </a>PD_defstr_alt. To define primitive types use </a>PD_defix, </a>PD_defloat, or </a>PD_defncv.<p>
</a>
<a name="933004">
Since PDBLib supports pointered data types, it is often the case that a pointer in a derived type may point to data of any kind. In C, casts are used to control this behavior. PDBLib permits a member of a struct which is of type “char *” specify the actual type of another pointered member. The function </a>PD_cast is used to set up this behavior.<p>
</a>
<a name="934414">
<h3>3.1.5 Defining Attributes</h3>
</a>
<a name="934652">
PDBLib supports a general mechanism for managing a class of data which is variously referred to as attributes or meta data. In a great many cases, the careful design of data structures obviates the need for this kind of data. Nevertheless, PDBLib supplies four functions to manage attributive data: </a>PD_def_attribute, </a>PD_rem_attribute, </a>PD_get_attribute, </a>PD_set_attribute.<p>
</a>
<a name="932444">
<h3>3.1.6 Using Pointers</h3>
</a>
<a name="936787">
The ability to use pointers with PDBLib is very powerful. It is unfortunate perhaps that it can also be a little bit tricky. Application developers should be aware of a key issue when using pointers with PDBLib. In general, when you want to write a data tree, you want to faithfully reproduce the connectivity of the tree. That means that if many pointers refer to the same chunk of memory then the file will exhibit that same pattern. To do this, PDBLib remembers the pointers that it has written and if handed a pointer that it has already written it does NOT write that memory into the file again. It instead makes note of the connection to an already existing region of disk. These same considerations apply to reading with the requisite changes in sense.<p>
</a>
<a name="936831">
The difference between files and memory is that data trees may be created, destroyed, and pointers recycled. For instance, an application may wish to allocate an array, write it as an indirect, change it contents in memory, and write it out again under another name. This is a very common pattern of usage. If PDBLib remembers the pointers, only the first write will put any data on disk. Now PDBLib has no way of knowing what the application wants. The control that applications have is to remove the list of pointers that PDBLib knows about. This accomplished with the PD_reset_ptr_list command.<p>
</a>
<a name="936838">
<h2>3.2 Terms </h2>
</a>
<a name="932687">
A few </a>definitions must be given first to keep the following summary concise. Some of these will be elaborated upon in the next section.<p>
</a>
<A NAME="932824">
<BR><A NAME="932831"></a>PDBfile: for the purposes of a program this is a collection of all the relevant information about one of these data files (in the actual coding it is a C struct). See the section on
Data Structures for more information.
<BR><A NAME="932470">
<BR><A NAME="932835"></a>ASCII: a string
<BR><A NAME="932471">
<BR><A NAME="932839"></a>TRUE: a value of 1 (defined by PDBLib)
<BR><A NAME="932472">
<BR><A NAME="932843"></a>FALSE: a value of 0 (defined by PDBLib)
<BR><A NAME="932473">
<BR><A NAME="933465"></a>VOID: any C data type
<BR><A NAME="933616">
<BR><A NAME="932474"></a>LAST: a pointer to 0 (declared and defined by PDBLib)
<BR><A NAME="932476">
<BR><A NAME="932853"></a>ENTRY: for the purposes of a program this is a collection of all the relevant information about a variable written to a PDB file (in the actual coding it is a C struct). See the
discussion of </a>syment in the section on Data Structures.
<BR><A NAME="932475">
<BR><A NAME="932825"> </a>DEFSTR: for the purposes of a program this is a collection of all the relevant information about a data type in a PDB file (in the actual coding it is a C struct). See the discussion of defstr in the section on Data Structures.
<BR><a name="932892">
<h2>3.3 </a>Function Summary</h2>
</a>
<a name="932904">
These routines form the </a>interface between C application programs and the PDBLib system.<p>
</a>
<A NAME="934994"><P><B></a>PD_append(file, name, var)
</B><BR><A NAME="934995"></a>Append the data pointed to by <em>var</em> to an existing entry under <em>name</em> in PDB file <em>file</em>.
<BR><dl>
<a name="935016">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="935017">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file and any dimension information,<P>
</a>
<a name="935020">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="935021">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
<A NAME="935018"><P><B></a>PD_append_alt(file, name, var, nd, ind)
</B><BR><A NAME="935022"></a>Append the data pointed to by <em>var</em> to an existing entry <em>name</em> in PDB file <em>file</em>. In this
alternate to </a>PD_append dimension information is provided in arguments nd and ind.
<BR><a name="935024">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="935025">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="935027">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="935028">
<dd><em>nd</em>, an integer containing the number of dimensions,<P>
</a>
<a name="935029">
<dd><em>ind</em>, an array of long integers containing (min, max, stride) triples for each dimension.<P>
</a>
<a name="935031">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
<A NAME="935032"><P><B></a>PD_append_as(file, name, intype, var)
</B><BR><A NAME="935033"></a>Append the data pointed to by <em>var</em> with type <em>intype</em> to an existing entry <em>name</em> in PDB
file <em>file</em>.
<BR><a name="935034">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="935035">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file and any dimension information,<P>
</a>
<a name="935036">
<dd><em>intype</em>, an ASCII string containing the type of the data pointed to by var,<P>
</a>
<a name="935039">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="935040">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
<A NAME="935041"><P><B></a>PD_append_as_alt(file, name, intype, var, nd, ind)
</B><BR><A NAME="935042"></a>Append the data pointed to by <em>var</em> with type <em>intype</em> to the entry <em>name</em> in PDB file <em>file</em>. In
this alternate to </a>PD_append_as dimension information is provided in arguments nd
and ind.
<BR><a name="935044">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="935046">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="935047">
<dd><em>intype</em>, an ASCII string containing the type of the data pointed to by var,<P>
</a>
<a name="935049">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="935055">
<dd><em>nd</em>, an integer containing the number of dimensions,<P>
</a>
<a name="935056">
<dd><em>ind</em>, an array of long integers containing (min, max, stride) triples for each dimension.<P>
</a>
<a name="935057">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
<A NAME="934665"><P><B></a>PD_cast(file, type, memb, contr)
</B><BR><A NAME="934673">This function tells PDBLib to </a>substitute the type specified by the ASCII string in the
member <em>contr</em> for the type of member, <em>memb</em>, in the structure, <em>type</em>.
<BR><a name="934678">
<dt>Input: <em>file,</em> a pointer to a PDBfile,
</a>
<a name="934680">
<dd><em> type</em>, an ASCII string containing the name of the data type in the PDB file,<P>
</a>
<a name="934682">
<dd><em> memb</em>, an ASCII string containing the name of the member of t<em>ype</em> whose type is to be replaced,<P>
</a>
<a name="934684">
<dd> contr, an ASCII string containing the name of the member of <em>type</em> whose ASCII string value is to replace the type of the member, <em>memb</em>.<P>
</a>
<a name="934686">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="935288"><P><B></a>PD_cd(file, dirname)
</B><BR><A NAME="935289"></a>Change the </a>current </a>directory in file file to dirname.
<BR><a name="935290">
<dt>Input: <em>file,</em> a pointer to a PDBfile,
</a>
<a name="935291">
<dd><em> dirname</em>, an ASCII string containing the path name of the directory to change to.<P>
</a>
<a name="935294">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="932927"><P><B></a>PD_close(file)
</B><BR><A NAME="932930"></a>Close the <em>file</em> <em>file</em>. This function is used to complete and close a PDB file.
<BR><a name="932931">
<dt>Input: <em>file</em>, a pointer to a PDBfile.
</a>
<a name="932932">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="932482"><P><B></a>PD_def_attribute(file, attr, type)
</B><BR><A NAME="932881"></a>Define an attribute named <em>attr</em> of type <em>type</em> in PDB file <em>file</em>.
<BR><a name="932884">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="932891">
<dd><em>attr</em>, an ASCII string containing the name of the attribute to be added to the PDB file </a>attribute table,<P>
</a>
<a name="933097">
<dd><em>type</em>, an ASCII string containing the type of the attribute.<P>
</a>
<a name="933102">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="932665"><P><B></a>PD_defent(file, name, outtype)
</B><BR><A NAME="932667"></a>Define an entry in the symbol table of the PDB file <em>file</em>. This function </a>reserves space on
disk but writes no data. The data can be written with later PDBLib calls.
<BR><a name="932668">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="932669">
<dd> name, an ASCII string containing the name of the variable and any dimensional information,<P>
</a>
<a name="932689">
<dd> outtype, an ASCII string specifying the type of data in the file.<P>
</a>
<a name="932690">
<dt>Output: a pointer to the syment for the entry, if successful, and NULL otherwise.
</a>
<A NAME="932592"><P><B></a>PD_defent_alt(file, name, outtype, nd, ind)
</B><BR><A NAME="932655"></a>Define an entry in the symbol table of the PDB file <em>file</em>. This function </a>reserves space on
disk but writes no data. The data can be written with later calls.
<BR><a name="932656">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="932657">
<dd> name, an ASCII string containing the name of the variable (no dimensional information can be supplied with the name),<P>
</a>
<a name="932658">
<dd> outtype, an ASCII string specifying the type of data in the file,<P>
</a>
<a name="932659">
<dd> nd, the number of dimensions of the entry,<P>
</a>
<a name="932660">
<dd> find, an array of long integers containing (min, max) index range pairs for each dimension.<P>
</a>
<a name="932663">
<dt>Output: a pointer to the syment for the entry, if successful, and NULL otherwise.
</a>
<A NAME="933112"><P><B></a>PD_defix(file, name, bytespitem, align, flg)
</B><BR><A NAME="933113"></a>Define a </a>primitive integral type (</a>fixed point type) in the PDB file <em>file</em>.
<BR><a name="933114">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933124">
<dd> name, an ASCII string containing the name of the new data type,<P>
</a>
<a name="933125">
<dd> bytespitem, the number of bytes required for 1 item of the new type,<P>
</a>
<a name="933128">
<dd> align, the byte alignment for the type,<P>
</a>
<a name="933129">
<dd> flg, a flag indicating whether the byte ordering of the type is normal or reverse ordered (</a>NORMAL_ORDER or </a>REVERSE_ORDER).<P>
</a>
<a name="933117">
<dt>Output: a pointer to the defstr for the type, if successful, and NULL otherwise.
</a>
<A NAME="933119"><P><B></a>PD_defloat(file, name, bytespitem, align, ordr, expb, mantb, sbs, sbe, sbm, hmb,
bias)
</B><BR><A NAME="933120"></a>Define a new </a>floating point type to the PDB file <em>file</em>.
<BR><a name="933121">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933132">
<dd> <em>name</em>, an ASCII string containing the name of the data type in the PDB file,<P>
</a>
<a name="933134">
<dd><em> bytespitem, the number of bytes required for an item of the new type,</em><P>
</a>
<a name="933136">
<dd> align, the byte alignment for this type,<P>
</a>
<a name="933137">
<dd> ordr, an array of bytespitem integers specifying the byte order,<P>
</a>
<a name="933138">
<dd> expb, the number of exponent bits,<P>
</a>
<a name="933140">
<dd> mantb, the number of mantissa bits,<P>
</a>
<a name="933141">
<dd> sbs, the position of the sign bit,<P>
</a>
<a name="933142">
<dd> sbe, the starting bit of the exponent,<P>
</a>
<a name="933143">
<dd> sbm, the starting bit of the mantissa,<P>
</a>
<a name="933144">
<dd> hmb, the value of the high order mantissa bit,<P>
</a>
<a name="933145">
<dd> bias, the bias of the exponent.<P>
</a>
<a name="933123">
<dt>Output: a pointer to the defstr for the type, if successful, and NULL otherwise.
</a>
<A NAME="933552"><P><B></a>PD_defncv(file, name, bytespitem, align)
</B><BR><A NAME="933553"></a>Define a </a>primitive type that will not undergo format conversion from platform to platform in the PDB file <em>file</em>.
<BR><a name="933556">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933557">
<dd> name, an ASCII string containing the name of the new data type,<P>
</a>
<a name="933558">
<dd> bytespitem, the number of bytes required for 1 item of the new type,<P>
</a>
<a name="933560">
<dd> align, the byte alignment for the type.<P>
</a>
<a name="933561">
<dt>Output: a pointer to the defstr for the type, if successful, and NULL otherwise.
</a>
<A NAME="933332"><P><B></a>PD_defstr(file, name, mem1, ..., memn, LAST)
</B><BR><A NAME="933847"></a>Define a </a>data structure called <em>name</em> with members <em>mem</em>1, ..., <em>mem</em>n. LAST <em>must</em> terminate the list of members. This uses a C-like syntax for the member definition and <em>name</em>
is used in subsequent writes to refer to this type of data structure.
<BR><a name="933908">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933928">
<dd> <em>name</em>, an ASCII string containing the name of the data structure type in the PDB file,<P>
</a>
<a name="933961">
<dd><em>memi</em>, an ASCII string representing the declaration of a member of a data structure.<P>
</a>
<a name="933974">
<dt>Output: a pointer to the defstr for the data structure, if successful, and NULL otherwise.
</a>
<A NAME="932936"><P><B></a>PD_defstr_alt(file, name, nmemb, memb)
</B><BR><A NAME="932942"></a>Define a </a>data structure called <em>name</em> with members specified by memb.. This uses a C-
like syntax for the member definition and <em>name</em> is used in subsequent writes to refer to
this type of data structure.
<BR><a name="932943">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="932947">
<dd><em>name</em>, an ASCII string containing the name of the data structure type in the PDB file,<P>
</a>
<a name="934021">
<dd><em>nmemb</em>, an integer number of members in the data structure and the length of memb,<P>
</a>
<a name="932949">
<dd><em>memb</em>, an array of ASCII string representing the declarations of the members of a data structure.<P>
</a>
<a name="932951">
<dt>Output: a pointer to the defstr for the data structure, if successful, and NULL otherwise.
</a>
<A NAME="932621"><P><B></a>PD_family(file, flag)
</B><BR><A NAME="934719">If the <em>file,</em> <em>file</em>, has exceeded its size limit, open and return a new member of the </a>file
family. If flag is TRUE close the old file.
<BR><a name="934768">
<dt>Input: <em>file</em>, a pointer to a PDBfile.
</a>
<a name="937456">
<dd>flag, an integer flag.<P>
</a>
<a name="937477">
<dt>Output: a pointer to a PDBfile.
</a>
<A NAME="937434"><P><B></a>PD_flush(file)
</B><BR><A NAME="937436"></a>Flush the <em>file</em> <em>file</em>. This function is used to write the descriptive information of a PDB
file to disk.
<BR><a name="934296">
<dt>Input: <em>file</em>, a pointer to a PDBfile.
</a>
<a name="934297">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="933103"><P><B></a>PD_get_attribute(file, var, attr)
</B><BR><A NAME="933107">Get the value of the <em>attr</em> attribute of variable <em>var</em> in PDB file <em>file</em>. Variables only have
values for attributes which are explicitly given.
<BR><a name="933110">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933111">
<dd><em>var</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933115">
<dd><em>attr</em>, an ASCII string containing the name of the attribute in the PDB file attribute table.<P>
</a>
<a name="933116">
<dt>Output: a pointer to the attribute value, if successful, and NULL otherwise.
</a>
<A NAME="937491"><P><B><strong></a>PD_get_max_file_size(file)
</strong></B><BR><a name="937492">
<dt>Get the current maximum size for PDB file <em>file</em>.
</a>
<a name="937493">
<dt>Input: <em>file</em>, a pointer to a <strong>PDBfile</strong>.
</a>
<a name="937494">
<dt>Output: Return the integer value of the current maximum file size.
</a>
<A NAME="932761"><P><B></a>PD_get_mode(file)
</B><BR><A NAME="932769"></a>Get the current mode of PDB file<em> file</em>: 2 (append - ’a’), 3 (open - ’r’), 4 (create - ’w’).
<BR><a name="932798">
<dt>Input: <em>file</em>, a pointer to a PDBfile.
</a>
<a name="933127">
<dt>Output: Return the integer value of the current mode.
</a>
<A NAME="933266"><P><B></a>PD_get_offset(file)
</B><BR><A NAME="934191"></a>Get the current default offset for PDB file<em> file</em>.
<BR><a name="934192">
<dt>Input: <em>file</em>, a pointer to a PDBfile.
</a>
<a name="934193">
<dt>Output: Return the integer value of the default offset.
</a>
<A NAME="935292"><P><B></a>PD_ln(file, var, link)
</B><BR><A NAME="935293"></a>Create a </a>link to a variable in PDB file file.
<BR><a name="935296">
<dt>Input: <em>file,</em> a pointer to a PDBfile,
</a>
<a name="935299">
<dd><em> var</em>, an ASCII string containing the path name of the variable to link to,<P>
</a>
<a name="935297">
<dd><em> link</em>, an ASCII string containing the path name of the link.<P>
</a>
<a name="935298">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="934172"><P><B></a>PD_ls(file, path, type, num)
</B><BR><A NAME="935304"></a>Return a list of names of entries (variables and/or directories) in PDB file file that are of
a type type and that are in the </a>directory and match the variable name pattern specified
by path.
<BR><a name="935305">
<dt>Input: <em>file,</em> a pointer to a PDBfile,
</a>
<a name="935307">
<dd><em> path</em>, an ASCII string containing the path name of the directory to search and/or the variable name pattern to match,<P>
</a>
<a name="935308">
<dd><em> type</em>, an ASCII string containing the type of variables to return,<P>
</a>
<a name="935309">
<dd><em> num</em>, the number of entries returned.<P>
</a>
<a name="935311">
<dt>Output: a pointer to an array of pointers to entry names, if successful, and NULL otherwise.
</a>
<A NAME="935312"><P><B></a>PD_make_image(name, type, data, dx, dy, bpp, xmin, xmax, ymin, ymax, zmin,
zmax)
</B><BR><A NAME="932955">Create and initialize a PD_image data structure.
<BR><a name="932480">
<dt>Input: <em> name</em>, an ASCII string containing the name of the image,
</a>
<a name="934173">
<dd>type, an ASCII string containing the data type of the image elements (e.g. “char”, “float”, “complex”),<P>
</a>
<a name="934176">
<dd>data, pointer to array of image data of type type,<P>
</a>
<a name="934177">
<dd>dx, width of image,<P>
</a>
<a name="934178">
<dd>dy, height of image,<P>
</a>
<a name="934179">
<dd>bpp, bits per pixel of the image,<P>
</a>
<a name="934180">
<dd>xmin, minimum value of coordinate associated with image x direction,<P>
</a>
<a name="934181">
<dd>xmax, maximum value of coordinate associated with image x direction,<P>
</a>
<a name="934182">
<dd>ymin, minimum value of coordinate associated with image y direction,<P>
</a>
<a name="934183">
<dd>ymax, maximum value of coordinate associated with image y direction,<P>
</a>
<a name="932961">
<dd>zmin, minimum value of image data (for palette labelling),<P>
</a>
<a name="932965">
<dd><em>zmax</em>, maximum value of image data (for palette labelling).<P>
</a>
<a name="932967">
<dt>Output: a pointer to a PD_image.
</a>
<A NAME="935313"><P><B></a>PD_mkdir(file, dirname)
</B><BR><A NAME="935315"></a>Create a </a>directory dirname in PDB file file.
<BR><a name="935317">
<dt>Input: <em>file,</em> a pointer to a PDBfile,
</a>
<a name="933186">
<dd><em> dirname</em>, an ASCII string containing the new directory path name.<P>
</a>
<a name="935320">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="935319"><P><B>PD_open(filename, mode)
</B><BR><A NAME="934168"> </a>Open a PDB file on disk named <em>filename</em> in one of three modes: “</a>w” for </a>create, “</a>r” for
</a>read-only, or “a” for </a>append. This function is used to </a>create a new PDB file or to open
an existing PDB file for reading or for adding new entries.
<BR><a name="934169">
<dt>Input: <em> filename</em>, an ASCII string,
</a>
<a name="934170">
<dd><em>mode</em>, an ASCII string, either “w” for create, “r” for read, or “a” for append.<P>
</a>
<a name="934171">
<dt>Output: a pointer to a PDBfile, if successful, and NULL otherwise.
</a>
<A NAME="932972"><P><B></a>PD_put_image(file, image, index)
</B><BR><A NAME="932974"></a>Write image image to file file with index index.
<BR><a name="932975">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="932979">
<dd><em>image</em>, a pointer to the </a>image data structure to be written,<P>
</a>
<a name="932980">
<dd><em>index</em>, an unique integer ordinal index.<P>
</a>
<a name="932982">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="933159"><P><B></a>PD_put_mapping(file, mapping, index)
</B><BR><A NAME="933163"></a>Write mapping mapping to file file with index index.
<BR><a name="933164">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933168">
<dd><em>mapping</em>, a pointer to the </a>mapping data structure to be written,<P>
</a>
<a name="933170">
<dd><em>index</em>, an unique integer ordinal index.<P>
</a>
<a name="933174">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="933179"><P><B></a>PD_put_set(file, set)
</B><BR><A NAME="933180"></a>Write set set to file file.
<BR><a name="933184">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933188">
<dd><em>set</em>, a pointer to the </a>set data structure to be written.<P>
</a>
<a name="933190">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="935300"><P><B></a>PD_pwd(file)
</B><BR><A NAME="935301"></a>Return the </a>current </a>directory in PDB file file.
<BR><a name="935302">
<dt>Input: <em>file,</em> a pointer to a PDBfile.
</a>
<a name="935306">
<dt>Output a pointer to the path name of the current directory, if successful, and NULL otherwise.
</a>
<A NAME="934162"><P><B></a>PD_read(file, name, var)
</B><BR><A NAME="934163"></a>Read a variable <em>name</em> from PDB file <em>file</em> and put it in <em>var</em>.
<BR><a name="934164">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="934165">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="934166">
<dd><em>var</em>, a pointer to the location where the data is to be placed.<P>
</a>
<a name="934167">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="932506"><P><B></a>PD_read_alt(file, name, var, ind)
</B><BR><A NAME="932508"></a>Read part of a variable <em>name</em> from PDB file <em>file</em> and put it in <em>var</em>.
<BR><a name="932509">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="932510">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="932512">
<dd><em>var</em>, a pointer to the location where the data is to be placed.<P>
</a>
<a name="932513">
<dd><em>ind</em>, an array of integer triples specifying a start, stop, and step index for each dimension of the entry.<P>
</a>
<a name="932644">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="933100"><P><B></a>PD_read_as(file, name, type, var)
</B><BR><A NAME="933101"></a>Read a variable <em>name</em> from PDB file <em>file</em> and put it in <em>var</em> as data of type type.
<BR><a name="933104">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933105">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933109">
<dd><em>type</em>, an ASCII string containing the type of the data desired,<P>
</a>
<a name="933106">
<dd><em>var</em>, a pointer to the location where the data is to be placed.<P>
</a>
<a name="933108">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="932514"><P><B></a>PD_read_as_alt(file, name, type, var, ind)
</B><BR><A NAME="932515"></a>Read part of a variable <em>name</em> from PDB file <em>file</em> and put it in <em>var</em> as data of type type.
<BR><a name="932517">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="932518">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="932519">
<dd><em>type</em>, an ASCII string containing the type of the data desired,<P>
</a>
<a name="932520">
<dd><em>var</em>, a pointer to the location where the data is to be placed.<P>
</a>
<a name="932643">
<dd><em>ind</em>, an array of integer triples specifying a start, stop, and step index for each dimension of the entry.<P>
</a>
<a name="932647">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="933118"><P><B></a>PD_rel_image(image)
</B><BR><A NAME="933122">Release the space associated with a PD_image data structure.
<BR><a name="933126">
<dt>Input: <em>image, a pointer to a PD_image.</em>
</a>
<a name="933131">
<dt>Output: None.
</a>
<A NAME="936739"><P><B></a>PD_rem_attribute(file, attr)
</B><BR><A NAME="936793"></a>Remove an attribute named attr from the attribute table in PDB file <em>file</em>. All attribute
values are removed simultaneously with the attribute.
<BR><a name="936800">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="936818">
<dd><em>attr</em>, an ASCII string containing the name of the attribute in the PDB file attribute table.<P>
</a>
<a name="936819">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="934184"><P><B></a>PD_reset_ptr_list(file)
</B><BR><a name="934185">
Free the list of pointers which the PDB file <em>file</em> knows about. This includes both pointers in memory acquired during write operations and pointers in the file acquired during read operations.<p>
</a>
<a name="934187">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="934189">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="933133"><P><B></a>PD_set_attribute(file, var, attr, val)
</B><BR><A NAME="933135"></a>Set the value of an attribute attr of the <em>var</em> in PDB file <em>file</em> to <em>val</em>. Variables can be added
to PDB files solely for their attributes; that is, <em>var</em> need not be a variable in <em>file</em>.
<BR><a name="933139">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933146">
<dd><em>var</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933147">
<dd><em>attr</em>, an ASCII string containing the name of the attribute in the PDB file attribute table,<P>
</a>
<a name="933151">
<dd><em>val</em>, a pointer to the value of the attribute <em>attr</em> to be associated with <em>var</em>.<P>
</a>
<a name="933153">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="934194"><P><B></a>PD_set_max_file_size(file, v)
</B><BR><a name="937508">
<dt>Set the maximum size for PDB file <em>file</em>.
</a>
<a name="937531">
<dt>Input: <em>file</em>, a pointer to a PDBfile.
</a>
<a name="937536">
<dd><em>v</em>, an integer value for the maximum file size<P>
</a>
<a name="937532">
<dt>Output: Return the new integer value of the maximum file size.
</a>
<A NAME="937560"><P><B></a>PD_set_offset(file, v)
</B><BR><A NAME="937562"></a>Set the default offset for PDB file<em> file</em>.
<BR><a name="937563">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="934220">
<dd>v, an integer value for the default offset.<P>
</a>
<a name="934199">
<dt>Output: Return the new integer value of the default offset.
</a>
<A NAME="933025"><P><B></a>PD_target(std, align)
</B><BR><A NAME="933029">Set up the next PDB file as if written by a machine of type defined by the given
</a>data_standard and </a>data_alignment information. This <em>function must</em> be called before
the </a><em>PD_open</em> call which creates the file.
<BR><a name="933030">
<dt>Input: <em>std</em>, a pointer to a data_standard structure,
</a>
<a name="933033">
<dd><em>align</em>, a pointer to a data_alignment structure.<P>
</a>
<a name="933036">
<dt>Output: TRUE if successful, FALSE otherwise.
</a>
<A NAME="933548"><P><B></a>PD_typedef(file, oname, tname)
</B><BR><A NAME="933549"></a>Define an alias for an existing type in the specified file.
<BR><a name="933550">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933551">
<dd> oname, an ASCII string containing the name of the old data type,<P>
</a>
<a name="933554">
<dd> tname, an ASCII string containing the name of the new data type.<P>
</a>
<a name="933555">
<dt>Output: a pointer to the defstr for the type, if successful, and NULL otherwise.
</a>
<A NAME="932481"><P><B></a>PD_write(file, name, type, var)
</B><BR><A NAME="933080"></a>Write the data pointed to by <em>var</em> under <em>name</em> and with <em>type</em> to PDB file <em>file</em>.
<BR><a name="933084">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933088">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933089">
<dd><em>type</em>, an ASCII string containing the type of the variable,<P>
</a>
<a name="933091">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="933093">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
<A NAME="933315"><P><B></a>PD_write_alt(file, name, type, var, nd, ind)
</B><BR><A NAME="933316"></a>Write the data pointed to by <em>var</em> under <em>name</em> and with <em>type</em> to PDB file <em>file</em>. In this alternate to </a>PD_write </a>dimension information is provided in arguments nd and ind.
<BR><a name="933317">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933318">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933594">
<dd><em>type</em>, an ASCII string containing the type of the variable,<P>
</a>
<a name="933595">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="933598">
<dd><em>nd</em>, an integer containing the number of dimensions,<P>
</a>
<a name="933599">
<dd><em>ind</em>, an array of long integers containing (min, max, stride) triples for each dimension.<P>
</a>
<a name="933596">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
<A NAME="933130"><P><B></a>PD_write_as(file, name, intype, outtype, var)
</B><BR><A NAME="933148"></a>Write the data pointed to by <em>var</em> under <em>name</em> and with <em>intype</em> to PDB file <em>file</em> as data of
outtype.
<BR><a name="933149">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933150">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933152">
<dd><em>intype</em>, an ASCII string containing the type of the variable,<P>
</a>
<a name="933154">
<dd><em>outtype</em>, an ASCII string containing the output type of the variable,<P>
</a>
<a name="933155">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="933156">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
<A NAME="933600"><P><B></a>PD_write_as_alt(file, name, intype, outtype, var, nd, ind)
</B><BR><A NAME="933601"></a>Write the data pointed to by <em>var</em> under <em>name</em> and with <em>intype</em> to PDB file <em>file</em> as data of
outtype. In this alternate to </a>PD_write_as </a>dimension information is provided in arguments nd and ind.
<BR><a name="933602">
<dt>Input: <em>file</em>, a pointer to a PDBfile,
</a>
<a name="933603">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933604">
<dd><em>intype</em>, an ASCII string containing the type of the variable,<P>
</a>
<a name="933606">
<dd><em>outtype</em>, an ASCII string containing the output type of the variable,<P>
</a>
<a name="933607">
<dd><em>var</em>, a pointer to the location where the data is stored in memory.<P>
</a>
<a name="933609">
<dd><em>nd</em>, an integer containing the number of dimensions,<P>
</a>
<a name="933610">
<dd><em>ind</em>, an array of long integers containing (min, max, stride) triples for each dimension.<P>
</a>
<a name="933608">
<dt>Output: TRUE if successful, and NULL otherwise.
</a>
</dl>
<a name="933564">
<h1>4.0 The </a>C </a>API</h1>
</a>
<a name="933568">
In this section a more </a>formal description of the C API for PDBLib is given including a more detailed account of their workings.<p>
</a>
<a name="933015">
<h2>4.1 PD_APPEND</h2>
</a>
<A NAME="933016"><PRE><B>
</B></PRE><A NAME="933018"><PRE><B>int </a>PD_append(PDBfile *file
</B></PRE><A NAME="933019"><PRE><B> char *name,
</B></PRE><A NAME="933021"><PRE><B> void *vr)
</B></PRE><a name="933059">
</a>Append data to an entry in the specified file. The type is assumed to be the same as for the original entry. The dimensions of the appended data are specified in name. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following:<p>
</a>
<dl>
<a name="934730">
<dt>min:max => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="934732">
<dt> if min is the default_offset for the file
</a>
<a name="934733">
<dt> or
</a>
<a name="934735">
<dt>min:max => new dimension is old_min:max
</a>
<a name="935249">
<dt> if min is old_max+1
</a>
<a name="933065">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="933066">
The shape or dimensional information of the entry is a part of the name string. In this respect </a>PD_append behaves just like </a>PD_write.<p>
</a>
<a name="933070">
Input to this function is: <em>file</em>, a pointer to a PDBfile, name, an ASCII string containing the name of the variable and any dimensional information, and vr, a pointer to the data to be appended.<p>
</a>
<a name="933071">
This function returns TRUE, if successful; otherwise, FALSE.<p>
</a>
<a name="933073">
See also </a>PD_append_alt, </a>PD_append_as, </a>PD_append_as_alt, </a>PD_defent, </a>PD_defent_alt, </a>PD_write, </a>PD_write_alt, </a>PD_write_as, </a>PD_write_as_alt.<p>
</a>
<a name="933074">
<p>
</a>
<A NAME="933639"><PRE><B>int </a>PD_append(PDBfile *file
</B></PRE><A NAME="933682"><PRE><B> char *name,
</B></PRE><A NAME="933684"><PRE><B> void *vr)
</B></PRE><A NAME="933198"><B>
</B><HR><A NAME="933199"><PRE> #include “pdb.h”
</PRE><A NAME="933202"><PRE>
</PRE><A NAME="933203"><PRE> PDBfile *file;
</PRE><A NAME="933076"><PRE> float *fv;
</PRE><A NAME="933205"><PRE>
</PRE><A NAME="933206"><PRE> .
</PRE><A NAME="933208"><PRE> .
</PRE><A NAME="933630"><PRE> .
</PRE><A NAME="933631"><PRE> if (</a>PD_append(file, “x(20)”, fv)) == FALSE)
</PRE><A NAME="933632"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933634"><PRE> .
</PRE><A NAME="933636"><PRE> .
</PRE><A NAME="933637"><PRE> .
</PRE><a name="933638">
Compare this with the example of </a>PD_write.<p>
</a>
</dl>
<a name="933177">
<h2>4.2 PD_APPEND_ALT</h2>
</a>
<A NAME="933194"><PRE><B>
</B></PRE><A NAME="934356"><PRE><B>int </a>PD_append_alt(PDBfile *file
</B></PRE><A NAME="934357"><PRE><B> char *name,
</B></PRE><A NAME="934358"><PRE><B> void *vr,
</B></PRE><A NAME="934359"><PRE><B> int nd,
</B></PRE><A NAME="934360"><PRE><B> long *ind)
</B></PRE><a name="934061">
</a>Append data to an entry in the specified file. The type is assumed to be the same as for the original entry. The dimensions of the appended data are specified in the ind array. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following;<p>
</a>
<dl>
<a name="933642">
<dt>min:max :stride => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="933643">
<dt> if min is the default_offset for the file
</a>
<a name="933644">
<dt> or
</a>
<a name="933645">
<dt>min:max :stride => new dimension is old_min:max
</a>
<a name="935250">
<dt> if min is old_max+1
</a>
<a name="934067">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="934069">
Input to this function is: <em>file</em>, a pointer to a PDBfile, name, an ASCII string containing the name of the variable; vr, a pointer to the data to be appended; nd, an integer number of dimensions; and ind, an array of longs with triples (start, stop, step) defining dimension information.<p>
</a>
<a name="934070">
This function returns TRUE, if successful; otherwise, FALSE.<p>
</a>
<a name="934330">
See also </a>PD_append, </a>PD_append_as, </a>PD_append_as_alt, </a>PD_defent, </a>PD_defent_alt, </a>PD_write, </a>PD_write_alt, </a>PD_write_as, </a>PD_write_as_alt.<p>
</a>
<a name="934331">
<p>
</a>
<A NAME="934332"><PRE><B>int </a>PD_append_alt(PDBfile *file
</B></PRE><A NAME="934333"><PRE><B> char *name,
</B></PRE><A NAME="934334"><PRE><B> void *vr,
</B></PRE><A NAME="934354"><PRE><B> int nd,
</B></PRE><A NAME="934355"><PRE><B> long *ind)
</B></PRE><A NAME="934335"><B>
</B><HR><A NAME="934336"><PRE> #include “pdb.h”
</PRE><A NAME="934337"><PRE>
</PRE><A NAME="934338"><PRE> PDBfile *file;
</PRE><A NAME="934339"><PRE> float *fv;
</PRE><A NAME="934350"><PRE> long ind[3]
</PRE><A NAME="934340"><PRE>
</PRE><A NAME="934341"><PRE> .
</PRE><A NAME="934342"><PRE> .
</PRE><A NAME="934343"><PRE> .
</PRE><A NAME="934344"><PRE> ind[0] = 0L;
</PRE><A NAME="934352"><PRE> ind[1] = 20L;
</PRE><A NAME="934353"><PRE> ind[2] = 1L;
</PRE><A NAME="934351"><PRE> if (</a>PD_append_alt(file, “x”, fv, 1, ind)) == FALSE)
</PRE><A NAME="934345"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="934346"><PRE> .
</PRE><A NAME="934347"><PRE> .
</PRE><A NAME="934348"><PRE> .
</PRE><a name="934349">
Compare this with the example of </a>PD_write_alt.<p>
</a>
</dl>
<a name="933204">
<h2>4.3 PD_APPEND_AS</h2>
</a>
<A NAME="933685"><PRE><B>
</B></PRE><A NAME="933687"><PRE><B>int </a>PD_append_as(PDBfile *file
</B></PRE><A NAME="934361"><PRE><B> char *name,
</B></PRE><A NAME="934436"><PRE><B> char *intype,
</B></PRE><A NAME="934362"><PRE><B> void *vr)
</B></PRE><a name="934363">
</a>Append data to an entry in the specified file. The output type is assumed to be the same as for the original entry. The dimensions of the appended data are specified in the name. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following;<p>
</a>
<dl>
<a name="934063">
<dt>min:max => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="934064">
<dt> if min is the default_offset for the file
</a>
<a name="934065">
<dt> or
</a>
<a name="934066">
<dt>min:max => new dimension is old_min:max
</a>
<a name="935251">
<dt> if min is old_max+1
</a>
<a name="934369">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="934370">
The shape or dimensional information of the entry is a part of the name string. In this respect</a> PD_append_as behaves just like </a>PD_write_as.<p>
</a>
<a name="934371">
Input to this function is: <em>file</em>, a pointer to a PDBfile, name, an ASCII string containing the name of the variable and any dimensional information, intype, an ASCII string specifying the type of the data to which vr points; and vr, a pointer to the data to be appended.<p>
</a>
<a name="934372">
This function returns TRUE, if successful; otherwise, FALSE.<p>
</a>
<a name="934373">
See also </a>PD_append, </a>PD_append_alt, </a>PD_append_as_alt, </a>PD_defent, </a>PD_defent_alt, </a>PD_write, </a>PD_write_alt, </a>PD_write_as, </a>PD_write_as_alt.<p>
</a>
<a name="934374">
<p>
</a>
<A NAME="934437"><PRE><B>int </a>PD_append_as(PDBfile *file
</B></PRE><A NAME="934438"><PRE><B> char *name,
</B></PRE><A NAME="934439"><PRE><B> char *intype,
</B></PRE><A NAME="934440"><PRE><B> void *vr)
</B></PRE><A NAME="934378"><B>
</B><HR><A NAME="934379"><PRE> #include “pdb.h”
</PRE><A NAME="934380"><PRE>
</PRE><A NAME="934381"><PRE> PDBfile *file;
</PRE><A NAME="934382"><PRE> double *dv;
</PRE><A NAME="934383"><PRE>
</PRE><A NAME="934384"><PRE> .
</PRE><A NAME="934385"><PRE> .
</PRE><A NAME="934386"><PRE> .
</PRE><A NAME="934387"><PRE> if (</a>PD_append_as(file, “x(20)”, “float”, dv)) == FALSE)
</PRE><A NAME="934388"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="934389"><PRE> .
</PRE><A NAME="934390"><PRE> .
</PRE><A NAME="934391"><PRE> .
</PRE><a name="934392">
Compare this with the example of </a>PD_write_as.<p>
</a>
</dl>
<a name="934393">
<h2>4.4 PD_APPEND_AS_ALT</h2>
</a>
<A NAME="934394"><PRE><B>
</B></PRE><A NAME="934395"><PRE><B>int PD_append_as_alt(PDBfile *file
</B></PRE><A NAME="934396"><PRE><B> char *name,
</B></PRE><A NAME="934375"><PRE><B> char *intype,
</B></PRE><A NAME="934397"><PRE><B> void *vr,
</B></PRE><A NAME="934398"><PRE><B> int nd,
</B></PRE><A NAME="934399"><PRE><B> long *ind)
</B></PRE><a name="934400">
</a>Append data to an entry in the specified file. The output type is assumed to be the same as for the original entry. The dimensions of the appended data are specified in the ind array. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following;<p>
</a>
<dl>
<a name="934365">
<dt>min:max :stride => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="934366">
<dt> if min is the default_offset for the file
</a>
<a name="934367">
<dt> or
</a>
<a name="934368">
<dt>min:max :stride => new dimension is old_min:max
</a>
<a name="935252">
<dt> if min is old_max+1
</a>
<a name="934406">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="934408">
Input to this function is: <em>file</em>, a pointer to a PDBfile, name, an ASCII string containing the name of the variable; intype, an ASCII string specifying the type of data to which vr points; vr, a pointer to the data to be appended; nd, an integer number of dimensions; and ind, an array of longs with triples (start, stop, step) defining dimension information.<p>
</a>
<a name="934409">
This function returns TRUE, if successful; otherwise, FALSE.<p>
</a>
<a name="934410">
See also </a>PD_append, </a>PD_append_alt, </a>PD_append_as, </a>PD_defent, </a>PD_defent_alt, </a>PD_write, </a>PD_write_alt, </a>PD_write_as, </a>PD_write_as_alt.<p>
</a>
<a name="934411">
<p>
</a>
<A NAME="934376"><PRE><B>int PD_append_as_alt(PDBfile *file
</B></PRE><A NAME="934377"><PRE><B> char *name,
</B></PRE><A NAME="934441"><PRE><B> char *intype,
</B></PRE><A NAME="934442"><PRE><B> void *vr,
</B></PRE><A NAME="934443"><PRE><B> int nd,
</B></PRE><A NAME="934444"><PRE><B> long *ind)
</B></PRE><A NAME="934417"><B>
</B><HR><A NAME="934418"><PRE> #include “pdb.h”
</PRE><A NAME="934419"><PRE>
</PRE><A NAME="934420"><PRE> PDBfile *file;
</PRE><A NAME="934421"><PRE> float *fv;
</PRE><A NAME="934422"><PRE> long ind[3]
</PRE><A NAME="934423"><PRE>
</PRE><A NAME="934424"><PRE> .
</PRE><A NAME="934425"><PRE> .
</PRE><A NAME="934426"><PRE> .
</PRE><A NAME="934427"><PRE> ind[0] = 0L;
</PRE><A NAME="934428"><PRE> ind[1] = 20L;
</PRE><A NAME="934429"><PRE> ind[2] = 1L;
</PRE><A NAME="934430"><PRE> if (</a>PD_append_as_alt(file, “x”, “double”, fv, 1, ind)) == FALSE)
</PRE><A NAME="934431"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="934432"><PRE> .
</PRE><A NAME="934433"><PRE> .
</PRE><A NAME="934434"><PRE> .
</PRE><a name="934435">
Compare this with the example of </a>PD_write_as_alt.<p>
</a>
</dl>
<a name="933597">
<h2>4.5 PD_CAST</h2>
</a>
<A NAME="932614"><PRE><B>
</B></PRE><A NAME="932613"><PRE><B>int </a>PD_cast(PDBfile *file,
</B></PRE><A NAME="932579"><PRE><B> char *type,
</B></PRE><A NAME="932611"><PRE><B> char *memb,
</B></PRE><A NAME="932612"><PRE><B> char *contr)
</B></PRE><a name="933605">
</a>Dynamically change the type of a structure member. PDBLib supports an extended data typing mechanism called a structure. A </a>structure is a set of declarations of members. Each </a>member is in turn a data type known to the system. In some applications, a structure member is used to point to data of a type which is specified by another member. In the C coding a </a>cast is used to obtain a pointer to the desired data type.<p>
</a>
<a name="933611">
PDBLib supports this same practice by allowing the programmer to override the type of a member as given in the structure definition (see </a>PD_defstr) by supplying the name of a member, whose type must be “char *”, which will contain an ASCII string specifying the actual type of the data to which the first member points.<p>
</a>
<a name="933633">
The arguments to </a>PD_cast are: file, a pointer to a PDBfile; type, an ASCII string containing the name of the data structure type in the PDB file; memb, an ASCII string containing the name of the member whose type is to be overridden; and contr, an ASCII string containing the name of the member (whose type must be “char *”) which will provide the actual type for memb.<p>
</a>
<a name="933635">
The return value is a TRUE if the cast is successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="933641">
<p>
</a>
<a name="932521">
int </a>PD_cast(PDBfile *file,<p>
</a>
<a name="932615">
char *type,<p>
</a>
<a name="932617">
char *memb,<p>
</a>
<a name="932616">
char *contr)<p>
</a>
<A NAME="933647"><B>
</B><HR><A NAME="933650"><PRE> #include “pdb.h”
</PRE><A NAME="933651"><PRE>
</PRE><A NAME="933652"><PRE> PDBfile *file;
</PRE><A NAME="933654"><PRE> struct sample
</PRE><A NAME="933655"><PRE> {char *type;
</PRE><A NAME="933656"><PRE> int *a;};
</PRE><A NAME="933657"><PRE> .
</PRE><A NAME="933658"><PRE> .
</PRE><A NAME="933659"><PRE> .
</PRE><A NAME="933660"><PRE> </a>PD_defstr(file, “sample”, “char *type”, “int *a”, LAST);
</PRE><A NAME="933661"><PRE> </a>PD_cast(file, “sample”, “a”, “type”);
</PRE><A NAME="933662"><PRE> .
</PRE><A NAME="933663"><PRE> .
</PRE><A NAME="933664"><PRE> .
</PRE><a name="935411">
<h2>4.6 PD_CD</h2>
</a>
<A NAME="935412"><PRE><B>
</B></PRE><A NAME="935415"><PRE><B>int </a>PD_cd(PDBfile *file,
</B></PRE><A NAME="935428"><PRE><B> char *dirname)
</B></PRE><a name="935430">
</a>Change the </a>current </a>directory in the specified PDB file.<p>
</a>
<a name="935431">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935432">
The arguments to </a>PD_cd are: file, a pointer to a PDBfile; and dirname, an ASCII string containing the path name of the directory to change to.<p>
</a>
<a name="935529">
If dirname is NULL or an empty string or a slash, it refers to the top level or </a>root directory.<p>
</a>
<a name="935433">
The return value is a TRUE if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="935416">
See also </a>PD_ln, </a>PD_ls, </a>PD_mkdir, and </a>PD_pwd.<p>
</a>
<a name="935434">
<p>
</a>
<a name="935435">
int </a>PD_cd(PDBfile *file,<p>
</a>
<a name="935438">
char *dirname)<p>
</a>
<A NAME="935439"><B>
</B><HR><A NAME="935440"><PRE> #include “pdb.h”
</PRE><A NAME="935446"><PRE>
</PRE><A NAME="935447"><PRE> PDBfile *file;
</PRE><A NAME="935451"><PRE> .
</PRE><A NAME="935452"><PRE> .
</PRE><A NAME="935453"><PRE> .
</PRE><A NAME="935427"><PRE> if (</a>PD_cd(file, “/animals/mammals”) == FALSE)
</PRE><A NAME="935457"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935436"><PRE> .
</PRE><A NAME="935437"><PRE> .
</PRE><A NAME="935448"><PRE> .
</PRE><A NAME="935449"><PRE> if (</a>PD_cd(file, “../reptiles”) == FALSE)
</PRE><A NAME="935458"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935450"><PRE> .
</PRE><A NAME="935454"><PRE> .
</PRE><A NAME="935456"><PRE> .
</PRE><a name="933672">
<h2>4.7 PD_CLOSE</h2>
</a>
<A NAME="933677"><PRE><B>
</B></PRE><A NAME="932618"><PRE><B>int </a>PD_close(PDBfile *file)
</B></PRE><a name="933683">
</a>Close a PDB file. After all data is written to the PDB file, the structure chart and symbol table must be written out to the file and their disk addresses recorded in the file header. Without these operations the file cannot be read back in by PDBLib and all data is lost. All open PDB files must be </a>PD_close’d before exiting the program.<p>
</a>
<a name="933686">
A pointer, file, to the PDBfile associated with the PDB file must be passed to </a>PD_close.<p>
</a>
<a name="933690">
The function returns TRUE if the PDB file is correctly written and closed; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="933693">
<p>
</a>
<a name="932620">
int </a>PD_close(PDBfile *file)<p>
</a>
<A NAME="933698"><B>
</B><HR><A NAME="933702"><PRE> #include “pdb.h”
</PRE><A NAME="933703"><PRE>
</PRE><A NAME="933704"><PRE> PDBfile *file;
</PRE><A NAME="933705"><PRE> .
</PRE><A NAME="933706"><PRE> .
</PRE><A NAME="933707"><PRE> .
</PRE><A NAME="933708"><PRE> if (</a>PD_close(file) == FALSE)
</PRE><A NAME="933709"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933710"><PRE> .
</PRE><A NAME="933711"><PRE> .
</PRE><A NAME="933712"><PRE> .
</PRE><a name="932688">
<h2>4.8 PD_DEF_ATTRIBUTE</h2>
</a>
<A NAME="933508"><PRE><B>
</B></PRE><A NAME="934550"><PRE><B>int </a>PD_def_attribute(PDBfile *file,
</B></PRE><A NAME="934551"><PRE><B> char *attr,
</B></PRE><A NAME="934555"><PRE><B> char *type)
</B></PRE><a name="933499">
</a>Define an </a>attribute to the given PDB file. The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by making a call which specifies the entity name, the attribute name, and the attribute value (which is determined by the type). The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934556">
The arguments to this function are: file, a pointer to a PDBfile; name, an ASCII string containing the name of the attribute being defined; and type, an ASCII string containing the name of the data type in the PDB file.<p>
</a>
<a name="934576">
The return value is TRUE if successful, and FALSE otherwise.<p>
</a>
<a name="934558">
See also </a>PD_rem_attribute, </a>PD_set_attribute, and </a>PD_get_attribute.<p>
</a>
<a name="934923">
<p>
</a>
<A NAME="934922"><PRE><B>int </a>PD_def_attribute(PDBfile *file,
</B></PRE><A NAME="934943"><PRE><B> char *attr,
</B></PRE><A NAME="934944"><PRE><B> char *type)
</B></PRE><A NAME="934928"><B>
</B><HR><A NAME="934929"><PRE> #include “pdb.h”
</PRE><A NAME="934930"><PRE>
</PRE><A NAME="934932"><PRE> PDBfile *file;
</PRE><A NAME="934933"><PRE> .
</PRE><A NAME="934934"><PRE> .
</PRE><A NAME="934936"><PRE> .
</PRE><A NAME="934937"><PRE> if (</a>PD_def_attribute(file, “date”, “char *”) == FALSE)
</PRE><A NAME="934938"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="934939"><PRE> .
</PRE><A NAME="934940"><PRE> .
</PRE><A NAME="934942"><PRE> .
</PRE><a name="933498">
<h2>4.9 PD_DEFENT</h2>
</a>
<A NAME="933352"><PRE><B>
</B></PRE><A NAME="932695"><PRE><B>syment *</a>PD_defent(PDBfile *file,
</B></PRE><A NAME="933355"><PRE><B> char *name,
</B></PRE><A NAME="933356"><PRE><B> char *outtype)
</B></PRE><a name="932692">
</a>Define an entry in the </a>symbol table of the PDB file specified by <em>file</em>. This function </a>reserves space on disk but writes no data. The data can be written with later calls to </a>PD_write, </a>PD_write_alt, </a>PD_write_as, or </a>PD_write_as_alt.<p>
</a>
<a name="933353">
The rationale for this function is to </a>block out space in a PDB file corresponding to some logical layout of a piece of data. The data may not exist at the time the space is reserved or for some reason it may be desirable to write out the data in pieces. In any case if the type and shape of a variable is known at some point, an entry may be made in the PDB file without writing any data. The space may filled with other PDBLib calls at some later time.<p>
</a>
<a name="933354">
The shape or dimensional information of the entry is a part of the name string. In this respect </a>PD_defent behaves just like </a>PD_write.<p>
</a>
<a name="932696">
Input to this function is: <em>file</em>, a pointer to a PDBfile, name, an ASCII string containing the name of the variable and any dimensional information, and outtype, an ASCII string specifying the type of data in the file.<p>
</a>
<a name="932698">
This function returns a symbol table entry (syment) pointer, if successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="934227">
See also </a>PD_defent_alt, </a>PD_write, </a>PD_write_alt, </a>PD_write_as, </a>PD_write_as_alt.<p>
</a>
<a name="932700">
<p>
</a>
<a name="932701">
syment *</a>PD_defent(PDBfile *file,<p>
</a>
<a name="932715">
char *name,<p>
</a>
<a name="933348">
char *outtype)<p>
</a>
<A NAME="933349"><B>
</B><HR><A NAME="933350"><PRE> #include “pdb.h”
</PRE><A NAME="933351"><PRE>
</PRE><A NAME="933362"><PRE> PDBfile *file;
</PRE><A NAME="933365"><PRE> syment *ep;
</PRE><A NAME="933369"><PRE>
</PRE><A NAME="933370"><PRE> .
</PRE><A NAME="933371"><PRE> .
</PRE><A NAME="933372"><PRE> .
</PRE><A NAME="933373"><PRE> if ((ep = </a>PD_defent(file, “x(20)”, “float”)) == NULL)
</PRE><A NAME="933374"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933375"><PRE> .
</PRE><A NAME="933376"><PRE> .
</PRE><A NAME="932670"><PRE> .
</PRE><a name="933438">
Compare this with the example of </a>PD_write.<p>
</a>
<a name="932699">
<h2>4.10 PD_DEFENT_ALT</h2>
</a>
<A NAME="932693"><PRE><B>
</B></PRE><A NAME="933357"><PRE><B>syment *</a>PD_defent_alt(PDBfile *file,
</B></PRE><A NAME="933358"><PRE><B> char *name,
</B></PRE><A NAME="933361"><PRE><B> char *outtype,
</B></PRE><A NAME="933360"><PRE><B> int nd,
</B></PRE><A NAME="933359"><PRE><B> long *ind)
</B></PRE><a name="933363">
</a>Define an entry in the </a>symbol table of the PDB file specified by <em>file</em>. This function </a>reserves space on disk but writes no data. The data can be written with later calls to </a>PD_write, </a>PD_write_alt, </a>PD_write_as, or </a>PD_write_as_alt.<p>
</a>
<a name="933368">
This is an alternate form of </a>PD_defent. The difference is that the </a>dimension information is supplied via the nd and ind arguments instead of being a part of the name string. In this respect it behaves as </a>PD_write_alt does.<p>
</a>
<a name="933364">
The rationale for this function is to </a>block out space in a PDB file corresponding to some logical layout of a piece of data. The data may not exist at the time the space is reserved or for some reason it may be desirable to write out the data in pieces. In any case if the type and shape of a variable is known at some point, an entry may be made in the PDB file without writing any data. The space may filled with other PDBLib calls at some later time.<p>
</a>
<a name="933366">
Input to this function is: <em>file</em>, a pointer to a PDBfile, name, an ASCII string containing the name of the variable only, outtype, an ASCII string specifying the type of data in the file; nd, an integer specifying the number of dimensions; and ind, an array of long integers containing the minimum and maximum values of the index for each dimension pairwise.<p>
</a>
<a name="933367">
This function returns a symbol table entry (syment) pointer, if successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="934228">
See also </a>PD_defent, </a>PD_write, </a>PD_write_alt, </a>PD_write_as, </a>PD_write_as_alt.<p>
</a>
<a name="933425">
<p>
</a>
<a name="933426">
syment *</a>PD_defent_alt(PDBfile *file,<p>
</a>
<a name="933427">
char *name,<p>
</a>
<a name="933428">
char *outtype,<p>
</a>
<a name="933430">
int nd,<p>
</a>
<a name="933431">
long *ind)<p>
</a>
<A NAME="933432"><B>
</B><HR><A NAME="933433"><PRE> #include “pdb.h”
</PRE><A NAME="933434"><PRE>
</PRE><A NAME="933435"><PRE> PDBfile *file;
</PRE><A NAME="933436"><PRE> syment *ep;
</PRE><A NAME="933437"><PRE> long ind[4];
</PRE><A NAME="933439"><PRE> .
</PRE><A NAME="933440"><PRE> .
</PRE><A NAME="933441"><PRE> .
</PRE><A NAME="933442"><PRE> ind[0] = 0L;
</PRE><A NAME="933443"><PRE> ind[1] = 19L;
</PRE><A NAME="933444"><PRE> ind[2] = -2L;
</PRE><A NAME="933445"><PRE> ind[3] = 2L;
</PRE><A NAME="933446"><PRE> if ((ep = </a>PD_defent_alt(file, “x”, “float”, 2, ind)) == NULL)
</PRE><A NAME="933447"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933448"><PRE> .
</PRE><A NAME="933449"><PRE> .
</PRE><A NAME="933394"><PRE> .
</PRE><a name="933429">
Compare this with the example of </a>PD_write_alt and note the absence of a two dimensional array in this call.<p>
</a>
<a name="933157">
<h2>4.11 PD_DEFIX</h2>
</a>
<A NAME="933197"><PRE><B>
</B></PRE><A NAME="933158"><PRE><B>defstr *</a>PD_defix(PDBfile *file,
</B></PRE><A NAME="933193"><PRE><B> char *name,
</B></PRE><A NAME="933543"><PRE><B> long bytespitem,
</B></PRE><A NAME="933542"><PRE><B> int align,
</B></PRE><A NAME="933541"><PRE><B> int flg)
</B></PRE><a name="933200">
</a>Define a primitive integral type (</a>fixed point type) in the PDB file specified by <em>file</em>. <p>
</a>
<a name="933166">
Input to PD_defix is: <em>file</em>, a pointer to a PDBfile; name, an ASCII string containing the name of the new data type; bytespitem, the number of bytes required for 1 item of the new type; align, the byte alignment for the type; and flg, a flag indicating whether the byte ordering of the type is normal or reverse ordered.<p>
</a>
<a name="933160">
PDBLib supplies two </a>#</a>define’d constants which define the two ordering schemes used for fixed point types: </a>NORMAL_ORDER and </a>REVERSE_ORDER. NORMAL_ORDER means that the byte ordering from lowest to highest address as occurs on most CPU’s. REVERSE_ORDER means that the byte order goes from highest to lowest address as happens with INTEL and other CPU’s.<p>
</a>
<a name="933161">
Compare this information with that found in the discussion of data conversion later in this manual.<p>
</a>
<a name="933209">
A pointer to the new type’s defstr is returned if the call is successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="933201">
<p>
</a>
<A NAME="933544"><PRE><B>defstr *</a>PD_defix(PDBfile *file,
</B></PRE><A NAME="933545"><PRE><B> char *name,
</B></PRE><A NAME="933546"><PRE><B> long bytespitem,
</B></PRE><A NAME="933547"><PRE><B> int align,
</B></PRE><a name="933207">
int flg)<p>
</a>
<A NAME="933231"><B>
</B><HR><A NAME="933232"><PRE> #include “pdb.h”
</PRE><A NAME="933233"><PRE>
</PRE><A NAME="933234"><PRE> PDBfile *file;
</PRE><A NAME="933239"><PRE> defstr *ptr;
</PRE><A NAME="933240"><PRE> .
</PRE><A NAME="933241"><PRE> .
</PRE><A NAME="933242"><PRE> .
</PRE><A NAME="933244"><PRE> ptr = </a>PD_defix(file, “int40”, 5, 1, </a>NORMAL_ORDER);
</PRE><A NAME="933245"><PRE> .
</PRE><A NAME="933246"><PRE> .
</PRE><A NAME="933210"><PRE> .
</PRE><a name="933169">
<h2>4.12 PD_DEFLOAT</h2>
</a>
<A NAME="933192"><PRE><B>
</B></PRE><A NAME="933530"><PRE><B>defstr *</a>PD_defloat(PDBfile *file,
</B></PRE><A NAME="933531"><PRE><B> char *name,
</B></PRE><A NAME="933532"><PRE><B> long bytespitem,
</B></PRE><A NAME="933533"><PRE><B> int align,
</B></PRE><A NAME="933534"><PRE><B> int *ordr,
</B></PRE><A NAME="933535"><PRE><B> long expb,
</B></PRE><A NAME="933536"><PRE><B> long mantb,
</B></PRE><A NAME="933537"><PRE><B> long sbs,
</B></PRE><A NAME="933538"><PRE><B> long sbe,
</B></PRE><A NAME="933539"><PRE><B> long sbm,
</B></PRE><A NAME="933540"><PRE><B> long hmb,
</B></PRE><A NAME="933196"><PRE><B> long bias)
</B></PRE><a name="933171">
</a>Define a new floating point type to the PDB file specified by <em>file</em>.<p>
</a>
<a name="933187">
Input to </a>PD_defloat is: <em>file</em>, a pointer to a PDBfile; n<em>ame</em>, an ASCII string containing the name of the variable in the PDB file; b<em>ytespitem, the number of bytes required for an item of the new type; </em>align, the byte alignment for this type; ordr, an array of bytespitem integers specifying the byte order; expb, the number of exponent bits; mantb, the number of mantissa bits; sbs, the position of the sign bit; sbe, the starting bit of the exponent; sbm, the starting bit of the mantissa; hmb, the value of the high order mantissa bit; and bias, the bias of the exponent.<p>
</a>
<a name="933167">
Compare this information with that found in the discussion of data conversion later in this manual.<p>
</a>
<a name="933217">
A pointer to the new type’s defstr is returned if the call is successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="933211">
<p>
</a>
<A NAME="933212"><PRE><B>defstr *</a>PD_defloat(PDBfile *file,
</B></PRE><A NAME="933500"><PRE><B> char *name,
</B></PRE><A NAME="933501"><PRE><B> long bytespitem,
</B></PRE><A NAME="933523"><PRE><B> int align,
</B></PRE><A NAME="933502"><PRE><B> int *ordr,
</B></PRE><A NAME="933213"><PRE><B> long expb,
</B></PRE><A NAME="933524"><PRE><B> long mantb,
</B></PRE><A NAME="933529"><PRE><B> long sbs,
</B></PRE><A NAME="933528"><PRE><B> long sbe,
</B></PRE><A NAME="933527"><PRE><B> long sbm,
</B></PRE><A NAME="933526"><PRE><B> long hmb,
</B></PRE><A NAME="933525"><PRE><B> long bias)
</B></PRE><A NAME="933214"><B>
</B><HR><A NAME="933215"><PRE> #include “pdb.h”
</PRE><A NAME="933216"><PRE>
</PRE><A NAME="933226"><PRE> int ord_int24[] = {1, 3, 2};
</PRE><A NAME="933222"><PRE>
</PRE><A NAME="933221"><PRE> PDBfile *file;
</PRE><A NAME="933218"><PRE> defstr *ptr;
</PRE><A NAME="933223"><PRE> .
</PRE><A NAME="933224"><PRE> .
</PRE><A NAME="933225"><PRE> .
</PRE><A NAME="933220"><PRE> ptr = </a>PD_defloat(file, “fp24”, 3, 1, ord_int24,
</PRE><A NAME="933219"><PRE> 7L, 16L, 0L, 1L, 8L, 0L, 0x3F)
</PRE><A NAME="933228"><PRE> .
</PRE><A NAME="933229"><PRE> .
</PRE><A NAME="933195"><PRE> .
</PRE><a name="933559">
<h2>4.13 PD_DEFNCV</h2>
</a>
<A NAME="933562"><PRE><B>
</B></PRE><A NAME="933563"><PRE><B>defstr *</a>PD_defncv(PDBfile *file,
</B></PRE><A NAME="933565"><PRE><B> char *name,
</B></PRE><A NAME="933566"><PRE><B> long bytespitem,
</B></PRE><A NAME="933569"><PRE><B> int align)
</B></PRE><a name="933570">
</a>Define a primitive type that will not undergo format conversion from platform to platform in the PDB file specified by <em>file</em>. Certain data types commonly defined in C programs are used as flags or character holders. With such data types the actual bit pattern contains the meaningful information. This information would be lost under a data conversion operation. This function provides users with a means to define primitive types which will not be converted under any circumstances and therefore preserve the meaningful bit patterns which constitute the intended data.<p>
</a>
<a name="933571">
Input to </a>PD_defncv is: <em>file</em>, a pointer to a PDBfile; name, an ASCII string containing the name of the new data type; bytespitem, the number of bytes required for 1 item of the new type; and align, the byte alignment for the type.<p>
</a>
<a name="933573">
Compare this information with that found in the discussion of data conversion later in this manual.<p>
</a>
<a name="933574">
A pointer to the new type’s defstr is returned if the call is successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="933575">
<p>
</a>
<A NAME="933576"><PRE><B>defstr *PD_defncv(PDBfile *file,
</B></PRE><A NAME="933577"><PRE><B> char *name,
</B></PRE><A NAME="933578"><PRE><B> long bytespitem,
</B></PRE><a name="933580">
int align)<p>
</a>
<A NAME="933581"><B>
</B><HR><A NAME="933582"><PRE> #include “pdb.h”
</PRE><A NAME="933583"><PRE>
</PRE><A NAME="933584"><PRE> PDBfile *file;
</PRE><A NAME="933586"><PRE> defstr *ptr;
</PRE><A NAME="933587"><PRE> .
</PRE><A NAME="933588"><PRE> .
</PRE><A NAME="933589"><PRE> .
</PRE><A NAME="933590"><PRE> /* define a type like the FORTRAN character*8 */
</PRE><A NAME="933567"><PRE> ptr = </a>PD_defncv(file, “char_8”, 8, 1);
</PRE><A NAME="933591"><PRE> .
</PRE><A NAME="935810"><PRE> .
</PRE><A NAME="933592"><PRE> .
</PRE><a name="933720">
<h2>4.14 PD_DEFSTR</h2>
</a>
<A NAME="933726"><PRE><B>
</B></PRE><A NAME="932622"><PRE><B>defstr *</a>PD_defstr(PDBfile *file,
</B></PRE><A NAME="932623"><PRE><B> char *name,
</B></PRE><A NAME="932625"><PRE><B> char *mem1, ..., memn,
</B></PRE><A NAME="932624"><PRE><B> int *LAST)
</B></PRE><a name="933736">
</a>Define a data </a>structure for a PDB file. As a matter of programming efficiency and clarity it is useful to be able to refer to more complex structural units than the primitive types: short integers, integers, long integers, floating point numbers, double precision floating point numbers, and characters. Arrays do this in a very simple-minded way. Many modern languages support extended types or structures which allow the programmer to group diverse types of data together in a very sophisticated way.<p>
</a>
<a name="933746">
PDBLib supports an extended data typing mechanism called a structure. A </a>structure is a set of declarations of members. Each member is in turn a data type known to the system. Much of the style and usage of structures comes from the C struct. Because of the memory management features upon which PDBLib now depends, even members whose types are pointers are allowed. The only </a>restrictions on member types are that they not be function pointers and that they be expressible without parentheses. Again any member which is a pointer must have its memory allocated by a SCORE </a>memory management function or macro. See the Memory Management section near the beginning of this manual. <p>
</a>
<a name="933758">
</a>PD_defstr defines structures to the PDB system so that they can be read and written as a whole in a single statement. The members of the </a>structure are processed and an entry in the structure chart is made. Then subsequent references to the new structure type are processed using information from the structure chart. The syntax by which members of a structure are specified is like that for C structs. The formal definition is given below ([ ] enclose optional elements). </a>Self-referential structures are allowed providing the reference is through pointers (like C). The actual type name is used in the reference since PDBLib checks that all member types are already known or are the type being defined.<p>
</a>
<dl>
<a name="933761">
<dt>
</a>
<a name="932523">
<dt> <member> := <type> [*...*]<member name>[(<dimensions>)]
</a>
<a name="933763">
<dt> <type> := <primitive type> | <derived type>
</a>
<a name="933766">
<dt> <member name> := an ascii string representing the name of the member
</a>
<a name="933768">
<dt> <primitive type> := short | integer | long | float | double | char
</a>
<a name="933770">
<dt> <derived type> := any </a>PD_defstr’d type
</a>
<a name="933773">
<dt> <dimensions> := <integer> |
</a>
<a name="933620">
<dt> <integer : integer> |
</a>
<a name="933621">
<dt> <integer>, <dimensions> |
</a>
<a name="932524">
<dt> <integer : integer> <dimensions>
</a>
<a name="933782">
Dimensions can be given in two ways. If the default offset value for the PDB file can be taken as the minimum value for the range which a dimension index can legally run, the maximum value may be specified alone. Alternatively, the minimum value followed by a colon and the maximum value may be specified. For example,<p>
</a>
<a name="933785">
<dd> integer a(30,1:10)<P>
</a>
<a name="933791">
The arguments to </a>PD_defstr are: file, a pointer to a PDBfile; name, an ASCII string containing the name of the data structure type in the PDB file; and memi, a list of ASCII strings each representing the declaration of a member of a </a>structure are defined above. LAST must terminate the list of members.<p>
</a>
<a name="933612">
The return value is a pointer to the entry made in the structure chart if the call is successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="933793">
<p>
</a>
<a name="933799">
<p>
</a>
<a name="932626">
defstr *PD_defstr(PDBfile *file,<p>
</a>
<a name="932627">
char *name,<p>
</a>
<a name="932628">
char *mem1, ..., memn,<p>
</a>
<a name="932629">
int *LAST)<p>
</a>
<A NAME="933805"><B>
</B><HR><A NAME="933808"><PRE> #include “pdb.h”
</PRE><A NAME="933809"><PRE>
</PRE><A NAME="933810"><PRE> PDBfile *file;
</PRE><A NAME="933811"><PRE> defstr *ptr;
</PRE><A NAME="933812"><PRE> struct sample
</PRE><A NAME="933813"><PRE> {float x[20];
</PRE><A NAME="933814"><PRE> float y[20];
</PRE><A NAME="933815"><PRE> int number;};
</PRE><A NAME="933816"><PRE> .
</PRE><A NAME="933817"><PRE> .
</PRE><A NAME="933818"><PRE> .
</PRE><A NAME="933819"><PRE> ptr = </a>PD_defstr(file, “sample”, “float x(20)”, “float y(20)”,
</PRE><A NAME="933820"><PRE> “int number”, LAST);
</PRE><A NAME="933821"><PRE> .
</PRE><A NAME="933822"><PRE> .
</PRE><A NAME="933823"><PRE> .
</PRE></dl>
<a name="934412">
<h2>4.15 PD_DEFSTR_ALT</h2>
</a>
<A NAME="934413"><PRE><B>
</B></PRE><a name="934498">
defstr *</a>PD_defstr_alt(PDBfile *file,<p>
</a>
<a name="934499">
char *name,<p>
</a>
<a name="934500">
int nmemb,<p>
</a>
<a name="934501">
char **members)<p>
</a>
<a name="934446">
</a>Define a data </a>structure for a PDB file. As a matter of programming efficiency and clarity it is useful to be able to refer to more complex structural units than the primitive types: short integers, integers, long integers, floating point numbers, double precision floating point numbers, and characters. Arrays do this in a very simple-minded way. Many modern languages support extended types or structures which allow the programmer to group diverse types of data together in a very sophisticated way.<p>
</a>
<a name="934447">
PDBLib supports an extended data typing mechanism called a structure. A </a>structure is a set of declarations of members. Each member is in turn a data type known to the system. Much of the style and usage of structures comes from the C struct. Because of the memory management features upon which PDBLib now depends, even members whose types are pointers are allowed. The only </a>restrictions on member types are that they not be function pointers and that they be expressible without parentheses. Again any member which is a pointer must have its memory allocated by a SCORE </a>memory management function or macro. See the Memory Management section near the beginning of this manual. <p>
</a>
<a name="934448">
</a>PD_defstr defines structures to the PDB system so that they can be read and written as a whole in a single statement. The members of the </a>structure are processed and an entry in the structure chart is made. Then subsequent references to the new structure type are processed using information from the structure chart. The syntax by which members of a structure are specified is like that for C structs. The formal definition is given below ([ ] enclose optional elements). </a>Self-referential structures are allowed providing the reference is through pointers (like C). The actual type name is used in the reference since PDBLib checks that all member types are already known or are the type being defined.<p>
</a>
<dl>
<a name="934449">
<dt>
</a>
<a name="934450">
<dt> <member> := <type> [*...*]<member name>[(<dimensions>)]
</a>
<a name="934451">
<dt> <type> := <primitive type> | <derived type>
</a>
<a name="934452">
<dt> <member name> := an ascii string representing the name of the member
</a>
<a name="934453">
<dt> <primitive type> := short | integer | long | float | double | char
</a>
<a name="934454">
<dt> <derived type> := any </a>PD_defstr’d type
</a>
<a name="934455">
<dt> <dimensions> := <integer> |
</a>
<a name="934456">
<dt> <integer : integer> |
</a>
<a name="934457">
<dt> <integer>, <dimensions> |
</a>
<a name="934458">
<dt> <integer : integer> <dimensions>
</a>
<a name="934459">
Dimensions can be given in two ways. If the default offset value for the PDB file can be taken as the minimum value for the range which a dimension index can legally run, the maximum value may be specified alone. Alternatively, the minimum value followed by a colon and the maximum value may be specified. For example,<p>
</a>
<a name="934460">
<dd> integer a(30,1:10)<P>
</a>
<a name="934461">
The arguments to </a>PD_defstr are: file, a pointer to a PDBfile; name, an ASCII string containing the name of the data structure type in the PDB file; nmemb, an integer number of strings in the members array; and members, an array of ASCII strings each representing the declaration of a member of a </a>structure are defined above.<p>
</a>
<a name="934462">
The return value is a pointer to the entry made in the structure chart if the call is successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="934463">
<p>
</a>
<a name="934464">
<p>
</a>
<a name="934465">
defstr *</a>PD_defstr_alt(PDBfile *file,<p>
</a>
<a name="934466">
char *name,<p>
</a>
<a name="934468">
int nmemb,<p>
</a>
<a name="934467">
char **members)<p>
</a>
<A NAME="934469"><B>
</B><HR><A NAME="934470"><PRE> #include “pdb.h”
</PRE><A NAME="934471"><PRE>
</PRE><A NAME="934472"><PRE> PDBfile *file;
</PRE><A NAME="934473"><PRE> defstr *ptr;
</PRE><A NAME="934497"><PRE> char **members;
</PRE><A NAME="934475"><PRE> struct sample
</PRE><A NAME="934476"><PRE> {float x[20];
</PRE><A NAME="934477"><PRE> float y[20];
</PRE><A NAME="934478"><PRE> int number;};
</PRE><A NAME="934479"><PRE> .
</PRE><A NAME="934480"><PRE> .
</PRE><A NAME="934481"><PRE> .
</PRE><A NAME="934489"><PRE> members = MAKE_N(char *, 3);
</PRE><A NAME="934490"><PRE> members[0] = SC_strsave(“float x[20]”);
</PRE><A NAME="934491"><PRE> members[1] = SC_strsave(“float y[20]”);
</PRE><A NAME="934492"><PRE> members[2] = SC_strsave(“integer number”);
</PRE><A NAME="934483"><PRE> ptr = </a>PD_defstr_alt(file, “sample”, 3, members);
</PRE><A NAME="934484"><PRE>
</PRE><A NAME="934493"><PRE> SFREE(members[0]);
</PRE><A NAME="934494"><PRE> SFREE(members[1]);
</PRE><A NAME="934495"><PRE> SFREE(members[3]);
</PRE><A NAME="934496"><PRE> SFREE(members);
</PRE><A NAME="934485"><PRE> .
</PRE><A NAME="934486"><PRE> .
</PRE><A NAME="934487"><PRE> .
</PRE></dl>
<a name="935904">
<h2>4.16 PD_FAMILY</h2>
</a>
<A NAME="935907"><PRE><B>
</B></PRE><A NAME="935970"><PRE><B>PDBfile *</a>PD_family(PDBfile *file, int flag)
</B></PRE><a name="935971">
This function checks to see whether the specified file has exceeded it size limit. If it has a new file is opened and returns. If not the given file pointer is returned. The flag is set to TRUE if you want </a>PD_family to close the file it is given. Otherwise the application is responsible for closing the file<p>
</a>
<a name="935985">
The arguments to this function are: file, the pointer to the PDBfile structure returned by a previous call to </a>PD_open; and flag an integer value (either TRUE or FALSE).<p>
</a>
<a name="935990">
This function returns a pointer to a PDBfile.<p>
</a>
<a name="935995">
<p>
</a>
<a name="935996">
PDBfile *</a>PD_family(PDBfile *file, int flag)<p>
</a>
<A NAME="935997"><B>
</B><HR><A NAME="935998"><PRE> #include “pdb.h”
</PRE><A NAME="935999"><PRE>
</PRE><A NAME="936000"><PRE> PDBfile *old, *new;
</PRE><A NAME="936001"><PRE> .
</PRE><A NAME="936003"><PRE> .
</PRE><A NAME="936004"><PRE> .
</PRE><A NAME="936005"><PRE> new = PD_family(old, FALSE);
</PRE><A NAME="935323"><PRE> if (new != old)
</PRE><A NAME="935324"><PRE> {PD_close(old);
</PRE><A NAME="935325"><PRE> .
</PRE><A NAME="935524"><PRE> .
</PRE><A NAME="935811"><PRE> .
</PRE><A NAME="935972"><PRE> old = new;};
</PRE><A NAME="936008"><PRE> .
</PRE><A NAME="936009"><PRE> .
</PRE><A NAME="936010"><PRE> .
</PRE><a name="933831">
<h2>4.17 PD_FLUSH</h2>
</a>
<A NAME="934268"><PRE><B>
</B></PRE><A NAME="934275"><PRE><B>int </a>PD_flush(PDBfile *file)
</B></PRE><a name="934277">
This function writes out the information which describes the </a>contents of the PDB file specified. Normally, </a>PD_close calls this routine, but applications that want to protect themselves from system failures or other problems may chose to periodically use this function. After a successful return and until or unless more data is written to the file or space reserved for future writes, the PDB file is valid in the sense that if the application terminates unexpectedly before calling PD_close, the file can be </a>PD_open’d successfully.<p>
</a>
<a name="934276">
NOTE: this call does NOT obviate PD_close!<p>
</a>
<a name="934278">
The argument to this function is file, the pointer to the PDBfile structure returned by a previous call to PD_open.<p>
</a>
<a name="934279">
This function returns TRUE if successful and FALSE otherwise.<p>
</a>
<a name="934281">
<p>
</a>
<a name="934282">
int </a>PD_flush(PDBfile *file)<p>
</a>
<A NAME="934283"><B>
</B><HR><A NAME="934284"><PRE> #include “pdb.h”
</PRE><A NAME="934285"><PRE>
</PRE><A NAME="934286"><PRE> PDBfile *file;
</PRE><A NAME="934287"><PRE> .
</PRE><A NAME="934288"><PRE> .
</PRE><A NAME="934289"><PRE> .
</PRE><A NAME="934290"><PRE> if (</a>PD_flush(file) == FALSE)
</PRE><A NAME="934291"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="934292"><PRE> .
</PRE><A NAME="934293"><PRE> .
</PRE><A NAME="934280"><PRE> .
</PRE><a name="934559">
<h2>4.18 PD_GET_ATTRIBUTE</h2>
</a>
<A NAME="934560"><PRE><B>
</B></PRE><A NAME="934561"><PRE><B>void *</a>PD_get_attribute(PDBfile *file,
</B></PRE><A NAME="934562"><PRE><B> char *vr,
</B></PRE><A NAME="934567"><PRE><B> char *attr)
</B></PRE><a name="934564">
</a>Return the value of the specified </a>attribute for the named entity.<p>
</a>
<a name="934563">
The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by calling </a>PD_set_attribute. The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934565">
Attribute values are always assigned by </a>reference and </a>PD_get_attribute returns them the same way. The application may have to make a cast on the returned pointer.<p>
</a>
<a name="934566">
The arguments to this function are: file, a pointer to a PDBfile; vr, an ASCII string containing the name of an entity in the PDB file; and attr, an ASCII string containing the name of the attribute being sought.<p>
</a>
<a name="934579">
The return value is a pointer to the value of the attribute if one exists and NULL otherwise.<p>
</a>
<a name="934568">
See also </a>PD_def_attribute, </a>PD_rem_attribute, and </a>PD_set_attribute.<p>
</a>
<a name="934946">
<p>
</a>
<A NAME="934924"><PRE><B>void *</a>PD_get_attribute(PDBfile *file,
</B></PRE><A NAME="934966"><PRE><B> char *vr,
</B></PRE><A NAME="934967"><PRE><B> char *attr)
</B></PRE><A NAME="934951"><B>
</B><HR><A NAME="934952"><PRE> #include “pdb.h”
</PRE><A NAME="934953"><PRE>
</PRE><A NAME="934954"><PRE> PDBfile *file;
</PRE><A NAME="934947"><PRE> char *dt;
</PRE><A NAME="934955"><PRE> .
</PRE><A NAME="934957"><PRE> .
</PRE><A NAME="934958"><PRE> .
</PRE><A NAME="934959"><PRE> dt = (char *) </a>PD_get_attribute(file, “foo”, “date”);
</PRE><A NAME="934960"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="934961"><PRE> .
</PRE><A NAME="934962"><PRE> .
</PRE><A NAME="934964"><PRE> .
</PRE><a name="935459">
<h2>4.19 PD_LN</h2>
</a>
<A NAME="935460"><PRE><B>
</B></PRE><A NAME="935462"><PRE><B>int </a>PD_ln(PDBfile *file,
</B></PRE><A NAME="935464"><PRE><B> char *var,
</B></PRE><A NAME="935498"><PRE><B> char *link)
</B></PRE><a name="935465">
</a>Create a link to a variable in the specified PDB file.<p>
</a>
<a name="935467">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935468">
The arguments to </a>PD_ln are: file, a pointer to a PDBfile; var, an ASCII string containing the path name of an existing variable; and link, an ASCII string containing the path name of the new link.<p>
</a>
<a name="935469">
The return value is a TRUE if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="935470">
See also </a>PD_cd, </a>PD_ls, </a>PD_mkdir, and </a>PD_pwd.<p>
</a>
<a name="935471">
<p>
</a>
<a name="935472">
int </a>PD_ln(PDBfile *file,<p>
</a>
<a name="935473">
char *var,<p>
</a>
<a name="935499">
char *link)<p>
</a>
<A NAME="935474"><B>
</B><HR><A NAME="935475"><PRE> #include “pdb.h”
</PRE><A NAME="935476"><PRE>
</PRE><A NAME="935477"><PRE> PDBfile *file;
</PRE><A NAME="935478"><PRE> .
</PRE><A NAME="935479"><PRE> .
</PRE><A NAME="935480"><PRE> .
</PRE><A NAME="935481"><PRE> if (</a>PD_ln(file, “/animals/mammals/chimpanzee”, “/chimp”) == FALSE)
</PRE><A NAME="935483"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935484"><PRE> .
</PRE><A NAME="935486"><PRE> .
</PRE><A NAME="935492"><PRE> .
</PRE><a name="935493">
<h2>4.20 PD_LS</h2>
</a>
<A NAME="935494"><PRE><B>
</B></PRE><A NAME="935495"><PRE><B>char **PD_ls(PDBfile *file,
</B></PRE><A NAME="935496"><PRE><B> char *path,
</B></PRE><A NAME="935526"><PRE><B> char *type,
</B></PRE><A NAME="935497"><PRE><B> int *num)
</B></PRE><a name="935501">
</a>Return a list of names of entries (variables and directories) in PDB file file that are of type type and that are in the </a>directory and match the variable name pattern specified by path.<p>
</a>
<a name="935542">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935527">
The arguments to </a>PD_ls are: file, a pointer to a PDBfile; <em>path</em>, an ASCII string containing the path name of the directory to search and/or the variable name pattern to match; <em>type</em>, an ASCII string containing the type of entries to return; and num, a pointer to an integer to contain the number of entries returned.<p>
</a>
<a name="935530">
If path is NULL, the contents of the </a>current directory are listed. If type is NULL, all types are returned.<p>
</a>
<a name="935500">
The terminal node of path may contain meta characters “*” and “?”. Each “*” matches any zero or more characters and each “?” matches any single character.<p>
</a>
<a name="935503">
For the sake of efficiency, the returned names are not duplicated. That is, the caller should not free the space associated with each of the individual strings, but should free the char ** pointer. This should be done using the SFREE macro as shown in the example.<p>
</a>
<a name="935502">
The return value is a pointer to an array of strings, if successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="935504">
See also </a>PD_cd, </a>PD_ln, </a>PD_mkdir, and </a>PD_pwd.<p>
</a>
<a name="935505">
<p>
</a>
<a name="935506">
int </a>PD_ls(PDBfile *file,<p>
</a>
<a name="935507">
char *path,<p>
</a>
<a name="935509">
char *type,<p>
</a>
<a name="935531">
int *num)<p>
</a>
<A NAME="935510"><B>
</B><HR><A NAME="935511"><PRE> #include “pdb.h”
</PRE><A NAME="935512"><PRE>
</PRE><A NAME="935513"><PRE> PDBfile *file;
</PRE><A NAME="935543"><PRE> char **list;
</PRE><A NAME="935580"><PRE> int num;
</PRE><A NAME="935514"><PRE> .
</PRE><A NAME="935516"><PRE> .
</PRE><A NAME="935517"><PRE> .
</PRE><A NAME="935518"><PRE> /* get a list of all directories in the current directory */
</PRE><A NAME="935519"><PRE> list = </a>PD_ls(file, NULL, “Directory”, &num);
</PRE><A NAME="935521"><PRE> if (list == NULL)
</PRE><A NAME="935522"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935523"><PRE> .
</PRE><A NAME="935541"><PRE> .
</PRE><A NAME="935544"><PRE> .
</PRE><A NAME="935545"><PRE> SFREE(list);
</PRE><A NAME="935546"><PRE> .
</PRE><A NAME="935548"><PRE> .
</PRE><A NAME="935549"><PRE> .
</PRE><A NAME="935550"><PRE> /* get a list of the variables of type char * in directory animals */
</PRE><A NAME="935551"><PRE> list = </a>PD_ls(file, “animals”, “char *”, &num);
</PRE><A NAME="935553"><PRE> if (list == NULL)
</PRE><A NAME="935554"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935555"><PRE> .
</PRE><A NAME="935556"><PRE> .
</PRE><A NAME="935559"><PRE> .
</PRE><A NAME="935560"><PRE> SFREE(list);
</PRE><A NAME="935577"><PRE> .
</PRE><A NAME="935578"><PRE> .
</PRE><A NAME="935579"><PRE> .
</PRE><a name="935581">
<h2>4.21 PD_MKDIR</h2>
</a>
<A NAME="935583"><PRE><B>
</B></PRE><A NAME="935584"><PRE><B>int </a>PD_mkdir(PDBfile *file,
</B></PRE><A NAME="935594"><PRE><B> char *dirname)
</B></PRE><a name="935595">
</a>Create a new directory in the specified PDB file.<p>
</a>
<a name="935596">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935597">
The arguments to </a>PD_mkdir are: file, a pointer to a PDBfile and dirname, an ASCII string containing the path name of the new directory.<p>
</a>
<a name="935593">
The </a>root directory, “/”, does not have to be created.<p>
</a>
<a name="935598">
The return value is a TRUE if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="935599">
See also </a>PD_cd, </a>PD_ln, </a>PD_ls, and </a>PD_pwd.<p>
</a>
<a name="935600">
<p>
</a>
<a name="935602">
int </a>PD_mkdir(PDBfile *file,<p>
</a>
<a name="935604">
char *dirname)<p>
</a>
<A NAME="935605"><B>
</B><HR><A NAME="935606"><PRE> #include “pdb.h”
</PRE><A NAME="935607"><PRE>
</PRE><A NAME="935608"><PRE> PDBfile *file;
</PRE><A NAME="935609"><PRE> .
</PRE><A NAME="935610"><PRE> .
</PRE><A NAME="935611"><PRE> .
</PRE><A NAME="935612"><PRE> if (</a>PD_mkdir(file, “/animals/mammals) == FALSE)
</PRE><A NAME="935613"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935614"><PRE> .
</PRE><A NAME="935615"><PRE> .
</PRE><A NAME="935616"><PRE> .
</PRE><a name="934232">
<h2>4.22 PD_OPEN</h2>
</a>
<A NAME="933834"><PRE><B>
</B></PRE><A NAME="932630"><PRE><B>PDBfile *</a>PD_open(char *filename,
</B></PRE><A NAME="932631"><PRE><B> char *mode)
</B></PRE><a name="933848">
</a>Open an existing PDB file or </a>create a new PDB file. Depending on the value of the mode argument, PDBLib attempts to open the file filename in read-only binary mode, open the file in append binary </a>mode, or create a new file in read-write binary mode. Any string which begins with “</a>r” causes the file to be opened in </a>read-only mode, any string beginning with “</a>a” causes the file to be opened in </a>append mode, and any string beginning with “</a>w” causes a file to be </a>created in </a>read-write mode. Next the beginning of the file is searched for the header which identifies the file as having been generated by PDBLib. The addresses of the structure chart and symbol table are then sought.<p>
</a>
<a name="933857">
The structure chart from the file is read in. The structure chart contains information about data types (e.g. floats), their sizes in bytes and their structures if any. By default there are six </a>primitive </a>data types that PDBLib knows about: short integers, integers, long integers, floating point numbers, double precision floating point numbers, characters, and pointers. The sizes of these types varies from machine to machine, but PDBLib hides this from the user.<p>
</a>
<a name="933863">
The symbol table from the file is read in. The symbol table contains the list of variables in the file, their types as defined in the structure chart, and dimensioning information for arrays. Each read from the file first consults the symbol table to see if the requested variable is present in the PDB file.<p>
</a>
<a name="933868">
Both the structure chart and the symbol table are implemented as hash tables, although their shapes are different. This makes lookups as efficient as possible given an unknown amount of data in the file.<p>
</a>
<a name="933871">
The arguments to </a>PD_open are: filename, an ASCII string, which is the name of the file to be created or opened; and mode, an ASCII string, which is the mode (either “w” for create, “r” for read-only or “a” for append).<p>
</a>
<a name="933878">
The function returns a pointer to a PDBfile. This PDBfile identifies the particular file to PDBLib. As such, if it is overwritten the file is lost. The number of PDB files which can be open simultaneously is machine or operating system dependent, but each open file has a unique PDBfile associated with it.<p>
</a>
<a name="933881">
If any aspect of the PDB file opening process fails a NULL pointer is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="933884">
<p>
</a>
<a name="932633">
PDBfile *</a>PD_open(char *filename,<p>
</a>
<a name="932634">
char *mode)<p>
</a>
<A NAME="933889"><B>
</B><HR><A NAME="933893"><PRE> #include “pdb.h”
</PRE><A NAME="933894"><PRE>
</PRE><A NAME="933895"><PRE> PDBfile *file;
</PRE><A NAME="933896"><PRE> .
</PRE><A NAME="933897"><PRE> .
</PRE><A NAME="933898"><PRE> .
</PRE><A NAME="933899"><PRE> if ((file = </a>PD_open(“filenam”, “r”)) == NULL)
</PRE><A NAME="933900"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933901"><PRE> .
</PRE><A NAME="933902"><PRE> .
</PRE><A NAME="933903"><PRE> .
</PRE><a name="935603">
<h2>4.23 PD_PWD</h2>
</a>
<A NAME="935617"><PRE><B>
</B></PRE><A NAME="935618"><PRE><B>char *PD_pwd(PDBfile *file)
</B></PRE><a name="935620">
</a>Return the </a>current </a>directory for the specified PDB file.<p>
</a>
<a name="935621">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935622">
The argument to </a>PD_pwd is file, a pointer to a PDBfile.<p>
</a>
<a name="935619">
If no directory has been created, “/” is returned.<p>
</a>
<a name="935624">
The return value is a pointer to a string containing the path name of the current directory if successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="935625">
See also </a>PD_cd, </a>PD_ln, </a>PD_ls, and </a>PD_mkdir.<p>
</a>
<a name="935626">
<p>
</a>
<a name="935627">
int </a>PD_pwd(PDBfile *file)<p>
</a>
<A NAME="935629"><B>
</B><HR><A NAME="935630"><PRE> #include “pdb.h”
</PRE><A NAME="935631"><PRE>
</PRE><A NAME="935632"><PRE> PDBfile *file;
</PRE><A NAME="935623"><PRE> char *dirname;
</PRE><A NAME="935633"><PRE> .
</PRE><A NAME="935635"><PRE> .
</PRE><A NAME="935636"><PRE> .
</PRE><A NAME="935637"><PRE> if ((dirname = </a>PD_pwd(file)) == NULL)
</PRE><A NAME="935638"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935639"><PRE> .
</PRE><A NAME="935640"><PRE> .
</PRE><A NAME="935641"><PRE> .
</PRE><a name="933911">
<h2>4.24 PD_READ</h2>
</a>
<A NAME="933914"><PRE><B>
</B></PRE><A NAME="932635"><PRE><B>int </a>PD_read(PDBfile *file,
</B></PRE><A NAME="932636"><PRE><B> char *name,
</B></PRE><A NAME="932637"><PRE><B> void *var)
</B></PRE><a name="933921">
</a>Read all or part of a data entry from an open PDB file. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by var.<p>
</a>
<a name="933057">
The arguments to </a>PD_read are: file, a pointer to a PDBfile which designates the PDB file from which to attempt the read; name, an ASCII string containing the specification of data to be read; and var, a pointer to the location where the data is to be placed.<p>
</a>
<a name="932809">
Note: In each </a>PD_read operation, the type of var must be a pointer to the type of the variable name.<p>
</a>
<a name="933053">
Note: PDBLib can only read part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="933929">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="933933">
The return value is TRUE, if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="934226">
See also </a>PD_read_alt, </a>PD_read_as, </a>PD_read_as_alt.<p>
</a>
<a name="933939">
<p>
</a>
<a name="932639">
int </a>PD_read(PDBfile *file,<p>
</a>
<a name="932641">
char *name,<p>
</a>
<a name="932642">
void *var)<p>
</a>
<A NAME="933944"><B>
</B><HR><A NAME="933948"><PRE> #include “pdb.h”
</PRE><A NAME="933949"><PRE>
</PRE><A NAME="933950"><PRE> PDBfile *file;
</PRE><A NAME="933951"><PRE> float x[20];
</PRE><A NAME="933952"><PRE> .
</PRE><A NAME="933953"><PRE> .
</PRE><A NAME="933954"><PRE> .
</PRE><A NAME="933955"><PRE> if (</a>PD_read(file, “x”, x) == FALSE)
</PRE><A NAME="933956"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933957"><PRE> .
</PRE><A NAME="933958"><PRE> .
</PRE><A NAME="933959"><PRE> .
</PRE><a name="932648">
<h2>4.25 PD_READ_ALT</h2>
</a>
<A NAME="932649"><PRE><B>
</B></PRE><A NAME="932650"><PRE><B>int </a>PD_read_alt(PDBfile *file,
</B></PRE><A NAME="932651"><PRE><B> char *name,
</B></PRE><A NAME="932652"><PRE><B> void *var,
</B></PRE><A NAME="932653"><PRE><B> long *ind)
</B></PRE><a name="932654">
</a>Read all or part of a data entry from an open PDB file. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by var.<p>
</a>
<a name="932676">
The arguments to </a>PD_read_alt are: file, a pointer to a PDBfile which designates the PDB file from which to attempt the read; name, an ASCII string containing the specification of the data to be read; var, a pointer to the location where the data is to be placed; and ind, an array of long integers consisting of three indexes (start, stop, and step) for each dimension of the entry.<p>
</a>
<a name="932677">
Note: In each </a>PD_read_alt operation, the type of var must be a pointer to the type of the variable name.<p>
</a>
<a name="933937">
Note: PDBLib can only read part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="932678">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="932680">
The return value is TRUE, if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="934225">
See also </a>PD_read, </a>PD_read_as, </a>PD_read_as_alt.<p>
</a>
<a name="932681">
<p>
</a>
<a name="932682">
int </a>PD_read_alt(PDBfile *file,<p>
</a>
<a name="932683">
char *name,<p>
</a>
<a name="932684">
void *var,<p>
</a>
<a name="932685">
long *ind)<p>
</a>
<A NAME="932686"><B>
</B><HR><A NAME="932986"><PRE> #include “pdb.h”
</PRE><A NAME="932990"><PRE>
</PRE><A NAME="932991"><PRE> PDBfile *file;
</PRE><A NAME="932995"><PRE> long ind[3];
</PRE><A NAME="932996"><PRE> float x[20];
</PRE><A NAME="932997"><PRE> .
</PRE><A NAME="932998"><PRE> .
</PRE><A NAME="933000"><PRE> .
</PRE><A NAME="933040"><PRE> ind[0] = 3;
</PRE><A NAME="933044"><PRE> ind[1] = 18;
</PRE><A NAME="933334"><PRE> ind[2] = 2;
</PRE><A NAME="933335"><PRE> if (</a>PD_read_alt(file, “x”, x, ind) == FALSE)
</PRE><A NAME="933336"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933337"><PRE> .
</PRE><A NAME="933338"><PRE> .
</PRE><A NAME="933339"><PRE> .
</PRE><a name="932598">
<h2>4.26 PD_READ_AS</h2>
</a>
<A NAME="932600"><PRE><B>
</B></PRE><A NAME="932601"><PRE><B>int </a>PD_read_as(PDBfile *file,
</B></PRE><A NAME="932602"><PRE><B> char *name,
</B></PRE><A NAME="932603"><PRE><B> char *type,
</B></PRE><A NAME="933098"><PRE><B> void *var)
</B></PRE><a name="932604">
</a>Read data from an open PDB file. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used with the type specified by type to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by var. The type specified overrides the type in the symbol table entry as far as deciding on data conversions goes.<p>
</a>
<a name="933099">
This function is generally used to read floats as doubles and so on. However with sufficient care and understanding of both the file data and C data structuring, it can be used to transmute structured data.<p>
</a>
<a name="932606">
The arguments to </a>PD_read_as are: file, a pointer to a PDBfile which designates the PDB file from which to attempt the read; name, an ASCII string containing the specification for the data to be read;<em> type</em>, an ASCII string containing the type of the data desired; and var, a pointer to the location where the data is to be placed.<p>
</a>
<a name="932607">
Note: In each </a>PD_read_as operation, the type of var must be a pointer to the type specified by type.<p>
</a>
<a name="934313">
Note: PDBLib can only read part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="932608">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="932609">
The return value is TRUE, if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="934212">
See also </a>PD_read, </a>PD_read_alt, </a>PD_read_as_alt.<p>
</a>
<a name="932610">
<p>
</a>
<a name="933067">
int </a>PD_read_as(PDBfile *file,<p>
</a>
<a name="933069">
char *name,<p>
</a>
<a name="933072">
char *type,<p>
</a>
<a name="933095">
void *var)<p>
</a>
<A NAME="933075"><B>
</B><HR><A NAME="933077"><PRE> #include “pdb.h”
</PRE><A NAME="933078"><PRE>
</PRE><A NAME="933079"><PRE> PDBfile *file;
</PRE><A NAME="933081"><PRE> float x[20];
</PRE><A NAME="933082"><PRE> .
</PRE><A NAME="933083"><PRE> .
</PRE><A NAME="933085"><PRE> .
</PRE><A NAME="933086"><PRE> /* x is a double in the file */
</PRE><A NAME="933096"><PRE> if (</a>PD_read_as(file, “x”, “float”, x) == FALSE)
</PRE><A NAME="933087"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933090"><PRE> .
</PRE><A NAME="933092"><PRE> .
</PRE><A NAME="933094"><PRE> .
</PRE><A NAME="932526"><PRE>
</PRE><a name="932862">
<h2>4.27 PD_READ_AS_ALT</h2>
</a>
<A NAME="932870"><PRE><B>
</B></PRE><A NAME="933045"><PRE><B>int </a>PD_read_as_alt(PDBfile *file,
</B></PRE><A NAME="933049"><PRE><B> char *name,
</B></PRE><A NAME="933050"><PRE><B> char *type,
</B></PRE><A NAME="933051"><PRE><B> void *var,
</B></PRE><A NAME="933052"><PRE><B> long *ind)
</B></PRE><a name="933054">
</a>Read all or part of a data entry from an open PDB file. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used with the type specified by type to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by var. The type specified overrides the type in the symbol table entry as far as deciding on data conversions goes.<p>
</a>
<a name="933285">
This function is generally used to read floats as doubles and so on. However with sufficient care and understanding of both the file data and C data structuring, it can be used to transmute structured data.<p>
</a>
<a name="933309">
The arguments to </a>PD_read_as_alt are: file, a pointer to a PDBfile which designates the PDB file from which to attempt the read; name, an ASCII string containing the specification of the data to be read;<em> type</em>, an ASCII string containing the type of the data desired; var, a pointer to the location where the data is to be placed; and ind, an array of long integers consisting of three indexes (start, stop, and step) for each dimension of the entry.<p>
</a>
<a name="933310">
Note: In each </a>PD_read_as_alt operation, the type of var must be a pointer to the type specified by type.<p>
</a>
<a name="934314">
Note: PDBLib can only read part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="933311">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="933312">
The return value is TRUE, if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="933989">
See also </a>PD_read, </a>PD_read_as, </a>PD_read_alt.<p>
</a>
<a name="933313">
<p>
</a>
<A NAME="933314"><PRE><B>int </a>PD_read_as_alt(PDBfile *file,
</B></PRE><A NAME="933319"><PRE><B> char *name,
</B></PRE><A NAME="933320"><PRE><B> char *type,
</B></PRE><A NAME="933321"><PRE><B> void *var,
</B></PRE><A NAME="933322"><PRE><B> long *ind)
</B></PRE><A NAME="933323"><B>
</B><HR><A NAME="933324"><PRE> #include “pdb.h”
</PRE><A NAME="933325"><PRE>
</PRE><A NAME="933326"><PRE> PDBfile *file;
</PRE><A NAME="933327"><PRE> long ind[3];
</PRE><A NAME="933328"><PRE> float x[20];
</PRE><A NAME="933329"><PRE> .
</PRE><A NAME="933330"><PRE> .
</PRE><A NAME="933331"><PRE> .
</PRE><A NAME="933340"><PRE> ind[0] = 2;
</PRE><A NAME="933341"><PRE> ind[1] = 10;
</PRE><A NAME="933342"><PRE> ind[2] = 2;
</PRE><A NAME="933343"><PRE>
</PRE><A NAME="933344"><PRE> /* x is a double in the file */
</PRE><A NAME="933345"><PRE> if (</a>PD_read_as_alt(file, “x”, “float”, x, ind) == FALSE)
</PRE><A NAME="933346"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933572"><PRE> .
</PRE><A NAME="933579"><PRE> .
</PRE><A NAME="933593"><PRE> .
</PRE><a name="934188">
<h2>4.28 PD_RESET_PTR_LIST</h2>
</a>
<A NAME="936825"><PRE><B>
</B></PRE><A NAME="936827"><PRE><B>int </a>PD_reset_ptr_list(PDBfile *file)
</B></PRE><a name="936829">
Free the list of pointers which the PDB file file knows about. This includes both pointers in memory acquired during write operations and pointers in the file acquired during read operations.<p>
</a>
<a name="936830">
Rationale: When reading or writing indirectly referenced data, PDBLib, maintains an array of pointers encountered in write operations and an array of pointers encountered in read operations. This is done on a per file basis. These arrays are the basis on which PDBLIb can determine how to preserve the connectivity of data trees when they are moved between memory and files. Because of the difference between memory and disk files, it is important for applications to be able to clear out these arrays and start over. See the discussion on </a>Using Pointers earlier in the manual.<p>
</a>
<a name="936828">
The argument to this function is file a pointer to a PDBfile.<p>
</a>
<a name="936832">
The return value is TRUE if successful, and FALSE otherwise.<p>
</a>
<a name="936833">
<p>
</a>
<A NAME="936834"><PRE><B>int </a>PD_reset_ptr_list(PDBfile *file)
</B></PRE><A NAME="936835"><B>
</B><HR><A NAME="936836"><PRE> #include “pdb.h”
</PRE><A NAME="936837"><PRE>
</PRE><A NAME="936839"><PRE> PDBfile *file;
</PRE><A NAME="936840"><PRE> .
</PRE><A NAME="936841"><PRE> .
</PRE><A NAME="936842"><PRE> .
</PRE><A NAME="936843"><PRE> if (</a>PD_reset_ptr_list(file) == FALSE)
</PRE><A NAME="936844"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="936845"><PRE> .
</PRE><A NAME="936846"><PRE> .
</PRE><a name="934569">
<h2>4.29 PD_REM_ATTRIBUTE</h2>
</a>
<A NAME="934570"><PRE><B>
</B></PRE><A NAME="934571"><PRE><B>int </a>PD_rem_attribute(PDBfile *file,
</B></PRE><A NAME="934573"><PRE><B> char *attr)
</B></PRE><a name="934574">
</a>Remove the specified </a>attribute. Any entities which have a value for this </a>attribute will have it removed by PDBLib.<p>
</a>
<a name="934575">
The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by calling </a>PD_set_attribute. The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934577">
The arguments to this function are: file, a pointer to a PDBfile; and attr, an ASCII string containing the name of the attribute being removed.<p>
</a>
<a name="934578">
The return value is TRUE if successful, and FALSE otherwise.<p>
</a>
<a name="934572">
See also </a>PD_def_attribute, </a>PD_get_attribute, and </a>PD_set_attribute.<p>
</a>
<a name="934950">
<p>
</a>
<A NAME="934948"><PRE><B>int </a>PD_rem_attribute(PDBfile *file,
</B></PRE><A NAME="934993"><PRE><B> char *attr)
</B></PRE><A NAME="934976"><B>
</B><HR><A NAME="934977"><PRE> #include “pdb.h”
</PRE><A NAME="934979"><PRE>
</PRE><A NAME="934980"><PRE> PDBfile *file;
</PRE><A NAME="934981"><PRE> .
</PRE><A NAME="934986"><PRE> .
</PRE><A NAME="934987"><PRE> .
</PRE><A NAME="934988"><PRE> if (</a>PD_rem_attribute(file, “date”) == FALSE)
</PRE><A NAME="934989"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="934990"><PRE> .
</PRE><A NAME="934991"><PRE> .
</PRE><A NAME="934992"><PRE> .
</PRE><a name="934580">
<h2>4.30 PD_SET_ATTRIBUTE</h2>
</a>
<A NAME="934581"><PRE><B>
</B></PRE><A NAME="934582"><PRE><B>int </a>PD_set_attribute(PDBfile *file,
</B></PRE><A NAME="934583"><PRE><B> char *vr,
</B></PRE><A NAME="934585"><PRE><B> char *attr,
</B></PRE><A NAME="934598"><PRE><B> void *vl)
</B></PRE><a name="934593">
</a>Set the value of the specified </a>attribute for the named entity. Attribute values are always assigned by </a>reference.<p>
</a>
<a name="934592">
The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by calling </a>PD_set_attribute. The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934595">
The arguments to this function are: file, a pointer to a PDBfile; vr, an ASCII string containing the name of an entity in the PDB file; attr, an ASCII string containing the name of the attribute being set; and vl, a pointer to data whose type matches the attribute type.<p>
</a>
<a name="934596">
The return value is TRUE if successful and FALSE otherwise.<p>
</a>
<a name="934597">
See also </a>PD_def_attribute, </a>PD_rem_attribute, and </a>PD_get_attribute.<p>
</a>
<a name="934969">
<p>
</a>
<A NAME="934968"><PRE><B>int </a>PD_set_attribute(PDBfile *file,
</B></PRE><A NAME="935012"><PRE><B> char *vr,
</B></PRE><A NAME="935013"><PRE><B> char *attr,
</B></PRE><A NAME="935014"><PRE><B> void *vl)
</B></PRE><A NAME="934997"><B>
</B><HR><A NAME="934998"><PRE> #include “pdb.h”
</PRE><A NAME="934999"><PRE>
</PRE><A NAME="935000"><PRE> PDBfile *file;
</PRE><A NAME="935001"><PRE> char *dt;
</PRE><A NAME="935002"><PRE> .
</PRE><A NAME="935003"><PRE> .
</PRE><A NAME="935004"><PRE> .
</PRE><A NAME="935005"><PRE> dt = SC_strsave(“Mon March 23, 1921”);
</PRE><A NAME="934975"><PRE> if (</a>PD_set_attribute(file, “foo”, “date”, dt) == FALSE)
</PRE><A NAME="935007"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="935008"><PRE> .
</PRE><A NAME="935009"><PRE> .
</PRE><A NAME="935011"><PRE> .
</PRE><a name="934174">
<h2>4.31 PD_TARGET</h2>
</a>
<A NAME="934175"><PRE><B>
</B></PRE><A NAME="932671"><PRE><B>int </a>PD_target(data_standard *std,
</B></PRE><A NAME="932672"><PRE><B> data_alignment *align)
</B></PRE><a name="934186">
Write the next PDB file according to the specified data standard and alignment. PDBLib has a general binary data conversion mechanism called </a>parametrized </a>data </a>conversion (</a>PDC). The an integer type is described by one set of parameters and a floating point type is described by another. A general purpose conversion routine takes the description of the input type and a description of the desired output type and does the conversion. In this way, PDBLib avoids an N2 increase in data conversion routines as it ports to new machines. In fact, the number of data standards and alignments grows more slowly than N because many machines share common formats.<p>
</a>
<a name="934190">
An additional advantage to PDC is that by specifying a format involving the minimal number of bits to represent the data for a file, PDBLib can carry out a large class of </a>data </a>compressions.<p>
</a>
<a name="934196">
For programmer convenience, PDBLib carries several data standards and alignments. </a>Data standards: </a>IEEEA_STD, </a>IEEEB_STD, </a>IEEEC_STD, </a>INTELA_STD, </a>INTELB_STD, </a>VAX_STD, and </a>CRAY_STD. </a>Data </a>alignments: </a>DEF_ALIGNMENT, </a>SPARC_ALIGNMENT, </a>MIPS_ALIGNMENT, </a>M68000_ALIGNMENT, </a>INTEL_ALIGNMENT, and </a>CRAY_ALIGNMENT.<p>
</a>
<a name="934198">
Some common </a>configurations are:<p>
</a>
<dl>
<a name="934203">
<dt> Motorola - </a>PD_target(&IEEEA_STD, &M68000_ALIGNMENT)
</a>
<a name="934204">
<dt> SPARC - PD_target(&IEEEA_STD, &SPARC_ALIGNMENT)
</a>
<a name="933307">
<dt>MIPS, SGI - PD_target(&IEEEA_STD, &MIPS_ALIGNMENT)
</a>
<a name="934205">
<dt>IBM RS6000 - PD_target(&IEEEA_STD, &RS6000_ALIGNMENT)
</a>
<a name="934206">
<dt>Mac/Think C - PD_target(&IEEEB_STD, &M68000_ALIGNMENT)
</a>
<a name="934207">
<dt>Mac/MPW - PD_target(&IEEEC_STD, &M68000_ALIGNMENT)
</a>
<a name="934208">
<dt>DOS - PD_target(&INTELA_STD, &INTEL_ALIGNMENT)
</a>
<a name="934209">
<dt>Intel 80x86 UNIX - PD_target(&INTELB_STD, &INTEL_ALIGNMENT)
</a>
<a name="934210">
<dt>DEC Vax - PD_target(&VAX_STD, &DEF_ALIGNMENT)
</a>
<a name="934211">
<dt>DEC 3100 - PD_target(&INTELB_STD, &MIPS_ALIGNMENT)
</a>
<a name="934213">
<dt>UNICOS Cray - </a>PD_target(&CRAY_STD, &UNICOS_ALIGNMENT)
</a>
<a name="934219">
The argument, std, is a pointer to a data_standard structure, and the argument, align, is a pointer to a data_alignment structure. See the section on Data Structures.<p>
</a>
<a name="933333">
The return value is TRUE, if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="934224">
<p>
</a>
<a name="932674">
int </a>PD_target(data_standard *std,<p>
</a>
<a name="932675">
data_alignment *align)<p>
</a>
<A NAME="934229"><B>
</B><HR><A NAME="934233"><PRE> #include “pdb.h”
</PRE><A NAME="934234"><PRE>
</PRE><A NAME="934235"><PRE> void test_target(tgt, base, n, fname, datfile)
</PRE><A NAME="934236"><PRE> char *tgt, *base;
</PRE><A NAME="934237"><PRE> int n;
</PRE><A NAME="934238"><PRE> char *fname, *datfile;
</PRE><A NAME="934239"><PRE> {if (tgt != NULL)
</PRE><A NAME="934240"><PRE>
</PRE><A NAME="934241"><PRE> /* for DOS machines */
</PRE><A NAME="934242"><PRE> {if (strcmp(tgt, “dos”) == 0)
</PRE><A NAME="934243"><PRE> </a>PD_target(&</a>INTEL_STD, &</a>INTEL_ALIGNMENT);
</PRE><A NAME="934244"><PRE>
</PRE><A NAME="934245"><PRE> /* for CRAY computers */
</PRE><A NAME="934246"><PRE> else if (strcmp(tgt, “cray”) == 0)
</PRE><A NAME="934247"><PRE> </a>PD_target(&</a>CRAY_STD, &</a>UNICOS_ALIGNMENT);
</PRE><A NAME="934248"><PRE>
</PRE><A NAME="934249"><PRE> /* for DEC VAX machines */
</PRE><A NAME="934250"><PRE> else if (strcmp(tgt, “vax”) == 0)
</PRE><A NAME="934251"><PRE> </a>PD_target(&</a>VAX_STD, &</a>DEF_ALIGNMENT);
</PRE><A NAME="934252"><PRE>
</PRE><A NAME="934253"><PRE> /* for MIPS based machines */
</PRE><A NAME="934254"><PRE> else if (strcmp(tgt, “mips”) == 0)
</PRE><A NAME="934255"><PRE> </a>PD_target(&</a>IEEEA_STD, &</a>MIPS_ALIGNMENT);
</PRE><A NAME="934256"><PRE>
</PRE><A NAME="934257"><PRE> /* for standard M68000 machines */
</PRE><A NAME="934258"><PRE> else if (strcmp(tgt, “sun3”) == 0)
</PRE><A NAME="934259"><PRE> </a>PD_target(&</a>IEEEA_STD, &</a>M68000_ALIGNMENT);
</PRE><A NAME="934260"><PRE>
</PRE><A NAME="934261"><PRE> /* for SPARC machines */
</PRE><A NAME="934262"><PRE> else if (strcmp(tgt, “sun4”) == 0)
</PRE><A NAME="934263"><PRE> </a>PD_target(&</a>IEEEA_STD, &</a>SPARC_ALIGNMENT);
</PRE><A NAME="934264"><PRE>
</PRE><A NAME="934265"><PRE> /* for Macintosh */
</PRE><A NAME="934266"><PRE> else if (strcmp(tgt, “mac”) == 0)
</PRE><A NAME="934267"><PRE> </a>PD_target(&</a>IEEEB_STD, &</a>M68000_ALIGNMENT);
</PRE><A NAME="932593"><PRE>
</PRE><A NAME="932594"><PRE> sprintf(fname, “%s-%s.rs%d”, base, tgt, n);
</PRE><A NAME="934269"><PRE> sprintf(datfile, “%s-%s.db%d”, base, tgt, n);}
</PRE><A NAME="934270"><PRE> else
</PRE><A NAME="934271"><PRE> {sprintf(fname, “%s-nat.rs%d”, base, n);
</PRE><A NAME="934272"><PRE> sprintf(datfile, “%s-nat.db%d”, base, n);};
</PRE><A NAME="934273"><PRE>
</PRE><A NAME="934274"><PRE> return;}
</PRE><A NAME="934474"><PRE>
</PRE></dl>
<a name="934415">
<h2>4.32 PD_TYPEDEF</h2>
</a>
<A NAME="934416"><PRE><B>
</B></PRE><a name="934445">
defstr *</a>PD_typedef(PDBfile *file,<p>
</a>
<a name="934502">
char *oname,<p>
</a>
<A NAME="934503"><PRE><B> char *tname)
</B></PRE><a name="934504">
</a>Define a an alternate name for an existing type. The intended use of this function is to allow users to make their PDB data types match their C types as closely as possible. It does this by mimicking the C </a>typedef mechanism in a limited way. More accurately it provides an </a>aliasing capability. This can be used in conjunction with either </a>PD_defix or </a>PD_defloat to install a definition of a data type in the host chart (</a>PD_defix and </a>PD_defloat define their types to the file chart only).<p>
</a>
<a name="934506">
Input to </a>PD_defix is: <em>file</em>, a pointer to a PDBfile; oname, an ASCII string containing the name of the original data type; tname, an ASCII string containing the name of the alias.<p>
</a>
<a name="934507">
A pointer to the original type’s defstr is returned if the call is successful; otherwise, NULL is returned and the ASCII string PD_err contains any error message that was generated.<p>
</a>
<a name="934508">
<p>
</a>
<a name="934509">
defstr *</a>PD_typedef(PDBfile *file,<p>
</a>
<a name="934510">
char *oname,<p>
</a>
<a name="934511">
char *tname)<p>
</a>
<A NAME="934512"><B>
</B><HR><A NAME="934513"><PRE> #include “pdb.h”
</PRE><A NAME="934515"><PRE>
</PRE><A NAME="934516"><PRE> PDBfile *file;
</PRE><A NAME="934517"><PRE> defstr *ptr;
</PRE><A NAME="934518"><PRE> .
</PRE><A NAME="934519"><PRE> .
</PRE><A NAME="934520"><PRE> .
</PRE><A NAME="934521"><PRE> /* define “enum” as an alias for “integer” */
</PRE><A NAME="934522"><PRE> ptr = </a>PD_typedef(file, “integer”, “enum”);
</PRE><A NAME="934523"><PRE> .
</PRE><A NAME="934524"><PRE> .
</PRE><A NAME="934629"><PRE>
</PRE><a name="934482">
<h2>4.33 PD_WRITE</h2>
</a>
<a name="934586">
<p>
</a>
<a name="934591">
int </a>PD_write(PDBfile *file,<p>
</a>
<a name="934587">
char *name,<p>
</a>
<a name="934589">
char *type,<p>
</a>
<a name="934590">
void *var)<p>
</a>
<a name="932742">
</a>Write data to a PDB file. If an entry already exists in the file, the data overwrites the specified file data; otherwise, before writing data to the PDB file an entry is prepared for the symbol table consisting of the name, the type, the </a>dimension information, the disk address to which the data will be written, and the total number of bytes as computed with the help of the structure chart. After the entry is installed in the symbol table the data from memory is converted (only if the </a>target machine type is different from the current machine type) and then written out to disk starting at the current disk address.<p>
</a>
<a name="934505">
The </a>primitive </a>data types which the PDBLib system knows about by default are: “short”, “integer”, “long”, “float”, “double”, and “char” for short integer, integer, long integer, floating point or real number, double precision floating point number, and character or single byte respectively. Additional types may be added using </a>PD_defstr.<p>
</a>
<a name="934514">
PDBLib supports arbitrary levels of </a>indirections. This means that all types of pointers (except function pointers) can be traced down to the actual data to which they point and that data will be written out into the PDB file in such a way that the read operations can reconstruct the data as it exists prior to the write operation. There is one crucial restriction. That is that the memory associated with any pointer must have been allocated using a SCORE memory management function or macro. See the memory management section near the beginning of this document.<p>
</a>
<a name="934526">
Rationale: When writing out scalar variables (i.e. non-dimensioned variables - structured variables are scalars unless specifically dimensioned) this function is the most convenient to use since it involves no variable argument list and hence no worries about terminating the list. Another situation, which is more common than expected, in which </a>PD_write would be preferred is when it is desirable to make entries in a PDB file which do not correspond to any variables in the application program. Since string manipulations might be involved in preparing the name under which to write the data, coding in the dimensional information is not any less efficient.<p>
</a>
<a name="934531">
Dimensions can be given in two ways. If the default offset value for the PDB file can be taken as the minimum value for the range which a dimension index can legally run, the maximum value may be specified alone. Alternatively, the minimum value, maximum value, and stride (separated by colons) may be specified. The stride is optional and defaults to 1.<p>
</a>
<a name="934539">
The arguments to </a>PD_write are: file, a pointer to a PDBfile which designates the PDB file to which to attempt to write; name, an ASCII string containing the name of the variable to install in the symbol table; type, an ASCII string specifying the variable type; and var, a pointer to the data to be written. This pointer must be consistent with the type specified, that is it must be a pointer to data with type, type. For example:<p>
</a>
<a name="934543">
<dd>char **s, **t;<P>
</a>
<a name="934544">
<dd>integer *u;<P>
</a>
<a name="934546">
<dd><P>
</a>
<a name="932527">
<dd>PD_write(file, “s”, “char **”, &s);<P>
</a>
<a name="934547">
<dd>PD_write(file, “t(3)”, “char *”, t);<P>
</a>
<a name="934548">
<dd>PD_write(file, “u(30,1:10)”, “integer”, u);<P>
</a>
<a name="934553">
The </a>dimension information is encoded in the ASCII string, name, as if in a FORTRAN dimension statement.<p>
</a>
<a name="934315">
Note: PDBLib can only write part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="934316">
Note: When writing part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="932744">
The return value is TRUE if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="933496">
See also </a>PD_write_alt and </a>PD_defent.<p>
</a>
<a name="932746">
<p>
</a>
<a name="933249">
int </a>PD_write(PDBfile *file,<p>
</a>
<a name="932747">
char *name,<p>
</a>
<a name="932748">
char *type,<p>
</a>
<a name="933046">
void *var)<p>
</a>
<A NAME="933047"><B>
</B><HR><A NAME="933181"><PRE> #include “pdb.h”
</PRE><A NAME="933185"><PRE>
</PRE><A NAME="933189"><PRE> PDBfile *file;
</PRE><A NAME="933227"><PRE> float x[20];
</PRE><A NAME="933230"><PRE> .
</PRE><A NAME="933235"><PRE> .
</PRE><A NAME="933236"><PRE> .
</PRE><A NAME="933237"><PRE> if (!</a>PD_write(file, “x(20)”, “float”, x))
</PRE><A NAME="933238"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933243"><PRE> .
</PRE><A NAME="933247"><PRE> .
</PRE><A NAME="933248"><PRE> .
</PRE><a name="934557">
<p>
</a>
<a name="933347">
<h2>4.34 PD_WRITE_ALT</h2>
</a>
<A NAME="933377"><PRE><B>
</B></PRE><A NAME="933378"><PRE><B>int </a>PD_write_alt(PDBfile *file,
</B></PRE><A NAME="933379"><PRE><B> char *name,
</B></PRE><A NAME="933380"><PRE><B> char *type,
</B></PRE><A NAME="933381"><PRE><B> void *var,
</B></PRE><A NAME="933422"><PRE><B> int nd,
</B></PRE><A NAME="933423"><PRE><B> long *ind)
</B></PRE><a name="933382">
</a>Write data to a PDB file. This is an alternate form to </a>PD_write. If an entry already exists in the file, the data overwrites the specified file data; otherwise, before writing data to the PDB file an entry is prepared for the symbol table consisting of the name, the type, the </a>dimension information, the disk address to which the data will be written, and the total number of bytes as computed with the help of the structure chart. After the entry is installed in the symbol table the data from memory is converted (only if the </a>target machine type is different from the current machine type) and then written out to disk starting at the current disk address.<p>
</a>
<a name="933383">
The </a>primitive </a>data types which the PDBLib system knows about by default are: “short”, “integer”, “long”, “float”, “double”, and “char” for short integer, integer, long integer, floating point or real number, double precision floating point number, and character or single byte respectively. Additional types may be added using </a>PD_defstr.<p>
</a>
<a name="933384">
PDBLib supports arbitrary levels of </a>indirections. This means that, subject to the restrictions spelled out in the section on rules, pointers (except function pointers) can be traced down to the actual data to which they point and that data will be written out into the PDB file in such a way that the read operations can reconstruct the data as it exists prior to the write operation. There is one crucial restriction. That is that the memory associated with any pointer must have been allocated by a SCORE memory management function or macro. See the Memory Management section near the beginning of this document.<p>
</a>
<a name="933386">
The rationale for this function is that in some situations, it is desirable to be able to specify the dimensions without building them into an ASCII string.<p>
</a>
<a name="933385">
The arguments to </a>PD_write_alt are: file, a pointer to a PDBfile which designates the PDB file to which to attempt to write; name, an ASCII string containing the name of the variable to install in the symbol table; type, an ASCII string specifying the variable type; var, a pointer to the data to be written; nd, then number of dimensions for the variable; and ind, an array of long integers containing (min, max, stride) triples specifying the ranges and strides of the dimensions. The pointer, var, must be consistent with the type specified, that is it must be a pointer to data with type, type. For example:<p>
</a>
<a name="933388">
<dd>char **s, **t;<P>
</a>
<a name="933389">
<dd>integer *u;<P>
</a>
<a name="933391">
<dd>PD_write_alt(file, “s”, “char **”, &s, ...);<P>
</a>
<a name="933392">
<dd>PD_write_alt(file, “t”, “char *”, t, ...);<P>
</a>
<a name="933393">
<dd>PD_write_alt(file, “u”, “integer”, u, ...);<P>
</a>
<a name="934318">
Note: PDBLib can only write part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="933395">
Note: When writing part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="934317">
The return value is TRUE if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="933396">
<p>
</a>
<a name="933397">
int </a>PD_write_alt(PDBfile *file,<p>
</a>
<a name="933398">
char *name,<p>
</a>
<a name="933399">
char *type,<p>
</a>
<a name="933400">
void *var,<p>
</a>
<a name="933414">
int nd,<p>
</a>
<a name="933416">
long *ind)<p>
</a>
<A NAME="933401"><B>
</B><HR><A NAME="933402"><PRE> #include “pdb.h”
</PRE><A NAME="933403"><PRE>
</PRE><A NAME="933404"><PRE> PDBfile *file;
</PRE><A NAME="933406"><PRE> long ind[6];
</PRE><A NAME="933417"><PRE> float x[20][5];
</PRE><A NAME="933407"><PRE> .
</PRE><A NAME="933408"><PRE> .
</PRE><A NAME="933409"><PRE> .
</PRE><A NAME="933410"><PRE> ind[0] = 0L;
</PRE><A NAME="933419"><PRE> ind[1] = 19L;
</PRE><A NAME="933420"><PRE> ind[2] = 1L;
</PRE><A NAME="933421"><PRE> ind[3] = -2L;
</PRE><A NAME="934326"><PRE> ind[4] = 2L;
</PRE><A NAME="934327"><PRE> ind[5] = 1L;
</PRE><A NAME="933418"><PRE> if (!</a>PD_write_alt(file, “x”, “float”, x, 2, ind))
</PRE><A NAME="933411"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933412"><PRE> .
</PRE><A NAME="933413"><PRE> .
</PRE><A NAME="933415"><PRE> .
</PRE><a name="933182">
<h2>4.35 PD_WRITE_AS</h2>
</a>
<A NAME="933165"><PRE><B>
</B></PRE><A NAME="933183"><PRE><B>int </a>PD_write_as(PDBfile *file,
</B></PRE><A NAME="933475"><PRE><B> char *name,
</B></PRE><A NAME="933476"><PRE><B> char *intype,
</B></PRE><A NAME="933477"><PRE><B> char *outtype,
</B></PRE><A NAME="933478"><PRE><B> void *var)
</B></PRE><a name="933172">
</a>Write the data pointed to by <em>var</em> under <em>name</em> and with <em>intype</em> in PDB file <em>file</em> as data of outtype.<p>
</a>
<a name="933264">
The rationale for this function is that in some situations, it is desirable to not only convert the formats of data of a specified type, but to convert between types. An example that occurs in practice often enough is converting a 32 bit int to a 32 bit long on a machine which only has a 16 bit int.<p>
</a>
<a name="933178">
Input to </a>PD_write_as is: <em>file</em>, a pointer to a PDBfile; <em>name</em>, an ASCII string containing the name of the variable in the PDB file; <em>intype</em>, an ASCII string containing the type of the variable; <em>outtype</em>, an ASCII string containing the output type of the variable; and <em>var</em>, a pointer to the location where the data is to be stored in memory.<p>
</a>
<a name="934320">
Note: PDBLib can only write part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="933162">
Note: When writing part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="934319">
</a>PD_write_as returns TRUE if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="933495">
See also </a>PD_write_as_alt and </a>PD_defent_alt.<p>
</a>
<a name="933176">
<p>
</a>
<a name="933175">
int </a>PD_write_as(PDBfile *file,<p>
</a>
<a name="933479">
char *name,<p>
</a>
<a name="933480">
char *intype,<p>
</a>
<a name="933481">
char *outtype,<p>
</a>
<a name="933482">
void *var)<p>
</a>
<A NAME="933173"><B>
</B><HR><A NAME="933250"><PRE> #include “pdb.h”
</PRE><A NAME="933251"><PRE>
</PRE><A NAME="933252"><PRE> PDBfile *file;
</PRE><A NAME="933254"><PRE> float x[20];
</PRE><A NAME="933255"><PRE> .
</PRE><A NAME="933256"><PRE> .
</PRE><A NAME="933257"><PRE> .
</PRE><A NAME="933263"><PRE> if (!</a>PD_write_as(file, “x(20)”, “float”, “double”, x))
</PRE><A NAME="933259"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933260"><PRE> .
</PRE><A NAME="933261"><PRE> .
</PRE><A NAME="933262"><PRE> .
</PRE><a name="933451">
<h2>4.36 PD_WRITE_AS_ALT</h2>
</a>
<A NAME="933452"><PRE><B>
</B></PRE><A NAME="933453"><PRE><B>int </a>PD_write_as_alt(PDBfile *file,
</B></PRE><A NAME="933483"><PRE><B> char *name,
</B></PRE><A NAME="933484"><PRE><B> char *intype,
</B></PRE><A NAME="933485"><PRE><B> char *outtype,
</B></PRE><A NAME="933486"><PRE><B> void *var,
</B></PRE><A NAME="933487"><PRE><B> int nd,
</B></PRE><A NAME="933488"><PRE><B> long *ind)
</B></PRE><a name="933454">
</a>Write the data pointed to by <em>var</em> under <em>name</em> and with <em>intype</em> in PDB file <em>file</em> as data of outtype. This is an alternate form of </a>PD_write_as.<p>
</a>
<a name="933455">
The rationale for this function is that in some situations, it is desirable to be able to specify the dimensions without building them into an ASCII string.<p>
</a>
<a name="933456">
Input to </a>PD_write_as_alt is: <em>file</em>, a pointer to a PDBfile; <em>name</em>, an ASCII string containing the name of the variable in the PDB file; <em>intype</em>, an ASCII string containing the type of the variable; <em>outtype</em>, an ASCII string containing the output type of the variable; <em>var</em>, a pointer to the location where the data is to be stored in memory; nd, an integer number of dimensions; and ind, an array of long integers specifying the ranges of each dimension (min, max, stride).<p>
</a>
<a name="934322">
Note: PDBLib can only write part of an entry if the type of the terminal node is primitive or a structure which contains no indirections and whose descendant members contain no indirections. <p>
</a>
<a name="933457">
Note: When writing part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="934321">
PD_write_as_alt returns TRUE if successful; otherwise, FALSE is returned and the ASCII string PD_err contains any error messages.<p>
</a>
<a name="933458">
<p>
</a>
<a name="933459">
int </a>PD_write_as_alt(PDBfile *file,<p>
</a>
<a name="933489">
char *name,<p>
</a>
<a name="933490">
char *intype,<p>
</a>
<a name="933494">
char *outtype,<p>
</a>
<a name="933493">
void *var,<p>
</a>
<a name="933492">
int nd,<p>
</a>
<a name="933491">
long *ind)<p>
</a>
<A NAME="933460"><B>
</B><HR><A NAME="933461"><PRE> #include “pdb.h”
</PRE><A NAME="933462"><PRE>
</PRE><A NAME="933463"><PRE> PDBfile *file;
</PRE><A NAME="933387"><PRE> long ind[6];
</PRE><A NAME="933390"><PRE> float x[20][5];
</PRE><A NAME="933424"><PRE> .
</PRE><A NAME="933466"><PRE> .
</PRE><A NAME="933467"><PRE> .
</PRE><A NAME="933468"><PRE> ind[0] = 0L;
</PRE><A NAME="933469"><PRE> ind[1] = 19L;
</PRE><A NAME="933613"><PRE> ind[2] = 1L;
</PRE><A NAME="933614"><PRE> ind[3] = -2L;
</PRE><A NAME="934328"><PRE> ind[4] = 2L;
</PRE><A NAME="934329"><PRE> ind[5] = 1L;
</PRE><A NAME="933470"><PRE> if (!</a>PD_write_as_alt(file, “x”, “float”, “double”, x, 2, ind))
</PRE><A NAME="933471"><PRE> printf(“%s”, PD_err);
</PRE><A NAME="933472"><PRE> .
</PRE><A NAME="933473"><PRE> .
</PRE><A NAME="933474"><PRE> .
</PRE><a name="932587">
<h1>5.0 </a>Summary of the </a>FORTRAN </a>API</h1>
</a>
<a name="932589">
There is a hierarchy of routines in PDBLib from high to low level. The </a>high level routines form the API while the lower level routines are modularized to perform the actual work. It should be noted that the lower level routines are sufficiently well modularized so as to make it possible to build entirely different API’s for PDBLib. <p>
</a>
<a name="932815">
The high level PDBLib routines have a strict </a>naming convention. All routines in the FORTRAN API begin with ‘</a>PF’.<p>
</a>
<a name="932590">
Note: many of these functions return integer values. The </a>implicit typing convention in FORTRAN would indicate that they return real values. Application programs must explicitly type these functions as integers.<p>
</a>
<a name="932595">
When an error condition is detected by PDBLib it saves a message in a global C character string. FORTRAN programs can access this </a>error message by invoking function </a><em>PFGERR</em>. The message contains the name of the function in which the error occurred thus eliminating the need for a cross reference document on error codes. In this way applications programs can check for error conditions themselves and decide in what manner to use the PDBLib error messages instead of having error messages printed by the system routines. Error messages are not stacked and must be processed by the application before any other PDBLib calls are made in order to avoid potential overwrites. See the FORTRAN API section for more information about which routines return error messages<p>
</a>
<a name="934654">
<h2>5.1 Some Guidance in Using the FORTRAN API to PDBLib</h2>
</a>
<a name="934656">
PDBLib offers a great deal of flexibility to its users. In some cases the flexibility results in a bewildering assortment of function calls from which the application developer must choose. This section is intended to offer some guidance and enable developers to home in on the functions they need to use.<p>
</a>
<a name="934657">
<h3>5.1.1 Opening, Creating and Closing PDB Files</h3>
</a>
<a name="934658">
These are the most fundamental operations involving PDBLib. The function </a>PFOPEN is used to either open an existing file or create a new one. </a>PFCLOS is used to close a PDB file so that it can be recognized by PDBLib for future operations.<p>
</a>
<a name="934659">
PDBLib allows applications to specify the binary format in which a newly created file will be written. </a>PFTRGT does this work. It is not necessary to invoke </a>PFTRGT before creating a new PDB file.<p>
</a>
<a name="934662">
<h3>5.1.2 Writing Data to PDB Files</h3>
</a>
<a name="934663">
The following paragraphs describe a sequence of increasingly more elaborate output operations for PDB files. They are all compatible with one another so users can select the ones which match their needs best. The most straightforward operations are first.<p>
</a>
<a name="934664">
There are two forms for the most basic data writing operations. These have to do with how the application wants to handle the dimension specifications. The two functions are: </a>PFWRTA and </a>PFWRTD.<p>
</a>
<a name="934666">
PDBLib supports the notion of writing data of one type out into a file as another type. More precisely, an integer type of data can be written to a file in the format of any other integer type, and similarly for floating point types. The application must take all responsibility for ensuring the appropriateness of this type of conversion (e.g. underflows and overflows). The functions which support this are </a>PFWRAS and </a>PFWRAD.<p>
</a>
<a name="936499">
PDBLib allows applications to append data to existing entries. This is handy in situations where the total amount of data is not known in advance, but a logical ordering of the data is apparent which matches the order in which data will be written. The functions which do this are </a>PFAPPA, </a>PFAPPD, </a>PFAPAS and </a>PFAPAD.<p>
</a>
<a name="934667">
Finally, PDBLib allows applications to reserve space on disk and then let subsequent writes fill in that space with values. This is handy in instances where an application knows a logical structure for a data set but needs to write it out in smaller pieces and not necessarily in the order implied by its logical structure. The functions which let applications reserve space are </a>PFDEFA, and </a>PFDEFD. Reserved spaces may be written to with </a>PFWRTA, </a>PFWRTD, </a>PFWRAS or </a>PFWRAD.<p>
</a>
<a name="934668">
<h3>5.1.3 Reading Data from PDB Files</h3>
</a>
<a name="932491">
Since data in a file has a definite size and shape, the reading operations in PDBLib are somewhat simpler than the writing operations. The functions </a>PFREAD, </a>PFPTRD, </a>PFRDAS, and </a>PFRDAD, the counterparts of </a>PFWRTA, </a>PFWRTD, </a>PFWRAS, and </a>PFWRAD, do all of the work in reading data from files.<p>
</a>
<a name="934671">
<h3>5.1.4 Defining New Data Types</h3>
</a>
<a name="934672">
To aid application developers in using structured data PDBLib lets applications define new data types in a PDBfile. New data types may either be derived from other existing data types or they may be primitive (integer types, floating point types, or byte sequences). To define derived types applications should use </a>PFDEFS.<p>
</a>
<a name="934675">
<h3>5.1.5 Defining Attributes</h3>
</a>
<a name="934677">
PDBLib supports a general mechanism for managing a class of data which is variously referred to as attributes or meta data. In a great many cases, the careful design of data structures obviates the need for this kind of data. Nevertheless, PDBLib supplies four functions to manage attributive data: </a>PFDATT, </a>PFRATT, </a>PFSVAT, and </a>PFGVAT.<p>
</a>
<a name="934653">
<h3>5.1.6 Queries</h3>
</a>
<a name="934660">
The FORTRAN API supports several query operations to help applications interpret the contents of a PDB file. The current functions are: </a>PFGBFS, </a>PFGERR, </a>PFGMOD, </a>PFGOFF, </a>PFITYP, and </a>PFIVAR.<p>
</a>
<a name="933691">
A few definitions must be given first to keep the following summary concise. Some of these will be elaborated upon in the next section.<p>
</a>
<a name="932847">
<p>
</a>
<A NAME="932849"></a>PDBfile: for the purposes of a program this is a collection of all the relevant information about one of these data files.See the section on Data Structures for more information.
<BR><A NAME="932848">
<BR><A NAME="932850"><strong></a>ASCII:</strong><em> </em>an array of characters
<BR><a name="932851">
<p>
</a>
<A NAME="932852"></a>VOID: any FORTRAN data type
<BR><a name="932858">
<p>
</a>
<A NAME="932860"><strong></a>LAST:</strong> the value 0
<BR><a name="932861">
<p>
</a>
<A NAME="932863"><strong></a>ENTRY: </strong>for the purposes of a program this is a collection of all the relevant information about a variable written to a PDB file.
<BR><a name="932846">
<p>
</a>
<A NAME="932864"><strong></a>DEFSTR:</strong> for the purposes of a program this is a collection of all the relevant information about a data type in a PDB file.
<BR><a name="932865">
<p>
</a>
<A NAME="932868"><strong></a>REAL*8:</strong> an eight byte floating point number.
<BR><a name="932866">
<h2>5.2 </a>Function Summary</h2>
</a>
<a name="932867">
These routines form the </a>interface between FORTRAN applications programs and the PDBLib system.<p>
</a>
<A NAME="936511"><P><B></a>PFAPAD(fileid, nchr, name, ntype, type, space, nd, ind)
</B><BR><A NAME="936512"></a> </a>Append the data from spaceof type type to the entry name in a PDB file. In this alternate to </a>PFAPAS the dimensions are specified via the array ind.
<BR><dl>
<a name="936513">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="936514">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="936515">
<dd>name, an ASCII string containing the name of the variable,<P>
</a>
<a name="936516">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="936517">
<dd><em>type</em>, an ASCII string containing the type of the variable in space,<P>
</a>
<a name="936518">
<dd><em>space</em>, the variable containing the data,<P>
</a>
<a name="936519">
<dd>nd, the number of dimensions of the entry,<P>
</a>
<a name="936520">
<dd>ind, an array containing (start, stop, step) index range triples for each dimension.<P>
</a>
<a name="936521">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932925"><P><B></a>PFAPAS(fileid, nchr, name, ntype, type, space)
</B><BR><A NAME="932926"></a>Append the data from spaceof type type to the entry name in a PDB file. Dimensions
are specified in the text of name.
<BR><a name="932928">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932929">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="932933">
<dd>name, an ASCII string containing the name of the variable and any dimensional information,<P>
</a>
<a name="936509">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="936510">
<dd><em>type</em>, an ASCII string containing the type of the variable in space,<P>
</a>
<a name="932934">
<dd><em>space</em>,the variable containing the data.<P>
</a>
<a name="932935">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="935061"><P><B></a>PFAPPA(fileid, nchr, name, space)
</B><BR><A NAME="935067"></a>Append data to an entry in a PDB file. In this alternate to </a>PFAPPD dimensions are
specified in the text of name.
<BR><a name="935068">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="935069">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="935070">
<dd>name, an ASCII string containing the name of the variable and any dimensional information,<P>
</a>
<a name="935071">
<dd><em>space</em>, the variable containing the data.<P>
</a>
<a name="935072">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="934867"><P><B></a>PFAPPD(fileid, nchr, name, space, nd, ind)
</B><BR><A NAME="934883"></a>Append data to an entry in a PDB file. The dimensions are specified via the array ind.
<BR><a name="935037">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="935048">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="935059">
<dd>name, an ASCII string containing the name of the variable,<P>
</a>
<a name="935060">
<dd><em>space</em>, the variable containing the data,<P>
</a>
<a name="935073">
<dd>nd, the number of dimensions of the entry,<P>
</a>
<a name="935074">
<dd>ind, an array containing (start, stop, step) index range triples for each dimension.<P>
</a>
<a name="932869">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932912"><P><B>[</a>PFCD(fileid, nchr, dirname)
</B><BR><A NAME="933640"></a>Change the </a>current </a>directory in a PDB file.
<BR><a name="934062">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="934101">
<dd>nchr, the number of characters in dirname,<P>
</a>
<a name="934364">
<dd>dirname, an ASCII string containing the path name of the directory to change to.<P>
</a>
<a name="934530">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932871"><P><B></a>PFCLOS(fileid)
</B><BR><A NAME="932872"></a>Complete and close the PDB file<em> fileid</em>.
<BR><a name="932873">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number.
</a>
<a name="934913">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="935066"><P><B></a>PFDATT(fileid, na, attr, nt, type)
</B><BR><A NAME="934914">Define an attribute in a PDB file.
<BR><a name="934917">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="934926">
<dd><em>na</em>, an integer number of characters in attr,<P>
</a>
<a name="934927">
<dd>attr, an ASCII string naming the attribute,<P>
</a>
<a name="934919">
<dd><em>nt</em>, an integer number of characters in type,<P>
</a>
<a name="934921">
<dd>type, an ASCII string specifying the attribute type.<P>
</a>
<a name="934925">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="934144"><P><B></a>PFDEFA(fileid, nchr, name, ntype, outtype)
</B><BR><A NAME="934145"></a>Define an entry in the symbol table of a PDB file. This function </a>reserves space on disk
but writes no data. The data can be written with later PDBLib calls.
<BR><a name="934146">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="934147">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="934150">
<dd>name, an ASCII string containing the name of the variable and any dimensional information,<P>
</a>
<a name="934151">
<dd><em>ntype</em>, the number of characters in <em>outtype</em>,<P>
</a>
<a name="934148">
<dd>outtype, an ASCII string specifying the type of data in the file.<P>
</a>
<a name="934149">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932883"><P><B></a>PFDEFD(fileid, nchr, name, ntype, outtype, nd, ind)
</B><BR><A NAME="934153"></a>Define an entry in the symbol table of a PDB file. This function </a>reserves space on disk
but writes no data. The data can be written with later calls. In this alternate to </a>PFDEFA
the dimensions are specified via the array ind.
<BR><a name="934154">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="934160">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="934155">
<dd>name, an ASCII string containing the name of the variable (no dimensional information can be supplied with the name),<P>
</a>
<a name="934161">
<dd><em>ntype</em>, the number of characters in <em>outtype</em>,<P>
</a>
<a name="934156">
<dd>outtype, an ASCII string specifying the type of data in the file,<P>
</a>
<a name="934157">
<dd>nd, the number of dimensions of the entry,<P>
</a>
<a name="934158">
<dd>ind, an array containing (min, max) index range pairs for each dimension.<P>
</a>
<a name="934159">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="935099"><P><B></a>PFDEFS(fileid, nchr, name, ncm1, mem1, ..., ncmn, memn, LAST)
</B><BR><A NAME="935100"></a>Define a data structure for a PDB file. LAST must terminate the list of members.
<BR><a name="935104">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="935105">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="935108">
<dd>name, an ASCII string containing the structure name,<P>
</a>
<a name="935146">
<dd>ncmi,the number of characters in memi,<P>
</a>
<a name="935147">
<dd>memi, an ASCII string containing the member declaration.<P>
</a>
<a name="935148">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="933063"><P><B></a>PFDEFT(fileid, nchr, name, nm, nc, memb)
</B><BR><A NAME="933064"></a>Define a data structure for a PDB file.
<BR><a name="933068">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="933303">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="933304">
<dd>name, an ASCII string containing the structure name,<P>
</a>
<a name="933305">
<dd>nm,the number of members,<P>
</a>
<a name="935149">
<dd>nc, the array of offset, length pairs,<P>
</a>
<a name="933306">
<dd>memb, an ASCII string containing the member declarations.<P>
</a>
<a name="933288">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="935253"><P><B></a>PFDLS()
</B><BR><A NAME="935254"></a>Release table create by </a>PFLST.
<BR><a name="935271">
<dt>Input: <em>None</em>.
</a>
<a name="935272">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="935348"><P><B></a>PFDVAR()
</B><BR><A NAME="935349"></a>Release table create by </a>PFVART.
<BR><a name="935350">
<dt>Input: <em>None</em>.
</a>
<a name="935351">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="936236"><P><B></a>PFFAMI(fileid, flag)
</B><BR><A NAME="936237">If the <em>file indicated by</em> <em>fileid</em> has exceeded its size limit, open and return a new member
of the </a>file family. If flag is TRUE close the old file.
<BR><a name="936238">
<dt>Input: <em>fileid</em>, an integer file identifier
</a>
<a name="936247">
<dd>flag, an integer flag.<P>
</a>
<a name="936254">
<dt>Output: an integer file identifier
</a>
<A NAME="935182"><P><B></a>PFFLSH(fileid)
</B><BR><A NAME="935183"></a>Flush the PDB file<em> fileid</em>.
<BR><a name="935185">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number.
</a>
<a name="935236">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932874"><P><B></a>PFGBFS()
</B><BR><A NAME="932875"></a>Get the current buffer size which PDBLib uses for all PDB files and return it.
<BR><a name="932876">
<dt>Input: <em>None.</em>
</a>
<a name="932877">
<dt>Output: Return the current buffer size in bytes, if previously set; otherwise, return -1.
</a>
<A NAME="932878"><P><B></a>PFGERR(nchr, err)
</B><BR><A NAME="932879"></a>Get the current PDBLib error message. Return the length of the error message in <em>nchr</em>
and the actual message in <em>err</em>. The space for <em>err</em> should be 255 characters long.
<BR><a name="932880">
<dt>Input:<em> </em>None.
</a>
<a name="932882">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="934152">
<dd><em>nchr</em>, the length of the error message,<P>
</a>
<a name="937567">
<dd><em>err</em>, an ASCII string into which the message is copied.<P>
</a>
<A NAME="937578"><P><B></a>PFGLS(n, nchr, name)
</B><BR><a name="935346">
<dt></a>Get the name of the nth entry in the internal table generated by </a>PFLST.
</a>
<a name="935347">
<dt>Input: <em>n</em>, an integer ordinal index into the internal table.
</a>
<a name="935353">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="935354">
<dd>nchr, the number of characters returned in name,<P>
</a>
<a name="935355">
<dd>name, an ASCII string to contain the entry name.<P>
</a>
<A NAME="934215"><P><B></a>PFGMOD(fileid)
</B><BR><A NAME="934216"></a>Get the current mode of PDB file<em> fileid</em>: 2 (append - ’a’), 3 (open - ’r’), 4 (create - ’w’).
<BR><a name="934217">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number.
</a>
<a name="934218">
<dt>Output: Return the integer value of the current mode.
</a>
<A NAME="937609"><P><B></a>PFGMXS(fileid)
</B><BR><a name="937610">
<dt></a>Get the current maximum file size of PDB file <em>fileid</em>.
</a>
<a name="937611">
<dt>Input: <em>fileid</em>, an integer <strong>PDBfile</strong> identification number.
</a>
<a name="937612">
<dt>Output: Return the integer value of the current maximum file size.
</a>
<A NAME="937584"><P><B></a>PFGNM(fileid, nchr, name)
</B><BR><A NAME="937586">Return the </a>name of a PDB file.
<BR><a name="937587">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="937588">
<dd>nchr, the number of characters in name,<P>
</a>
<a name="937589">
<dd>name, an ASCII string to contain the file name.<P>
</a>
<a name="937590">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="937591">
<dd>name, an ASCII string containing the file name.<P>
</a>
<A NAME="937581"><P><B></a>PFGOFF(fileid)
</B><BR><A NAME="934201"></a>Get the current default offset for PDB file<em> fileid</em>.
<BR><a name="934202">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number.
</a>
<a name="934214">
<dt>Output: Return the integer value of the default offset.
</a>
<A NAME="933271"><P><B></a>PFGVAR(n, nchr, name)
</B><BR><A NAME="933276"></a>Get the name of the nth variable in the internal sorted table generated by </a>PFVART.
<BR><a name="933278">
<dt>Input: <em>n</em>, integer ordinal index into the internal sorted name table.
</a>
<a name="933279">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="933280">
<dd>nchr, the number of characters in the name,<P>
</a>
<a name="935280">
<dd>name, an ASCII array in which the name is returned.<P>
</a>
<A NAME="934855"><P><B></a>PFGVAT(fileid, nv, var, na, attr, value)
</B><BR><A NAME="934862"></a>Get the value of an attribute for an entity in a PDB file.
<BR><a name="934895">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="934896">
<dd><em>nv</em>, an integer number of characters in var,<P>
</a>
<a name="934897">
<dd>var, an ASCII string naming an entity,<P>
</a>
<a name="934906">
<dd><em>na</em>, an integer number of characters in attr,<P>
</a>
<a name="934907">
<dd>attr, an ASCII string naming an existing attribute,<P>
</a>
<a name="934908">
<dd>value, the data for the attribute value.<P>
</a>
<a name="934909">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="936255"><P><B></a>PFIMBR(file, ntype, type, n, size, space)
</B><BR><A NAME="936256"></a>Inquire about the nth member of the type <em>type</em> in PDB file<em> fileid</em>.
<BR><a name="936257">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="936258">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="936260">
<dd><em>type</em>, an ASCII string containing the name of the type,<P>
</a>
<a name="936265">
<dd>n, an integer specifying the member,<P>
</a>
<a name="936267">
<dd>size, an integer character size of the space buffer,<P>
</a>
<a name="936268">
<dd>space, an character buffer to hold the member description.<P>
</a>
<a name="936261">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="936262">
<dd><em>size</em>, the number of characters in the member description,<P>
</a>
<a name="936263">
<dd><em>space</em>, the member description.<P>
</a>
<A NAME="936264"><P><B></a>PFITYP(fileid, ntype, type, size, align, ind)
</B><BR><A NAME="932893"></a>Inquire about type <em>type</em> in PDB file<em> fileid</em>.
<BR><a name="932894">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932895">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="932896">
<dd><em>type</em>, an ASCII string containing the name of the type.<P>
</a>
<a name="932897">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="932898">
<dd><em>size</em>, the number of bytes necessary to represent the type,<P>
</a>
<a name="932899">
<dd><em>align</em>, the alignment of <em>type</em> in bytes,<P>
</a>
<a name="932900">
<dd><em>ind</em>, the number of members which are pointers if <em>type</em> is a derived type.<P>
</a>
<A NAME="932901"><P><B></a>PFIVAR(fileid, nchr, name, ntype, type, size, ndims, dims)
</B><BR><A NAME="932902"></a>Inquire about variable <em>name</em> in PDB file<em> fileid</em>.
<BR><a name="932903">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932905">
<dd><em>nchr</em>, the number of characters in <em>name</em>,<P>
</a>
<a name="932906">
<dd><em>name</em>, an ASCII string containing the name of the variable.<P>
</a>
<a name="932908">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="932909">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="932910">
<dd><em>type</em>, an ASCII string containing the type of the variable,<P>
</a>
<a name="932911">
<dd><em>size</em>, the number of elements in the variable,<P>
</a>
<a name="932913">
<dd><em>ndims</em>, the number of dimensions which the variable has,<P>
</a>
<a name="932914">
<dd><em>dims</em>, an array of the dimensions given as (min, max) pairs.<P>
</a>
<A NAME="935326"><P><B></a>PFLN(fileid, nvar, var, nlink, link)
</B><BR><A NAME="935327"></a>Create a </a>link to a variable in a PDB file.
<BR><a name="935328">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="935329">
<dd>nvar, the number of characters in var,<P>
</a>
<a name="935330">
<dd>var, an ASCII string containing the path name of an existing variable,<P>
</a>
<a name="935331">
<dd>nlink, the number of characters in link,<P>
</a>
<a name="935332">
<dd>link, an ASCII string containing the path name of the new link.<P>
</a>
<a name="935333">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="935334"><P><B></a>PFLST(fileid, npath, path, ntype, type, num)
</B><BR><a name="935335">
<dt></a>Generate an internal table of </a>variables and/or </a>directories in a PDB file.
</a>
<a name="935336">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="935337">
<dd>npath, the number of characters in path,<P>
</a>
<a name="935338">
<dd>path, an ASCII string containing the directory and/or variable name pattern,<P>
</a>
<a name="935340">
<dd>ntype, the number of characters in type,<P>
</a>
<a name="935341">
<dd>type, an ASCII string containing the type of entries to return.<P>
</a>
<a name="935342">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="935344">
<dd>num, the number of entries in the table.<P>
</a>
<A NAME="935356"><P><B></a>PFMKDR(fileid, nchr, dirname)
</B><BR><A NAME="935357"></a>Create a new </a>directory in a PDB file.
<BR><a name="935359">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="935360">
<dd>nchr, the number of characters in dirname,<P>
</a>
<a name="935361">
<dd>dirname, an ASCII string containing the path name of the new directory.<P>
</a>
<a name="935375">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932915"><P><B></a>PFOPEN(nchr, name, mode)
</B><BR><A NAME="932917"></a>Open a PDB file on disk named <em>name</em> in one of three </a>modes: ‘</a>w’ for </a>create, ‘</a>r’ for </a>read-
only, or ‘</a>a’ for </a>append.
<BR><a name="932919">
<dt>Input: <em>nchr</em>, the number of characters in name,
</a>
<a name="932920">
<dd><em>name</em>, an ASCII string naming the file,<P>
</a>
<a name="932922">
<dd><em>mode</em>, an ASCII string, either ‘w’ for create, ‘r’ for read, or ‘a’ for append.<P>
</a>
<a name="932924">
<dt>Output: Return an integer PDBfile identification number, if successful, and 0 otherwise.
</a>
<A NAME="932937"><P><B></a>PFPTRD(fileid, nchr, name, space, ind)
</B><BR><A NAME="932938"></a>Read <em>part of variable</em> <em>name</em> from PDB file <em>fil</em>eid and put it into <em>space</em>.
<BR><a name="932939">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932940">
<dd><em>nchr</em>, the number of characters in <em>name</em>,<P>
</a>
<a name="932941">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="932944">
<dd><em>space</em>, the variable where the data is to be placed,<P>
</a>
<a name="932946">
<dd><em>ind</em>, the array of dimension index specifications (start, stop, step triplets for each dimension).<P>
</a>
<a name="932948">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="935362"><P><B></a>PFPWD(fileid, nchr, dirname)
</B><BR><A NAME="935369"></a>Get the </a>current </a>directory for a PDB file.
<BR><a name="935392">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number.
</a>
<a name="935273">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="935413">
<dd>nchr, the number of characters returned in dirname,<P>
</a>
<a name="935414">
<dd>dirname, an ASCII string to contain the path name of the current directory.<P>
</a>
<A NAME="934910"><P><B></a>PFRATT(fileid, na, attr)
</B><BR><A NAME="934911">Remove an attribute from a PDB file.
<BR><a name="934912">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="934915">
<dd><em>na</em>, an integer number of characters in attr,<P>
</a>
<a name="934916">
<dd>attr, an ASCII string naming an existing attribute.<P>
</a>
<a name="934918">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="936500"><P><B></a>PFRDAD(fileid, nchr, name, ntype, type, space, ind)
</B><BR><A NAME="936794"></a>Read <em>part of variable</em> <em>name</em> from PDB file <em>fil</em>eid as variable type type and put it into
<em>space</em>.
<BR><a name="936501">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="936502">
<dd><em>nchr</em>, the number of characters in <em>name</em>,<P>
</a>
<a name="936503">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="936504">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="936505">
<dd><em>type</em>, an ASCII string containing the type of the variable in space,<P>
</a>
<a name="936506">
<dd><em>space</em>, the variable where the data is to be placed,<P>
</a>
<a name="936507">
<dd><em>ind</em>, the array of dimension index specifications (start, stop, step triplets for each dimension).<P>
</a>
<a name="936508">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="936482"><P><B></a>PFRDAS(fileid, nchr, name, ntype, type, space)
</B><BR><A NAME="936483"></a>Read variable <em>name</em> from PDB file<em> fileid</em> as variable type type and put it into <em>space</em>.
<BR><a name="936484">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="936486">
<dd><em>nchr</em>, the number of characters in <em>name</em>,<P>
</a>
<a name="936487">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="936497">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="936498">
<dd><em>type</em>, an ASCII string containing the type of the variable in space,<P>
</a>
<a name="936488">
<dd><em>space</em>, the variable where the data is to be placed.<P>
</a>
<a name="936489">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="936490"><P><B></a>PFREAD(fileid, nchr, name, space)
</B><BR><A NAME="936491"></a>Read variable <em>name</em> from PDB file<em> fileid</em> and put it into <em>space</em>.
<BR><a name="936492">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="936493">
<dd><em>nchr</em>, the number of characters in <em>name</em>,<P>
</a>
<a name="936494">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="936495">
<dd><em>space</em>, the variable where the data is to be placed.<P>
</a>
<a name="936496">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932950"><P><B></a>PFSBFS(v)
</B><BR><A NAME="932952"></a>Set the buffer size which PDBLib will use for all PDB files to <em>v</em>.
<BR><a name="932953">
<dt>Input: <em>v</em>, an integer value for the buffer size in bytes.
</a>
<a name="932954">
<dt>Output: Return the integer value of the buffer size in bytes.
</a>
<A NAME="937619"><P><B></a>PFSMXS(fileid, v)
</B><BR><a name="937620">
<dt></a>Set the maximum file size for PDB file <em>fileid</em> to <em>v</em>.
</a>
<a name="937621">
<dt>Input: <em>fileid</em>, an integer <strong>PDBfile</strong> identification number.
</a>
<a name="937622">
<dd><em>v</em>, an integer value for the maximum file size.<P>
</a>
<a name="937623">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932956"><P><B></a>PFSOFF(fileid, v)
</B><BR><A NAME="932957"></a>Set the default offset for PDB file<em> fileid</em> to <em>v</em>.
<BR><a name="932958">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932959">
<dd><em>v</em>, an integer value for the default offset.<P>
</a>
<a name="932960">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="934898"><P><B></a>PFSVAT(fileid, nv, var, na, attr, value)
</B><BR><A NAME="934899"></a>Set the value of an attribute for an entity in a PDB file.
<BR><a name="934900">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="934902">
<dd><em>nv</em>, an integer number of characters in var,<P>
</a>
<a name="934904">
<dd>var, an ASCII string naming an entity,<P>
</a>
<a name="934894">
<dd><em>na</em>, an integer number of characters in attr,<P>
</a>
<a name="934905">
<dd>attr, an ASCII string naming an existing attribute,<P>
</a>
<a name="934863">
<dd>value, the data for the attribute value.<P>
</a>
<a name="934903">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="933289"><P><B></a>PFTRGT(is, ia)
</B><BR><A NAME="933290">Write the next PDB file to be created according to the specified </a>data standard and </a>alignment.
<BR><a name="933291">
<dt>Input: <em>is</em>, an index specifying the data standard,
</a>
<a name="933292">
<dd><em>ia</em>, an index specifying the data alignment.<P>
</a>
<a name="933293">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932885"><P><B></a>PFVART(fileid, order, nvars)
</B><BR><A NAME="932886"></a>Generate an internal </a>table of </a>variables in PDB file<em> fileid</em> which is sorted according to the
specification, order.
<BR><a name="932887">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932889">
<dd>order, an integer specifying the order (1, alphabetic; 2, disk address order).<P>
</a>
<a name="933267">
<dt>Output: Return 1 if successful, 0 otherwise,
</a>
<a name="935283">
<dd>nvars, the number of variables in the file.<P>
</a>
<A NAME="932962"><P><B></a>PFWIMA(fileid, nchr, name, pkn, pkx, pln, plx, data, pxn, pxx, pyn, pyx, pim)
</B><BR><A NAME="932963">Write the given information out to file<em> fileid</em> as a PD_image.
<BR><a name="932964">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932966">
<dd><em>nchr</em>, the number of characters in the image name,<P>
</a>
<a name="932968">
<dd><em>name</em>, an ASCII string containing the </a>image name,<P>
</a>
<a name="932969">
<dd><em>pkn</em>, an integer containing the minimum column index of data,<P>
</a>
<a name="932970">
<dd><em>pkx</em>, an integer containing the maximum column index of data,<P>
</a>
<a name="933646">
<dd><em>pln</em>, an integer containing the minimum row index of data,<P>
</a>
<a name="933648">
<dd><em>plx</em>, an integer containing the maximum row index of data,<P>
</a>
<a name="932971">
<dd><em>data</em>, a real*8 array containing the range data,<P>
</a>
<a name="932973">
<dd><em>pxn</em>, a real*8 constant specifying the minimum column index in image,<P>
</a>
<a name="932976">
<dd><em>pxx</em>, a real*8 constant specifying the maximum column index in image,<P>
</a>
<a name="932977">
<dd><em>pyn</em>, a real*8 constant specifying the minimum row index in image,<P>
</a>
<a name="932978">
<dd><em>pyx</em>, a real*8 constant specifying the maximum row index in image,<P>
</a>
<a name="934221">
<dd>pim, an integer containing the image number.<P>
</a>
<a name="932981">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="932983"><P><B></a>PFWMAP(fileid, dname, dp, dm, rname, rp, rm, pim)
</B><BR><A NAME="932984">Write the given information out to <em>file fileid</em> as a </a>PM_mapping. The number <em>pim</em> represents the </a>mapping number and must be unique.
<BR><a name="932985">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="932987">
<dd><em>dname</em>, an ASCII string containing the domain name,<P>
</a>
<a name="932988">
<dd><em>dp</em>, an integer array of parameters defining the domain,<P>
</a>
<a name="932989">
<dd><em>dm</em>, a real*8 array containing the domain data,<P>
</a>
<a name="932992">
<dd><em>rname</em>, an ASCII string containing the range name,<P>
</a>
<a name="932993">
<dd><em>rp</em>, an integer array of parameters defining the range,<P>
</a>
<a name="932994">
<dd><em>rm</em>, a real*8 array containing the range data,<P>
</a>
<a name="932999">
<dd><em>pim</em>, an integer containing the mapping number.<P>
</a>
<a name="933001">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="936531"><P><B></a>PFWRAD(fileid, nchr, name, ntypin, intype, ntypout, outtype, space, nd, ind)
</B><BR><A NAME="936532"></a>Write the data pointed to by <em>space</em> under <em>name</em> and with <em>type</em> in PDB file <em>fileid</em>. Array
ind contains nd triples indicating the minimum and maximum index and the stride for
each dimension.
<BR><a name="936533">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="936534">
<dd><em>nchr</em>, the number of characters in <em>name</em>,<P>
</a>
<a name="936535">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="936538">
<dd><em>ntypin</em>, the number of characters in <em>intype</em>,<P>
</a>
<a name="936539">
<dd><em>intype</em>, an ASCII string containing the type of the variable in space,<P>
</a>
<a name="936540">
<dd><em>ntypout</em>, the number of characters in <em>outtype</em>,<P>
</a>
<a name="936541">
<dd><em>outtype</em>, an ASCII string containing the type of the variable in name,<P>
</a>
<a name="936624">
<dd><em>space</em>, the variable containing the data,<P>
</a>
<a name="936741">
<dd><em>nd</em>, an integer number of dimensions,<P>
</a>
<a name="936742">
<dd>ind, an array of nd integer (min, max, stride) triples.<P>
</a>
<a name="936746">
<dt>Output: Return 1 if successful, 0 otherwise.AS</a>(fileid, nchr, name, ntypin, intype, ntypout, outtype, space)
</a>
<A NAME="933002"><P><B></a>PFWRAN(fileid, dname, nchr, rname, rp, rm, pim)
</B><BR><A NAME="933003">Write the given information out to file <em>fileid</em> as a </a>PM_mapping. The number <em>pim</em> represents the </a>mapping number and must be unique.
<BR><a name="933005">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="933006">
<dd><em>dname</em>, an ASCII string containing the domain name,<P>
</a>
<a name="933007">
<dd><em>nchr</em>, the number of characters in the domain name,<P>
</a>
<a name="933008">
<dd><em>rname</em>, an ASCII string containing the range name,<P>
</a>
<a name="933009">
<dd><em>rp</em>, an integer array of parameters defining the range,<P>
</a>
<a name="933012">
<dd><em>rm</em>, a real*8 array containing the range data,<P>
</a>
<a name="933013">
<dd><em>pim</em>, an integer containing the mapping number.<P>
</a>
<a name="933014">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="936522"><P><B></a>PFWRAS(fileid, nchr, name, ntypin, intype, ntypout, outtype, space)
</B><BR><A NAME="936523"></a>Write the data pointed to by <em>space of type</em> intype in PDB file<em> fileid</em> under <em>name</em> and with
type outtype. An arbitrary number of dimensions may be included in the <em>name</em> string.
<BR><a name="936524">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="936525">
<dd><em>nchr</em>, the number of characters in name,<P>
</a>
<a name="936526">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="936527">
<dd><em>ntypin</em>, the number of characters in <em>intype</em>,<P>
</a>
<a name="936528">
<dd><em>intype</em>, an ASCII string containing the type of the variable in space,<P>
</a>
<a name="936544">
<dd><em>ntypout</em>, the number of characters in <em>outtype</em>,<P>
</a>
<a name="936545">
<dd><em>outtype</em>, an ASCII string containing the type of the variable in name,<P>
</a>
<a name="936529">
<dd><em>space</em>, the variable containing the data.<P>
</a>
<a name="936530">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="933017"><P><B></a>PFWRTA(fileid, nchr, name, ntype, type, space)
</B><BR><A NAME="933020"></a>Write the data pointed to by <em>space</em> under <em>name</em> and with t<em>ype</em> in PDB file<em> fileid</em>. An arbitrary number of dimensions may be included in the <em>name</em> string.
<BR><a name="933022">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="933023">
<dd><em>nchr</em>, the number of characters in name,<P>
</a>
<a name="933024">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933026">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="933027">
<dd><em>type</em>, an ASCII string containing the type of the variable,<P>
</a>
<a name="933028">
<dd><em>space</em>, the variable containing the data.<P>
</a>
<a name="933031">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="933032"><P><B></a>PFWRTD(fileid, nchr, name, ntype, type, space, nd, ind)
</B><BR><A NAME="933034"></a>Write the data pointed to by <em>space</em> under <em>name</em> and with <em>type</em> in PDB file <em>fileid</em>. Array
ind contains nd triples indicating the minimum and maximum index and the stride for
each dimension.
<BR><a name="933035">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="933037">
<dd><em>nchr</em>, the number of characters in <em>name</em>,<P>
</a>
<a name="933038">
<dd><em>name</em>, an ASCII string containing the name of the variable in the PDB file,<P>
</a>
<a name="933039">
<dd><em>ntype</em>, the number of characters in <em>type</em>,<P>
</a>
<a name="933041">
<dd><em>type</em>, an ASCII string containing the type of the variable,<P>
</a>
<a name="933617">
<dd><em>space</em>, the variable containing the data,<P>
</a>
<a name="933042">
<dd><em>nd</em>, an integer number of dimensions,<P>
</a>
<a name="934071">
<dd>ind, an array of nd integer (min, max, stride) triples.<P>
</a>
<a name="933043">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="933294"><P><B></a>PFWSET(fileid, dname, dp, dm)
</B><BR><a name="933296">
<dt>Build a </a>PM_set structure out of the given input data and write it to a PDB file.
</a>
<a name="933295">
<dt>Input: <em>fileid</em>, an integer PDBfile identification number,
</a>
<a name="933297">
<dd><em>dname</em>, an ASCII string containing the set name,<P>
</a>
<a name="933298">
<dd><em>dp</em>, an integer array of parameters defining the </a>PM_set,<P>
</a>
<a name="933299">
<dd><em>dm</em>, an array of real*8 values containing the set elements.<P>
</a>
<a name="933302">
<dt>Output: Return 1 if successful, 0 otherwise.
</a>
<A NAME="934584"><PRE>
</PRE></dl>
<a name="934594">
<h1>6.0 The </a>FORTRAN </a>API</h1>
</a>
<a name="932479">
In this section a more formal description of the FORTRAN API for PDBLib is given including a more detailed account of their workings.<p>
</a>
<a name="936585">
<h2>6.1 PFAPAD — (PD_append_as_alt)</h2>
</a>
<A NAME="936586"><PRE><B>
</B></PRE><A NAME="936587"><PRE><B>integer </a>PFAPAD(integer fileid,
</B></PRE><A NAME="936588"><PRE><B> integer nchr,
</B></PRE><A NAME="934669"><PRE><B> character name,
</B></PRE><A NAME="936589"><PRE><B> integer ntype,
</B></PRE><A NAME="936590"><PRE><B> character intype,
</B></PRE><A NAME="936796"><PRE><B> void space,
</B></PRE><A NAME="936591"><PRE><B> integer nd,
</B></PRE><A NAME="936592"><PRE><B> integer ind)
</B></PRE><a name="936593">
</a>Append data of type intype to an entry in the specified file. The outtype is assumed to be the same as for the original entry. The dimensions of the appended data are specified in nd and ind. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following;<p>
</a>
<dl>
<a name="936594">
<dt>min:max :stride => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="936595">
<dt> if min is the default_offset for the file
</a>
<a name="936596">
<dt> or
</a>
<a name="936597">
<dt>min:max :stride => new dimension is old_min:max
</a>
<a name="936598">
<dt> if min is old_max+1
</a>
<a name="936599">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="936600">
The shape or dimensional information of the entry is specified in nd and ind. In this respect PFAPAD behaves just like </a>PFWRTD.<p>
</a>
<a name="936601">
The arguments to PFAPAD are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; ntype, an integer number of characters in the intype string; intype, an ASCII string specifying the type of data to which space points; space, the data to be written; nd, an integer number of dimensions; and ind, an array of nd integer triples containing the minimum and maximum index and the stride for each dimension.<p>
</a>
<a name="936602">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="936603">
See also PFAPAS, PFAPPA, PFAPPD, PFWRAD, PFWRAS, PFWRTA, and PFWRTD.<p>
</a>
<a name="936604">
<p>
</a>
<A NAME="936605"><PRE><B>integer </a>PFAPAD(integer fileid,
</B></PRE><A NAME="936606"><PRE><B> integer nchr,
</B></PRE><A NAME="936607"><PRE><B> character name,
</B></PRE><A NAME="936563"><PRE><B> integer ntype,
</B></PRE><A NAME="936798"><PRE><B> character intype,
</B></PRE><A NAME="936608"><PRE><B> void space,
</B></PRE><A NAME="936609"><PRE><B> integer nd,
</B></PRE><A NAME="936610"><PRE><B> integer ind)
</B></PRE><A NAME="936611"><B>
</B><HR><A NAME="936612"><PRE> character*8 intype
</PRE><A NAME="936807"><PRE> integer pfapad, pfwrtd
</PRE><A NAME="936613"><PRE> integer fileid, ntype, nd, ind(3)
</PRE><A NAME="936614"><PRE> real x(20)
</PRE><A NAME="936799"><PRE> real*8 y(10)
</PRE><A NAME="936615"><PRE> .
</PRE><A NAME="936616"><PRE> .
</PRE><A NAME="936617"><PRE> .
</PRE><A NAME="936618"><PRE> c write array x
</PRE><A NAME="936619"><PRE> ind(1) = 1
</PRE><A NAME="936620"><PRE> ind(2) = 20
</PRE><A NAME="936621"><PRE> ind(3) = 1
</PRE><A NAME="936622"><PRE> if (</a>pfwrtd(fileid, 1, ‘x’, 5, ‘float’, x, 1, ind) .eq. 0)
</PRE><A NAME="936623"><PRE> $ call errproc
</PRE><A NAME="936732"><PRE> .
</PRE><A NAME="936733"><PRE> .
</PRE><A NAME="936740"><PRE> .
</PRE><A NAME="936625"><PRE> c append to x
</PRE><A NAME="936626"><PRE> ind(2) = 10
</PRE><A NAME="936627"><PRE> if (</a>pfapad(fileid, 1, ‘x’, 6, ‘double’, y, 1, ind) .eq. 0)
</PRE><A NAME="936628"><PRE> $ call errproc
</PRE><A NAME="936629"><PRE> .
</PRE><A NAME="936630"><PRE> .
</PRE><A NAME="936546"><PRE> .
</PRE><A NAME="936558"><PRE> Compare this with the example of </a>PFWRAD.
</PRE></dl>
<a name="936631">
<h2>6.2 PFAPAS — (PD_append_as)</h2>
</a>
<A NAME="936547"><PRE><B>
</B></PRE><A NAME="936548"><PRE><B>integer </a>PFAPAS(integer fileid,
</B></PRE><A NAME="936549"><PRE><B> integer nchr,
</B></PRE><A NAME="936550"><PRE><B> character name,
</B></PRE><A NAME="936801"><PRE><B> integer ntype,
</B></PRE><A NAME="936802"><PRE><B> character intype,
</B></PRE><A NAME="936551"><PRE><B> void space)
</B></PRE><a name="936552">
</a>Append data to an entry in the specified file. The outtype is assumed to be the same as for the original entry. The dimensions of the appended data are specified in name. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following;<p>
</a>
<dl>
<a name="936553">
<dt>min:max => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="936554">
<dt> if min is the default_offset for the file
</a>
<a name="936555">
<dt> or
</a>
<a name="936556">
<dt>min:max => new dimension is old_min:max
</a>
<a name="936557">
<dt> if min is old_max+1
</a>
<a name="936665">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="936559">
The shape or dimensional information of the entry is a part of the name string. In this respect </a>PFAPAS behaves just like </a>PFWRAS.<p>
</a>
<a name="936560">
The arguments to </a>PFAPAS are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable and any dimensional information, ntype, an integer number of characters in the intype string; intype, an ASCII string specifying the type of data to which space points and space, the data to be appended.<p>
</a>
<a name="936561">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="936562">
See also PFAPAD, PFAPPA, PFAPPD, PFWRAD, PFWRAS, PFWRTA, and PFWRTD.<p>
</a>
<a name="936564">
<p>
</a>
<A NAME="936797"><PRE><B>integer </a>PFAPAS(integer fileid,
</B></PRE><A NAME="936565"><PRE><B> integer nchr,
</B></PRE><A NAME="936566"><PRE><B> character name,
</B></PRE><A NAME="936805"><PRE><B> integer ntype,
</B></PRE><A NAME="936806"><PRE><B> character intype,
</B></PRE><A NAME="936567"><PRE><B> void space)
</B></PRE><A NAME="936568"><B>
</B><HR><A NAME="936808"><PRE> character*8 intype
</PRE><A NAME="936569"><PRE> integer pfapas, pfwrta
</PRE><A NAME="936570"><PRE> integer fileid, nchr, ntype
</PRE><A NAME="936571"><PRE> real x(20)
</PRE><A NAME="936803"><PRE> real*8 y(10)
</PRE><A NAME="936572"><PRE> .
</PRE><A NAME="936573"><PRE> .
</PRE><A NAME="936574"><PRE> .
</PRE><A NAME="936575"><PRE> c write array x
</PRE><A NAME="936576"><PRE> if (</a>pfwrta(fileid, 5, ‘x(20)’, 5, ‘float’, x) .eq. 0)
</PRE><A NAME="936577"><PRE> $ call errproc
</PRE><A NAME="936747"><PRE> .
</PRE><A NAME="936748"><PRE> .
</PRE><A NAME="936749"><PRE> .
</PRE><A NAME="936579"><PRE> c append to x
</PRE><A NAME="936580"><PRE> if (</a>pfapas(fileid, 7, ‘x(1:10)’, 6, ‘double’, y) .eq. 0)
</PRE><A NAME="936581"><PRE> $ call errproc
</PRE><A NAME="936582"><PRE> .
</PRE><A NAME="936578"><PRE> .
</PRE><A NAME="936583"><PRE> .
</PRE><a name="932907">
Compare this with the example of </a>PFWRAS.<p>
</a>
</dl>
<a name="936804">
<h2>6.3 PFAPPA — (PD_append)</h2>
</a>
<A NAME="933517"><PRE><B>
</B></PRE><A NAME="933518"><PRE><B>integer </a>PFAPPA(integer fileid,
</B></PRE><A NAME="934125"><PRE><B> integer nchr,
</B></PRE><A NAME="934525"><PRE><B> character name,
</B></PRE><A NAME="934527"><PRE><B> void space)
</B></PRE><a name="934528">
</a>Append data to an entry in the specified file. The type is assumed to be the same as for the original entry. The dimensions of the appended data are specified in name. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following;<p>
</a>
<dl>
<a name="934529">
<dt>min:max => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="934532">
<dt> if min is the default_offset for the file
</a>
<a name="934533">
<dt> or
</a>
<a name="934534">
<dt>min:max => new dimension is old_min:max
</a>
<a name="934538">
<dt> if min is old_max+1
</a>
<a name="934599">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="934622">
The shape or dimensional information of the entry is a part of the name string. In this respect </a>PFAPPA behaves just like </a>PFWRTA.<p>
</a>
<a name="934627">
The arguments to </a>PFAPPA are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; and space, the data to be written.<p>
</a>
<a name="934688">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="934722">
See also PFAPAD, PFAPAS, PFAPPD, PFWRAD, PFWRAS, PFWRTA, and PFWRTD.<p>
</a>
<a name="935241">
<p>
</a>
<A NAME="934724"><PRE><B>integer </a>PFAPPA(integer fileid,
</B></PRE><A NAME="934725"><PRE><B> integer nchr,
</B></PRE><A NAME="934726"><PRE><B> character name,
</B></PRE><A NAME="934728"><PRE><B> void space)
</B></PRE><A NAME="934696"><B>
</B><HR><A NAME="934697"><PRE> integer pfappa, pfwrta
</PRE><A NAME="934699"><PRE> integer fileid
</PRE><A NAME="934700"><PRE> real x(20), y(10)
</PRE><A NAME="934703"><PRE> .
</PRE><A NAME="934704"><PRE> .
</PRE><A NAME="934705"><PRE> .
</PRE><A NAME="934707"><PRE> c write array x
</PRE><A NAME="934708"><PRE> if (</a>pfwrta(fileid, 5, ‘x(20)’, 5, ‘float’, x) .eq. 0)
</PRE><A NAME="934709"><PRE> $ call errproc
</PRE><A NAME="934711"><PRE>
</PRE><A NAME="934712"><PRE> c append to x
</PRE><A NAME="934713"><PRE> if (</a>pfappa(fileid, 7, ‘x(1:10)’, y) .eq. 0)
</PRE><A NAME="934714"><PRE> $ call errproc
</PRE><A NAME="934715"><PRE> .
</PRE><A NAME="934716"><PRE> .
</PRE><A NAME="934689"><PRE> .
</PRE></dl>
<a name="934690">
<h2>6.4 PFAPPD — (PD_append_alt)</h2>
</a>
<A NAME="934718"><PRE><B>
</B></PRE><A NAME="934776"><PRE><B>integer </a>PFAPPD(integer fileid,
</B></PRE><A NAME="934777"><PRE><B> integer nchr,
</B></PRE><A NAME="934779"><PRE><B> character name,
</B></PRE><A NAME="934780"><PRE><B> void space,
</B></PRE><A NAME="934781"><PRE><B> integer nd,
</B></PRE><A NAME="934782"><PRE><B> integer ind)
</B></PRE><a name="934701">
</a>Append data to an entry in the specified file. The type is assumed to be the same as for the original entry. The dimensions of the appended data are specified in nd and ind. They must match the original entry except for the most slowly varying one. The specification of the most slowly varying dimension must be one of the following;<p>
</a>
<dl>
<a name="935244">
<dt>min:max :stride => new dimension is old_min:old_max+(max-min+1)
</a>
<a name="935245">
<dt> if min is the default_offset for the file
</a>
<a name="935246">
<dt> or
</a>
<a name="935247">
<dt>min:max :stride => new dimension is old_min:max
</a>
<a name="935248">
<dt> if min is old_max+1
</a>
<a name="934736">
The rationale for this function is that some data sets are of unknown size until they are completely written. PDBLib permits any entry to reside in </a>discontiguous blocks of disk space. The library is responsible for reading and writing data correctly across these blocks.<p>
</a>
<a name="934737">
The shape or dimensional information of the entry is specified in nd and ind. In this respect </a>PFAPPD behaves just like </a>PFWRTD.<p>
</a>
<a name="934691">
The arguments to </a>PFAPPD are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; space, the data to be written; nd, an integer number of dimensions; and ind, an array of nd integer triples containing the minimum and maximum index and the stride for each dimension.<p>
</a>
<a name="934739">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function </a>PFGERR.<p>
</a>
<a name="934740">
See also PFAPAD, PFAPAS, PFAPPA, PFWRAD, PFWRAS, PFWRTA, and PFWRTD.<p>
</a>
<a name="934742">
<p>
</a>
<A NAME="936810"><PRE><B>integer </a>PFAPPD(integer fileid,
</B></PRE><A NAME="934744"><PRE><B> integer nchr,
</B></PRE><A NAME="934745"><PRE><B> character name,
</B></PRE><A NAME="934746"><PRE><B> void space,
</B></PRE><A NAME="934774"><PRE><B> integer nd,
</B></PRE><A NAME="934775"><PRE><B> integer ind)
</B></PRE><A NAME="934747"><B>
</B><HR><A NAME="934748"><PRE> integer pfappd, pfwrtd
</PRE><A NAME="934750"><PRE> integer fileid, ind(3)
</PRE><A NAME="934751"><PRE> real x(20), y(10)
</PRE><A NAME="934752"><PRE> .
</PRE><A NAME="934754"><PRE> .
</PRE><A NAME="934755"><PRE> .
</PRE><A NAME="934756"><PRE> c write array x
</PRE><A NAME="934757"><PRE> ind(1) = 1
</PRE><A NAME="934771"><PRE> ind(2) = 20
</PRE><A NAME="934772"><PRE> ind(3) = 1
</PRE><A NAME="934770"><PRE> if (</a>pfwrtd(fileid, 1, ‘x’, 5, ‘float’, x, 1, ind) .eq. 0)
</PRE><A NAME="934759"><PRE> $ call errproc
</PRE><A NAME="934760"><PRE>
</PRE><A NAME="934761"><PRE> c append to x
</PRE><A NAME="934773"><PRE> ind(2) = 10
</PRE><A NAME="934762"><PRE> if (</a>pfappd(fileid, 1, ‘x’, y, 1, ind) .eq. 0)
</PRE><A NAME="934763"><PRE> $ call errproc
</PRE><A NAME="934764"><PRE> .
</PRE><A NAME="934766"><PRE> .
</PRE><A NAME="934767"><PRE> .
</PRE></dl>
<a name="935628">
<h2>6.5 </a>PFCD — (PD_cd)</h2>
</a>
<A NAME="935642"><PRE><B>
</B></PRE><A NAME="935643"><PRE><B>integer </a>PFCD(integer fileid,
</B></PRE><A NAME="935646"><PRE><B> integer nchr,
</B></PRE><A NAME="935645"><PRE><B> char *dirname)
</B></PRE><a name="935644">
</a>Change the </a>current </a>directory in a PDB file.<p>
</a>
<a name="935647">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935648">
The arguments to </a>PFCD are: fileid, an integer file identifier; nchr, an integer number of characters in string dirname; and dirname, an ASCII string containing the path name of the directory to change to.<p>
</a>
<a name="935649">
If dirname is an empty string or a slash, it refers to the top level or </a>root directory.<p>
</a>
<a name="935650">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935651">
See also </a>PFDLS, </a>PFGLS, </a>PFLN, </a>PFLST, </a>PFMKDR, </a>PFPWD.<p>
</a>
<a name="935652">
<p>
</a>
<A NAME="935653"><PRE><B>integer </a>PFCD(integer fileid,
</B></PRE><A NAME="935656"><PRE><B> integer nchr,
</B></PRE><A NAME="935657"><PRE><B> char *dirname)
</B></PRE><A NAME="935659"><B>
</B><HR><A NAME="935660"><PRE> integer pfcd
</PRE><A NAME="935661"><PRE> integer fileid
</PRE><A NAME="935662"><PRE> .
</PRE><A NAME="935663"><PRE> .
</PRE><A NAME="935664"><PRE> .
</PRE><A NAME="935654"><PRE> if (</a>pfcd(fileid, 16, ‘/animals/mammals’) .eq. 0)
</PRE><A NAME="935655"><PRE> $ call errproc
</PRE><A NAME="935665"><PRE> .
</PRE><A NAME="935666"><PRE> .
</PRE><A NAME="935667"><PRE> .
</PRE><A NAME="935668"><PRE> if (</a>pfcd(fileid, 11, ‘../reptiles’) .eq. 0)
</PRE><A NAME="935669"><PRE> $ call errproc
</PRE><A NAME="935670"><PRE> .
</PRE><A NAME="935671"><PRE> .
</PRE><A NAME="935672"><PRE> .
</PRE><a name="934616">
<h2>6.6 PFCLOS — (PD_close)</h2>
</a>
<A NAME="934619"><PRE><B>
</B></PRE><A NAME="932750"><PRE><B>integer </a>PFCLOS(integer fileid)
</B></PRE><a name="934625">
</a>Close a PDB file. After all data is written to the PDB file, the structure chart and symbol table must be written out to the file and their disk addresses recorded in the file header. Without these operations the file cannot be read back in by PDBLib and all data is lost.<p>
</a>
<a name="934630">
All open PDB files must be </a>PFCLOS’d before exiting the program. The integer identifier <em>fileid</em> associated with the PDB file must be passed to </a>PFCLOS.<p>
</a>
<a name="932483">
This function returns 1 if the PDB file is correctly written and closed; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933692">
<p>
</a>
<A NAME="933694"><PRE><B>integer </a>PFCLOS(integer fileid)
</B></PRE><A NAME="932859"><B>
</B><HR><A NAME="932888"><PRE> integer </a>pfclos
</PRE><A NAME="933841"><PRE> integer fileid
</PRE><A NAME="933843"><PRE> .
</PRE><A NAME="933844"><PRE> .
</PRE><A NAME="933842"><PRE> .
</PRE><A NAME="933845"><PRE> if (</a>pfclos(fileid) .eq. 0)
</PRE><A NAME="933846"><PRE> $ call errproc
</PRE><A NAME="933849"><PRE> .
</PRE><A NAME="933850"><PRE> .
</PRE><A NAME="933851"><PRE> .
</PRE><a name="934588">
<h2>6.7 PFDATT — (PD_def_attribute)</h2>
</a>
<A NAME="934600"><PRE><B>
</B></PRE><A NAME="934601"><PRE><B>integer </a>PFDATT(integer fileid,
</B></PRE><A NAME="934608"><PRE><B> integer na,
</B></PRE><A NAME="934602"><PRE><B> char *attr,
</B></PRE><A NAME="934609"><PRE><B> integer nt,
</B></PRE><A NAME="934603"><PRE><B> char *type)
</B></PRE><a name="934604">
</a>Define an </a>attribute to the given PDB file. The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by making a call which specifies the entity name, the attribute name, and the attribute value (which is determined by the type). The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934610">
The arguments to </a>PFDATT are: fileid, an integer identifier which designates the PDB file in which the attribute is being defined; na, an integer number of characters in the attr string; attr, an ASCII string containing the name of the attribute; nt, an integer number of characters in the type string; and type, an ASCII string containing the type of the attribute;<p>
</a>
<a name="933972">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="934607">
See also </a>PFRATT, </a>PFGVAT, and </a>PFSVAT.<p>
</a>
<a name="934693">
<p>
</a>
<A NAME="934692"><PRE><B>integer </a>PFDATT(integer fileid,
</B></PRE><A NAME="934808"><PRE><B> integer na,
</B></PRE><A NAME="934810"><PRE><B> char *attr,
</B></PRE><A NAME="934811"><PRE><B> integer nt,
</B></PRE><A NAME="934812"><PRE><B> char *type)
</B></PRE><A NAME="934786"><B>
</B><HR><A NAME="934787"><PRE> integer pfdatt
</PRE><A NAME="934788"><PRE> integer fileid
</PRE><A NAME="934791"><PRE> .
</PRE><A NAME="934792"><PRE> .
</PRE><A NAME="934794"><PRE> .
</PRE><A NAME="934796"><PRE> if (</a>pfdatt(fileid, 4, ‘date’, 6, ‘char *’) .eq. 0)
</PRE><A NAME="934798"><PRE> $ call errproc
</PRE><A NAME="934804"><PRE> .
</PRE><A NAME="934805"><PRE> .
</PRE><A NAME="934807"><PRE> .
</PRE><a name="935077">
<h2>6.8 PFDEFA — (PD_defent)</h2>
</a>
<A NAME="935078"><PRE><B>
</B></PRE><A NAME="935075"><PRE><B>integer </a>PFDEFA(integer fileid,
</B></PRE><A NAME="935152"><PRE><B> integer nc,
</B></PRE><A NAME="935153"><PRE><B> char *name,
</B></PRE><A NAME="935154"><PRE><B> integer nt,
</B></PRE><A NAME="935155"><PRE><B> char *type)
</B></PRE><a name="935123">
</a>Define an entry in the </a>symbol table of the PDB file specified by <em>fileid</em>. This function </a>reserves space on disk but writes no data. The data can be written with later calls to </a>PFWRTA or </a>PFWRTD.<p>
</a>
<a name="935124">
The shape or dimensional information of the entry is a part of the name string. In this respect it behaves as </a>PFWRTA.<p>
</a>
<a name="935138">
The rationale for this function is to </a>block out space in a PDB file corresponding to some logical layout of a piece of data. The data may not exist at the time the space is reserved or for some reason it may be desirable to write out the data in pieces. In any case if the type and shape of a variable is known at some point, an entry may be made in the PDB file without writing any data. The space may filled with other PDBLib calls at some later time.<p>
</a>
<a name="935139">
The arguments to this function are: fileid, an integer identifier which designates the PDB file in which to define an entry; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; ntype, an integer number of characters in the type string; and type, an ASCII string specifying the variable type.<p>
</a>
<a name="935140">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935141">
See also </a>PFAPAD, </a>PFAPAS, </a>PFAPPA, </a>PFAPPD, </a>PFDEFD, </a>PFWRAD, </a>PFWRAS, </a>PFWRTA, and </a>PFWRTD.<p>
</a>
<a name="935088">
<p>
</a>
<A NAME="935080"><PRE><B>integer </a>PFDEFA(integer fileid,
</B></PRE><A NAME="935157"><PRE><B> integer nc,
</B></PRE><A NAME="935158"><PRE><B> char *name,
</B></PRE><A NAME="935159"><PRE><B> integer nt,
</B></PRE><A NAME="935160"><PRE><B> char *type)
</B></PRE><A NAME="935093"><B>
</B><HR><A NAME="934040"><PRE> integer </a>pfdefa
</PRE><A NAME="935081"><PRE> integer fileid
</PRE><A NAME="935086"><PRE> .
</PRE><A NAME="935087"><PRE> .
</PRE><A NAME="935142"><PRE> .
</PRE><A NAME="935143"><PRE> c define and reserve array x
</PRE><A NAME="935083"><PRE> c declaration for x would be: real x(20)
</PRE><A NAME="935082"><PRE>
</PRE><A NAME="935144"><PRE> if (</a>pfdefa(fileid, 5, ‘x(20)’, 5, ‘float’) .eq. 0)
</PRE><A NAME="935145"><PRE> $ call errproc
</PRE><A NAME="935101"><PRE> .
</PRE><A NAME="935102"><PRE> .
</PRE><A NAME="935103"><PRE> .
</PRE><a name="935110">
Compare this with the example of </a>PFWRTA.<p>
</a>
<a name="935111">
<h2>6.9 PFDEFD — (PD_defent_alt)</h2>
</a>
<A NAME="935112"><PRE><B>
</B></PRE><A NAME="935079"><PRE><B>integer </a>PFDEFD(integer fileid,
</B></PRE><A NAME="935090"><PRE><B> integer nc,
</B></PRE><A NAME="935091"><PRE><B> char *name,
</B></PRE><A NAME="935092"><PRE><B> integer nt,
</B></PRE><A NAME="935161"><PRE><B> char *type,
</B></PRE><A NAME="935117"><PRE><B> integer nd,
</B></PRE><A NAME="935118"><PRE><B> integer ind)
</B></PRE><a name="935119">
</a>Define an entry in the </a>symbol table of the PDB file specified by <em>fileid</em>. This function </a>reserves space on disk but writes no data. The data can be written with later calls to </a>PFWRTA or </a>PFWRTD.<p>
</a>
<a name="935120">
This is an alternate form of </a>PFDEFA. The difference is that the </a>dimension information is supplied via the nd and ind arguments instead of being a part of the name string. In this respect it behaves as </a>PFWRTD.<p>
</a>
<a name="935122">
The rationale for this function is to </a>block out space in a PDB file corresponding to some logical layout of a piece of data. The data may not exist at the time the space is reserved or for some reason it may be desirable to write out the data in pieces. In any case if the type and shape of a variable is known at some point, an entry may be made in the PDB file without writing any data. The space may filled with other PDBLib calls at some later time.<p>
</a>
<a name="935136">
The arguments to this function are: fileid, an integer identifier which designates the PDB file in which to define an entry; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; ntype, an integer number of characters in the type string; type, an ASCII string specifying the variable type; nd, an integer number of dimensions; and ind, an array of nd integer pairs containing the minimum and maximum index for each dimension.<p>
</a>
<a name="935137">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="934741">
See also </a>PFAPAD, </a>PFAPAS, </a>PFAPPA, </a>PFAPPD, </a>PFDEFA, </a>PFWRAD, </a>PFWRAS, </a>PFWRTA, and </a>PFWRTD.<p>
</a>
<a name="935125">
See also </a>PFAPPA, </a>PFAPPD, </a>PFDEFA, </a>PFWRTA, and </a>PFWRTD.<p>
</a>
<a name="935127">
<p>
</a>
<A NAME="935113"><PRE><B>integer </a>PFDEFD(integer fileid,
</B></PRE><A NAME="935114"><PRE><B> integer nc,
</B></PRE><A NAME="935116"><PRE><B> char *name,
</B></PRE><A NAME="935162"><PRE><B> integer nt,
</B></PRE><A NAME="935164"><PRE><B> char *type,
</B></PRE><A NAME="935165"><PRE><B> integer nd,
</B></PRE><A NAME="935166"><PRE><B> integer ind)
</B></PRE><A NAME="935133"><B>
</B><HR><A NAME="935128"><PRE> integer </a>pfdefd
</PRE><A NAME="935129"><PRE> integer fileid, nd, ind(4)
</PRE><A NAME="935131"><PRE> .
</PRE><A NAME="935132"><PRE> .
</PRE><A NAME="935151"><PRE> .
</PRE><A NAME="935167"><PRE> c define and reserve array c
</PRE><A NAME="935130"><PRE> c declaration for c would be: real c(2,2:4)
</PRE><A NAME="935134"><PRE>
</PRE><A NAME="935168"><PRE> nd = 2
</PRE><A NAME="935169"><PRE> ind(1) = 1
</PRE><A NAME="935170"><PRE> ind(2) = 2
</PRE><A NAME="935171"><PRE> ind(3) = 2
</PRE><A NAME="935172"><PRE> ind(4) = 4
</PRE><A NAME="935176"><PRE> if (</a>pfdefd(fileid, 1, ‘c’, 5, ‘float’, nd, ind) .eq. 0)
</PRE><A NAME="935177"><PRE> $ call errproc
</PRE><A NAME="935178"><PRE> .
</PRE><A NAME="935179"><PRE> .
</PRE><A NAME="935180"><PRE> .
</PRE><a name="935135">
Compare with the example for </a>PFWRTD.<p>
</a>
<a name="933695">
<h2>6.10 PFDEFS — (PD_defstr))</h2>
</a>
<A NAME="934645"><PRE><B>
</B></PRE><A NAME="932751"><PRE><B>integer </a>PFDEFS(integer fileid,
</B></PRE><A NAME="932752"><PRE><B> integer nchr,
</B></PRE><A NAME="932753"><PRE><B> character name,
</B></PRE><A NAME="932754"><PRE><B> integer ncm1, character mem1,
</B></PRE><A NAME="932757"><PRE><B> ...,
</B></PRE><A NAME="932758"><PRE><B> integer ncmn, character memn,
</B></PRE><A NAME="932756"><PRE><B> integer LAST)
</B></PRE><a name="934655">
</a>Define a data structure for a PDB file. As a matter of programming efficiency and clarity it is useful to be able to refer to more complex structural units than the </a>primitive types: short integers, integers, long integers, floating point numbers, double precision floating point numbers, and characters. Arrays do this in a very simple-minded way. Many modern languages support </a>extended types or structures which allow the programmer to group diverse types of data together in a very sophisticated way.<p>
</a>
<a name="934661">
PDBLib supports an </a>extended </a>data typing mechanism called a structure. A </a>structure is a set of declarations of members. Each </a>member is in turn a data type known to the system. Much of the style and usage of structures comes from the C struct. Note: because FORTRAN 77 lacks a </a>pointer type, structures defined with this function should not contain pointered members.<p>
</a>
<a name="934670">
</a>PFDEFS defines data structures to the PDB system so that instances of such extended types can be read and written as a whole in a single statement. The members of the structure are processed and an entry in the structure chart is made. Subsequent references to the new structure type are processed using information from the structure chart. The syntax by which members of a structure are specified is like that for C structs. The formal definition is given below ([ ] enclose optional elements). Note: </a>self-referential structures should not be used in FORTRAN applications.<p>
</a>
<dl>
<a name="934674">
<dt> <member> := <type> <member name>[(<dimensions>)]
</a>
<a name="934676">
<dt> <type> := <primitive type> | <derived type>
</a>
<a name="934679">
<dt> <member name> := an ASCII string representing the name of the member
</a>
<a name="934681">
<dt> <primitive type> := short | integer | long | float | double | char
</a>
<a name="934683">
<dt> <derived type> := any PFDEFS’d type
</a>
<a name="934685">
<dt> <dimensions> := <integer> |
</a>
<a name="933618">
<dt> <integer : integer> |
</a>
<a name="933619">
<dt> <integer>, <dimensions> |
</a>
<a name="934687">
<dt> <integer : integer>, <dimensions> |
</a>
<a name="934695">
Dimensions can be given in two ways. If the default offset value for the PDB file can be taken as the minimum value for the range which a dimension index can legally run, the maximum value may be specified alone. Alternatively, the minimum value followed by a colon and the maximum value may be specified. For example,<p>
</a>
<a name="934698">
<dd>integer a(30,1:10)<P>
</a>
<a name="934706">
The arguments to </a>PFDEFS are: fileid, an integer identifier which designates the PDB file to which to write; nchr, the integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; a list of pairs where ncmi is an integer number of characters in the memi string which follows it; and a terminating LAST.<p>
</a>
<a name="934710">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933697">
<p>
</a>
<A NAME="933699"><PRE><B>integer </a>PFDEFS(integer fileid,
</B></PRE><A NAME="933760"><PRE><B> integer nchr,
</B></PRE><A NAME="933762"><PRE><B> character name,
</B></PRE><A NAME="933764"><PRE><B> integer ncm1, character mem1,
</B></PRE><A NAME="933765"><PRE><B> ...,
</B></PRE><A NAME="933767"><PRE><B> integer ncmn, character memn,
</B></PRE><A NAME="933769"><PRE><B> integer LAST)
</B></PRE><A NAME="933700"><B>
</B><HR><A NAME="933852"><PRE> parameter(LAST = 0)
</PRE><A NAME="933875"><PRE> integer </a>pfdefs
</PRE><A NAME="933853"><PRE> integer fileid
</PRE><A NAME="933867"><PRE> common /abc/ a(2), b, c(2,2:4)
</PRE><A NAME="933869"><PRE> real a, b, c
</PRE><A NAME="933854"><PRE> common /jkl/ j, k, l
</PRE><A NAME="934009"><PRE> integer j, k, l
</PRE><A NAME="934010"><PRE> .
</PRE><A NAME="933866"><PRE> .
</PRE><A NAME="933855"><PRE> .
</PRE><A NAME="933856"><PRE> if (</a>pfdefs(fileid,
</PRE><A NAME="933858"><PRE> $ 3, ’abc’,
</PRE><A NAME="933859"><PRE> $ 10, ’float a(2)’,
</PRE><A NAME="933864"><PRE> $ 7, ’float b’,
</PRE><A NAME="933865"><PRE> $ 14, ’float c(2,2:4)’,
</PRE><A NAME="933870"><PRE> $ LAST) .eq. 0)
</PRE><A NAME="933873"><PRE> $ call errproc
</PRE><A NAME="934011"><PRE>
</PRE><A NAME="934056"><PRE> if (</a>pfdefs(fileid,
</PRE><A NAME="934012"><PRE> $ 3, ’jkl’,
</PRE><A NAME="934013"><PRE> $ 9, ’integer j’,
</PRE><A NAME="934014"><PRE> $ 9, ’integer k’,
</PRE><A NAME="934015"><PRE> $ 9, ’integer l’,
</PRE><A NAME="934016"><PRE> $ LAST) .eq. 0)
</PRE><A NAME="934017"><PRE> $ call errproc
</PRE><A NAME="933860"><PRE> .
</PRE><A NAME="933861"><PRE> .
</PRE><A NAME="933862"><PRE> .
</PRE></dl>
<a name="935084">
<h2>6.11 PFDEFT — (PD_defstr_alt)</h2>
</a>
<A NAME="935095"><PRE><B>
</B></PRE><A NAME="935202"><PRE><B>integer </a>PFDEFT(integer fileid,
</B></PRE><A NAME="935203"><PRE><B> integer nchr,
</B></PRE><A NAME="935209"><PRE><B> character name,
</B></PRE><A NAME="935210"><PRE><B> integer nm,
</B></PRE><A NAME="935216"><PRE><B> integer nc(2*nm),
</B></PRE><A NAME="935217"><PRE><B> character *memb)
</B></PRE><A NAME="935106"><PRE><B>
</B></PRE><a name="935107">
</a>Define a data structure for a PDB file. This is an alternate form of PFDEFS (see the description above for a discussion of structured data types).<p>
</a>
<a name="935186">
The arguments to </a>PFDEFT are: fileid, an integer identifier which designates the PDB file to which to write; nchr, the integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; nm, an integer specifying how many members the type has; nc, an array of integer pairs specifying the 0 based offset into the nm array and the number of characters for each member; and nm, an array of characters containing the member specifications.<p>
</a>
<a name="935187">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935096">
See also </a>PFDEFS.<p>
</a>
<a name="935188">
<p>
</a>
<A NAME="935189"><PRE><B>integer </a>PFDEFT(integer fileid,
</B></PRE><A NAME="935190"><PRE><B> integer nchr,
</B></PRE><A NAME="935191"><PRE><B> character name,
</B></PRE><A NAME="935192"><PRE><B> integer nm,
</B></PRE><A NAME="935193"><PRE><B> integer nc(2*nm),
</B></PRE><A NAME="935194"><PRE><B> character *memb)
</B></PRE><A NAME="935196"><B>
</B><HR><A NAME="935198"><PRE> integer </a>pfdeft
</PRE><A NAME="935199"><PRE> integer fileid, nc(6)
</PRE><A NAME="935200"><PRE> character*8 nm(4)
</PRE><A NAME="935195"><PRE> common /abc/ a(2), b, c(2,2:4)
</PRE><A NAME="935204"><PRE> .
</PRE><A NAME="935205"><PRE> .
</PRE><A NAME="935207"><PRE> .
</PRE><A NAME="935211"><PRE> nc(1) = 0
</PRE><A NAME="935212"><PRE> nc(2) = 10
</PRE><A NAME="935213"><PRE> nc(3) = 10
</PRE><A NAME="935214"><PRE> nc(4) = 7
</PRE><A NAME="935215"><PRE> nc(5) = 17
</PRE><A NAME="935228"><PRE> nc(6) = 14
</PRE><A NAME="935229"><PRE> nm(1) = ‘float a(‘
</PRE><A NAME="935230"><PRE> nm(2) = ‘2)float ‘
</PRE><A NAME="935231"><PRE> nm(3) = ‘bfloat c’
</PRE><A NAME="935232"><PRE> nm(4) = ‘(2,2:4) ‘
</PRE><A NAME="935208"><PRE> if (pfdeft(fileid, 3, ’abc’, 3, nc, nm) .eq. 0)
</PRE><A NAME="935197"><PRE> call errproc
</PRE><A NAME="935223"><PRE> .
</PRE><A NAME="935224"><PRE> .
</PRE><A NAME="935225"><PRE> .
</PRE><a name="935097">
Compare with the example for </a>PFDEFS.<p>
</a>
<a name="935322">
<h2>6.12 PFFAMI — (PD_family)</h2>
</a>
<A NAME="936007"><PRE><B>
</B></PRE><A NAME="936012"><PRE><B>integer </a>PFFAMI(integer fileid, integer flag)
</B></PRE><a name="936013">
This function checks to see whether the specified file has exceeded it size limit. If it has a new file is opened and returns. If not the given file pointer is returned. The flag is set to TRUE if you want </a>PFFAMI to close the file it is given. Otherwise the application is responsible for closing the file<p>
</a>
<a name="936014">
The arguments to this function are: fileid, an integer file identifier returned by a previous call to </a>PFOPEN; and flag an integer value (either TRUE or FALSE).<p>
</a>
<a name="936015">
This function returns an integer file identifier.<p>
</a>
<a name="936017">
<p>
</a>
<a name="936018">
integer </a>PFFAMI(integer fileid, integer flag)<p>
</a>
<A NAME="936019"><B>
</B><HR><A NAME="936099"><PRE> integer old, new
</PRE><A NAME="936097"><PRE> integer </a>pffami
</PRE><A NAME="936102"><PRE> .
</PRE><A NAME="936165"><PRE> .
</PRE><A NAME="936166"><PRE> .
</PRE><A NAME="936167"><PRE> new = pffami(old, 0)
</PRE><A NAME="936168"><PRE> if (new .ne. old) then
</PRE><A NAME="936169"><PRE> pfclos(old)
</PRE><A NAME="936170"><PRE> .
</PRE><A NAME="936171"><PRE> .
</PRE><A NAME="936173"><PRE> .
</PRE><A NAME="936174"><PRE> old = new
</PRE><A NAME="936098"><PRE> endif
</PRE><A NAME="936175"><PRE> .
</PRE><A NAME="936177"><PRE> .
</PRE><A NAME="936178"><PRE> .
</PRE><a name="935150">
<h2>6.13 PFFLSH — (PD_flush)</h2>
</a>
<A NAME="935173"><PRE><B>
</B></PRE><A NAME="935175"><PRE><B>integer </a>PFFLSH(integer fileid)
</B></PRE><a name="935237">
This function writes out the information which describes the </a>contents of the PDB file specified. Normally, </a>PFCLOS calls this routine, but applications that want to protect themselves from system failures or other problems may chose to periodically use this function. After a successful return and until or unless more data is written to the file or space reserved for future writes, the PDB file is valid in the sense that if the application terminates unexpectedly before calling </a>PFCLOS, the file can be </a>PFOPEN’d successfully.<p>
</a>
<a name="935238">
NOTE: this call does NOT obviate </a>PFCLOS!<p>
</a>
<a name="935239">
The argument to this function is file, the pointer to the PDBfile structure returned by a previous call to PD_open.<p>
</a>
<a name="933275">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935184">
<p>
</a>
<A NAME="935181"><PRE><B>integer </a>PFFLSH(integer fileid)
</B></PRE><A NAME="935201"><B>
</B><HR><A NAME="935218"><PRE> integer </a>pfflsh
</PRE><A NAME="935219"><PRE> integer fileid
</PRE><A NAME="935220"><PRE> .
</PRE><A NAME="935221"><PRE> .
</PRE><A NAME="935222"><PRE> .
</PRE><A NAME="935226"><PRE> if (</a>pfflsh(fileid) .eq. 0)
</PRE><A NAME="935227"><PRE> $ call errproc
</PRE><A NAME="935233"><PRE> .
</PRE><A NAME="935234"><PRE> .
</PRE><A NAME="935235"><PRE> .
</PRE><a name="932854">
<h2>6.14 PFGFNM</h2>
</a>
<A NAME="932855"><PRE><B>
</B></PRE><A NAME="935261"><PRE><B>integer </a>PFGFNM(integer fileid,
</B></PRE><A NAME="935262"><PRE><B> integer nchr,
</B></PRE><A NAME="935270"><PRE><B> character name)
</B></PRE><a name="934405">
Return the name of the specified PDB file. The nchr argument contains the length of the buffer on input and the length of the file name on output. If the buffer is not long enough, the length of the file name is returned in nchr and a value of 0 is returned.<p>
</a>
<a name="932856">
The arguments to </a>PFGFNM are: fileid, an integer identifier which designates the PDB file in question; nchr, an integer number of characters in the name string; name, an ASCII string which will contain the file name upon successful completion.<p>
</a>
<a name="935255">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935257">
<p>
</a>
<A NAME="935258"><PRE><B>integer </a>PFGFNM(integer fileid,
</B></PRE><A NAME="935259"><PRE><B> integer nchr,
</B></PRE><A NAME="935260"><PRE><B> character name)
</B></PRE><A NAME="935263"><B>
</B><HR><A NAME="935264"><PRE> integer pfgfnm
</PRE><A NAME="935265"><PRE> integer fileid
</PRE><A NAME="935266"><PRE> character*8 name(4)
</PRE><A NAME="935267"><PRE> .
</PRE><A NAME="935268"><PRE> .
</PRE><A NAME="935269"><PRE> .
</PRE><A NAME="935274"><PRE> if (</a>pfgfnm(fileid, 32, name) .eq. 0)
</PRE><A NAME="935275"><PRE> $ call errproc
</PRE><A NAME="935276"><PRE> .
</PRE><A NAME="935277"><PRE> .
</PRE><A NAME="935278"><PRE> .
</PRE><a name="935673">
<h2>6.15 PFGLS</h2>
</a>
<A NAME="935674"><PRE><B>
</B></PRE><A NAME="935675"><PRE><B>integer </a>PFGLS(integer n,
</B></PRE><A NAME="935676"><PRE><B> integer nchr,
</B></PRE><A NAME="935677"><PRE><B> char *name)
</B></PRE><a name="935679">
</a>Get the name of the nth entry in the internal table generated by </a>PFLST.<p>
</a>
<a name="935678">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935680">
The arguments to </a>PFGLS are: n, an integer ordinal index into the internal table; nchr, an integer to contain the number of characters returned in string name; and name, an ASCII string to contain the returned entry name.<p>
</a>
<a name="935681">
Calls to </a>PFGLS must be preceded by a call to </a>PFLST to set up an internal table of directory and/or variable names.<p>
</a>
<a name="935806">
This function copies the name of a symbol table entry into the name, if successful. The application must ensure that name is large enough to contain the </a>longest name in the symbol table (although PDBLib permits names of arbitrary length, 256 characters would probably be more than enough). <p>
</a>
<a name="935682">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935683">
See also </a>PFCD, </a>PFDLS, </a>PFLN, </a>PFLST, </a>PFMKDR, </a>PFPWD.<p>
</a>
<a name="935684">
<p>
</a>
<A NAME="935685"><PRE><B>integer </a>PFGLS(integer n,
</B></PRE><A NAME="935686"><PRE><B> integer nchr,
</B></PRE><A NAME="935687"><PRE><B> char *name)
</B></PRE><A NAME="935688"><B>
</B><HR><A NAME="935689"><PRE> integer pfgls
</PRE><A NAME="935704"><PRE> integer i, nvar, nchr
</PRE><A NAME="935699"><PRE> character name(256)
</PRE><A NAME="935691"><PRE> .
</PRE><A NAME="935692"><PRE> .
</PRE><A NAME="935693"><PRE> .
</PRE><A NAME="935690"><PRE> do 100 i = 1, nvar
</PRE><A NAME="935694"><PRE> if (</a>pfgls(i, nchr, name) .eq. 0)
</PRE><A NAME="935695"><PRE> $ call errproc
</PRE><A NAME="935696"><PRE> .
</PRE><A NAME="935697"><PRE> .
</PRE><A NAME="935698"><PRE> .
</PRE><A NAME="935705"><PRE> 100 continue
</PRE><A NAME="935701"><PRE> .
</PRE><A NAME="935702"><PRE> .
</PRE><A NAME="935703"><PRE> .
</PRE><a name="933286">
<h2>6.16 PFGVAR</h2>
</a>
<A NAME="933281"><PRE><B>
</B></PRE><A NAME="933287"><PRE><B>integer </a>PFGVAR(n, nchr, name)
</B></PRE><a name="933282">
</a>Get the name of the nth variable in the internal table generated by a previous call to </a>PFVART. The table will have been sorted in a particular order and this function allows applications to access the variables in the sorted order, not the default hash ordering that would normally apply.<p>
</a>
<a name="933284">
This function copies the name into the array name, if successful. The application must ensure that name is large enough to contain the </a>longest name in the symbol table (although PDBLib permits names of arbitrary length, 256 characters would probably be more than enough). <p>
</a>
<a name="935282">
The arguments to </a>PFGVAR are: n, an integer ordinal index into the internal sorted name table; nchr, an integer in which the number of characters in the name string is returned; name, an ASCII string which will contain the variable name upon successful completion.<p>
</a>
<a name="933277">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="934617">
See also </a>PFVART and </a>PFDVAR.<p>
</a>
<a name="933713">
<p>
</a>
<A NAME="933714"><PRE><B>integer </a>PFGVAR(n, nchr, name)
</B></PRE><A NAME="933715"><B>
</B><HR><A NAME="933701"><PRE> integer </a>pfgvar
</PRE><A NAME="933876"><PRE> integer i, n, nvar, nchar
</PRE><A NAME="933892"><PRE> character vname(256)
</PRE><A NAME="933891"><PRE> .
</PRE><A NAME="933888"><PRE> .
</PRE><A NAME="933890"><PRE> .
</PRE><A NAME="933872"><PRE> c print out the table of variable names created by pfvart
</PRE><A NAME="934027"><PRE> write(6,700)
</PRE><A NAME="933874"><PRE> 700 format(/,’Alphabetic list of variables:’)
</PRE><A NAME="933877"><PRE> do 701 n = 1, nvar
</PRE><A NAME="933879"><PRE> if (</a>pfgvar(n, nchar, vname) .eq. 0)
</PRE><A NAME="933882"><PRE> $ call errproc
</PRE><A NAME="933883"><PRE> write(6,702) (vname(i), i=1,nchar)
</PRE><A NAME="933885"><PRE> 702 format(’ ’,256a1)
</PRE><A NAME="933886"><PRE> 701 continue
</PRE><A NAME="933909"><PRE> .
</PRE><A NAME="933910"><PRE> .
</PRE><A NAME="933912"><PRE> .
</PRE><a name="932918">
<h2>6.17 PFGVAT — (PD_get_attribute)</h2>
</a>
<A NAME="932923"><PRE><B>
</B></PRE><A NAME="933696"><PRE><B>integer </a>PFGVAT(integer fileid,
</B></PRE><A NAME="934068"><PRE><B> integer nv,
</B></PRE><A NAME="934407"><PRE><B> char *var,
</B></PRE><A NAME="934605"><PRE><B> integer na
</B></PRE><A NAME="934611"><PRE><B> char *attr,
</B></PRE><A NAME="934612"><PRE><B> void value)
</B></PRE><a name="934613">
</a>Get the value of the specified </a>attribute for the named entity. The application must ensure that there is sufficient space to receive the attribute value.<p>
</a>
<a name="934614">
The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by calling </a>PFSVAT. The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934615">
The arguments to </a>PFGVAT are: fileid, an integer identifier which designates the PDB file from which to get the attribute; nv, an integer number of characters in the var string; var, an ASCII string containing the name of an entity; na, an integer number of characters in the attr string; attr, an ASCII string containing the name of the attribute; and value into which the attribute value will be copied.<p>
</a>
<a name="934606">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="934621">
See also </a>PFDATT, </a>PFRATT, and </a>PFSVAT.<p>
</a>
<a name="934694">
<p>
</a>
<A NAME="933887"><PRE><B>integer </a>PFGVAT(integer fileid,
</B></PRE><A NAME="934820"><PRE><B> integer nv,
</B></PRE><A NAME="934821"><PRE><B> char *var,
</B></PRE><A NAME="934823"><PRE><B> integer na
</B></PRE><A NAME="934824"><PRE><B> char *attr,
</B></PRE><A NAME="934826"><PRE><B> void value)
</B></PRE><A NAME="934799"><B>
</B><HR><A NAME="934801"><PRE> integer pfgvat
</PRE><A NAME="934802"><PRE> integer fileid
</PRE><A NAME="934738"><PRE> character*8 dt(10)
</PRE><A NAME="934803"><PRE> .
</PRE><A NAME="934813"><PRE> .
</PRE><A NAME="934814"><PRE> .
</PRE><A NAME="934815"><PRE> if (</a>pfgvat(fileid, 3, ‘foo’, 4, ‘date’, dt) .eq. 0)
</PRE><A NAME="934816"><PRE> $ call errproc
</PRE><A NAME="934817"><PRE> .
</PRE><A NAME="934818"><PRE> .
</PRE><A NAME="934819"><PRE> .
</PRE><a name="932890">
<h2>6.18 PFIMBR</h2>
</a>
<A NAME="936352"><PRE><B>
</B></PRE><A NAME="936353"><PRE><B>integer </a>PFIMBR(integer fileid,
</B></PRE><A NAME="936354"><PRE><B> integer ntype,
</B></PRE><A NAME="936355"><PRE><B> char *type,
</B></PRE><A NAME="936357"><PRE><B> integer n
</B></PRE><A NAME="936476"><PRE><B> integer size
</B></PRE><A NAME="936358"><PRE><B> char *space)
</B></PRE><a name="936360">
</a>Inquire about the nth member of the type <em>type</em> in PDB file<em> fileid</em>. Return the description of the member in the character buffer, space. On input size is the number of characters in the buffer space. If the member description requires more space, size is set to the number of bytes required and 0 is returned.<p>
</a>
<a name="936362">
Input to this function is: <em>fileid</em>, an integer PDBfile identification number<em>; ntype</em>, the number of characters in <em>type</em>; <em>type</em>, an ASCII string containing the name of the type; n, an integer specifying the member; size, an integer character size of the space buffer; and space, an character buffer to hold the member description.<p>
</a>
<a name="936485">
Output from this function is: <em>size</em>, the number of characters in the member description; and <em>space</em>, the member description.<p>
</a>
<a name="936361">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="936359">
See also </a>PFDEFS.<p>
</a>
<a name="936365">
<p>
</a>
<A NAME="936363"><PRE><B>integer </a>PFIMBR(integer fileid,
</B></PRE><A NAME="936364"><PRE><B> integer ntype,
</B></PRE><A NAME="936478"><PRE><B> char *type,
</B></PRE><A NAME="936479"><PRE><B> integer n
</B></PRE><A NAME="936480"><PRE><B> integer size
</B></PRE><A NAME="936481"><PRE><B> char *space)
</B></PRE><A NAME="936464"><B>
</B><HR><A NAME="936465"><PRE> integer pfimbr
</PRE><A NAME="936466"><PRE> integer fileid
</PRE><A NAME="936467"><PRE> character*8 type(10), desc(10), bdesc(100)
</PRE><A NAME="936468"><PRE> .
</PRE><A NAME="936469"><PRE> .
</PRE><A NAME="936470"><PRE> .
</PRE><A NAME="936471"><PRE> size = 80
</PRE><A NAME="936366"><PRE> if (</a>pfimbr(fileid, 3, ‘foo’, 4, size, desc) .eq. 0) then
</PRE><A NAME="936472"><PRE> if (size .le. 800) then
</PRE><A NAME="936368"><PRE> if (</a>pfimbr(fileid, 3, ‘foo’, 4, size, bdesc) .eq. 0) then
</PRE><A NAME="936367"><PRE> $ call errproc
</PRE><A NAME="936369"><PRE> endif
</PRE><A NAME="936371"><PRE> endif
</PRE><A NAME="936473"><PRE> endif
</PRE><A NAME="936372"><PRE> .
</PRE><A NAME="936474"><PRE> .
</PRE><A NAME="936475"><PRE> .
</PRE><a name="935700">
<h2>6.19 PFLN — (PD_ln)</h2>
</a>
<A NAME="935706"><PRE><B>
</B></PRE><A NAME="935707"><PRE><B>integer </a>PFLN(integer fileid,
</B></PRE><A NAME="935708"><PRE><B> integer nvar,
</B></PRE><A NAME="935709"><PRE><B> char *var,
</B></PRE><A NAME="935737"><PRE><B> integer nlink,
</B></PRE><A NAME="935738"><PRE><B> char *link)
</B></PRE><a name="935710">
</a>Create a </a>link to a variable in a PDB file.<p>
</a>
<a name="935711">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935712">
The arguments to </a>PFLN are: fileid, an integer file identifier; nvar, an integer number of characters in string var; var, an ASCII string containing the path name of an existing variable; nlink, an integer number of characters in string link; and link, an ASCII string containing the path name of the new link.<p>
</a>
<a name="935714">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935715">
See also </a>PFCD, </a>PFDLS, </a>PFGLS, </a>PFLST, </a>PFMKDR, </a>PFPWD.<p>
</a>
<a name="935716">
<p>
</a>
<A NAME="935717"><PRE><B>integer </a>PFLN(integer fileid,
</B></PRE><A NAME="935713"><PRE><B> integer nvar,
</B></PRE><A NAME="935718"><PRE><B> char *var,
</B></PRE><A NAME="935719"><PRE><B> integer nlink,
</B></PRE><A NAME="935739"><PRE><B> char *link)
</B></PRE><A NAME="935720"><B>
</B><HR><A NAME="935721"><PRE> integer pfln
</PRE><A NAME="935722"><PRE> integer fileid
</PRE><A NAME="935724"><PRE> .
</PRE><A NAME="935725"><PRE> .
</PRE><A NAME="935726"><PRE> .
</PRE><A NAME="935728"><PRE> if (</a>pfln(fileid, 27, ‘/animals/mammals/chimpanzee’,
</PRE><A NAME="935723"><PRE> $ 6, ‘/chimp’) .eq. 0)
</PRE><A NAME="935729"><PRE> $ call errproc
</PRE><A NAME="935732"><PRE> .
</PRE><A NAME="935733"><PRE> .
</PRE><A NAME="935734"><PRE> .
</PRE><a name="934717">
<h2>6.20 PFLST — (PD_ls)</h2>
</a>
<A NAME="935727"><PRE><B>
</B></PRE><A NAME="935730"><PRE><B>integer </a>PFLST(integer fileid,
</B></PRE><A NAME="935731"><PRE><B> integer npath,
</B></PRE><A NAME="935736"><PRE><B> char *path,
</B></PRE><A NAME="935740"><PRE><B> integer ntype,
</B></PRE><A NAME="935741"><PRE><B> char *type,
</B></PRE><A NAME="935776"><PRE><B> integer num)
</B></PRE><a name="935742">
</a>Generate an internal table of names of entries (variables and/or directories) in a PDB file that are of a specified type and that are in the directory and match the variable name pattern specified.<p>
</a>
<a name="935743">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935744">
The arguments to </a>PFLST are: fileid, an integer file identifier; npath, an integer number of characters in string path; path, an ASCII string containing the path name of the directory to search and/or the variable name pattern to match; ntype, an integer number of characters in string type; type, an ASCII string containing the type of entries to return; and num, an integer to contain the number of entries returned.<p>
</a>
<a name="935766">
If npath is zero, the contents of the </a>current </a>directory are listed. If ntype is zero, all types are returned.<p>
</a>
<a name="935767">
The terminal node of path may contain meta characters “*” and “?”. Each “*” matches any zero or more characters and each “?” matches any single character.<p>
</a>
<a name="935765">
Call </a>PFGLS to get an entry from the internal table generated by </a>PFLST. Call </a>PFDLS to release the table. </a>PFLST automatically releases tables created by previous calls.<p>
</a>
<a name="935745">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935746">
See also </a>PFCD, </a>PFDLS, </a>PFGLS, </a>PFLN, </a>PFMKDR, </a>PFPWD.<p>
</a>
<a name="935747">
<p>
</a>
<A NAME="935748"><PRE><B>integer </a>PFLST(integer fileid,
</B></PRE><A NAME="935749"><PRE><B> integer npath,
</B></PRE><A NAME="935750"><PRE><B> char *path,
</B></PRE><A NAME="935751"><PRE><B> integer ntype,
</B></PRE><A NAME="935752"><PRE><B> char *type,
</B></PRE><A NAME="935768"><PRE><B> integer num)
</B></PRE><A NAME="935753"><B>
</B><HR><A NAME="935754"><PRE> integer pflst, pfdls
</PRE><A NAME="935755"><PRE> integer fileid, num
</PRE><A NAME="935756"><PRE> .
</PRE><A NAME="935757"><PRE> .
</PRE><A NAME="935758"><PRE> .
</PRE><A NAME="935785"><PRE> c generate a table of all directories in the current directory
</PRE><A NAME="935759"><PRE> if (</a>pflst(fileid, 0, ‘’, 9, ‘Directory’, num) .eq. 0)
</PRE><A NAME="935761"><PRE> $ call errproc
</PRE><A NAME="935773"><PRE> .
</PRE><A NAME="935774"><PRE> .
</PRE><A NAME="935777"><PRE> .
</PRE><A NAME="935783"><PRE> c generate a table of the variables of type char * in directory animals
</PRE><A NAME="935771"><PRE> if (</a>pflst(fileid, 7, ‘animals’, 6, ‘char *’, num) .eq. 0)
</PRE><A NAME="935772"><PRE> $ call errproc
</PRE><A NAME="935762"><PRE> .
</PRE><A NAME="935763"><PRE> .
</PRE><A NAME="935764"><PRE> .
</PRE><a name="935760">
<h2>6.21 PFMKDR — (PD_mkdir)</h2>
</a>
<A NAME="935769"><PRE><B>
</B></PRE><A NAME="935770"><PRE><B>integer </a>PFMKDR(integer fileid,
</B></PRE><A NAME="935778"><PRE><B> integer nchr,
</B></PRE><A NAME="935780"><PRE><B> char *dirname)
</B></PRE><a name="935781">
</a>Create a new </a>directory in a PDB file.<p>
</a>
<a name="935782">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935784">
The arguments to </a>PFMKDR are: fileid, an integer file identifier; nchr, an integer number of characters in string dirname; and dirname, an ASCII string containing the path name of the new directory.<p>
</a>
<a name="935787">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935788">
See also </a>PFCD, </a>PFDLS, </a>PFGLS, </a>PFLN, </a>PFLST, </a>PFPWD.<p>
</a>
<a name="935789">
<p>
</a>
<A NAME="935790"><PRE><B>integer PFMKDR(integer fileid,
</B></PRE><A NAME="935791"><PRE><B> integer nchr,
</B></PRE><A NAME="935792"><PRE><B> char *dirname)
</B></PRE><A NAME="935793"><B>
</B><HR><A NAME="935794"><PRE> integer pfmkdr
</PRE><A NAME="935795"><PRE> integer fileid
</PRE><A NAME="935796"><PRE> .
</PRE><A NAME="935797"><PRE> .
</PRE><A NAME="935798"><PRE> .
</PRE><A NAME="935799"><PRE> if (</a>pfmkdr(fileid, 16, ‘/animals/mammals’) .eq. 0)
</PRE><A NAME="935800"><PRE> $ call errproc
</PRE><A NAME="935801"><PRE> .
</PRE><A NAME="935802"><PRE> .
</PRE><A NAME="935804"><PRE> .
</PRE><a name="935735">
<h2>6.22 PFOPEN — (PD_open)</h2>
</a>
<A NAME="934720"><PRE><B>
</B></PRE><A NAME="932760"><PRE><B>integer </a>PFOPEN(integer nchr,
</B></PRE><A NAME="932764"><PRE><B> character name,
</B></PRE><A NAME="932766"><PRE><B> character mode)
</B></PRE><a name="934727">
</a>Open an existing PDB file or </a>create a new PDB file. Depending on the value of mode, PDBLib attempts to open the file name in </a>read-only binary mode, open the file in </a>append binary mode, or </a>create a new file in </a>read-write binary mode.<p>
</a>
<a name="934731">
Any string which begins with ‘</a>r’ causes the file to be opened in read-only mode, any string beginning with ‘</a>a’ causes the file to be opened in append mode, and any string beginning with ‘</a>w’ causes a file to be created in read-write mode.<p>
</a>
<a name="934734">
Next, the beginning of the file is searched for the header which identifies the file as having been generated by PDBLib. The addresses of the structure chart and symbol table are then sought.<p>
</a>
<a name="934743">
The structure chart from the file is read in. The structure chart contains information about data types (e.g. floats), their sizes in bytes and their structures, if any. By default there are six </a>primitive </a>data types that PDBLib knows about: short integers, integers, long integers, floating point numbers, double precision floating point numbers, characters, and pointers. The sizes of these types varies from machine to machine, but PDBLib hides this from the user.<p>
</a>
<a name="934749">
The symbol table from the file is read in. The symbol table contains the list of variables in the file, their types as defined in the structure chart, and dimensioning information for arrays. Each read from the file first consults the symbol table to see if the requested variable is present in the PDB file.<p>
</a>
<a name="934753">
Both the structure chart and the symbol table are implemented as hash tables, although their shapes are different. This makes lookups as efficient as possible given an unknown amount of data in the file.<p>
</a>
<a name="934758">
The arguments to </a>PFOPEN are: nchr, the number of characters in the string containing the file name; name, an ASCII string, which is the name of the file to be opened/created; and mode, an ASCII string, which is the mode (either ‘w’ for create, ‘r’ for read-only or ‘a’ for append).<p>
</a>
<a name="934765">
The function returns an integer identifier for the PDB file opened/created. This identifies the particular file to PDBLib. As such, if it is overwritten the file is lost. The number of PDB files which can be open simultaneously is machine or operating system dependent, but each open PDB file has a unique identifier associated with it.<p>
</a>
<a name="934769">
If any aspect of the PDB file opening process fails 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933717">
<p>
</a>
<A NAME="933718"><PRE><B>integer </a>PFOPEN(integer nchr,
</B></PRE><A NAME="933771"><PRE><B> character name,
</B></PRE><A NAME="933772"><PRE><B> character mode)
</B></PRE><A NAME="933719"><B>
</B><HR><A NAME="933716"><PRE> integer </a>pfopen
</PRE><A NAME="933904"><PRE> integer fileid
</PRE><A NAME="933913"><PRE> .
</PRE><A NAME="933915"><PRE> .
</PRE><A NAME="933916"><PRE> .
</PRE><A NAME="933905"><PRE> fileid = </a>pfopen(8, ’file.pdb’, ’r’)
</PRE><A NAME="933906"><PRE> if (fileid .eq. 0)
</PRE><A NAME="933907"><PRE> $ call errproc
</PRE><A NAME="933917"><PRE> .
</PRE><A NAME="933918"><PRE> .
</PRE><A NAME="933919"><PRE> .
</PRE><a name="932741">
<h2>6.23 PFPTRD — (PD_read_alt)</h2>
</a>
<A NAME="932743"><PRE><B>
</B></PRE><A NAME="932945"><PRE><B>integer </a>PFPTRD(integer fileid,
</B></PRE><A NAME="933010"><PRE><B> integer nchr,
</B></PRE><A NAME="933011"><PRE><B> character name,
</B></PRE><A NAME="933497"><PRE><B> void space
</B></PRE><A NAME="934540"><PRE><B> integer ind)
</B></PRE><a name="934552">
</a>Read all or part of a data entry from an open PDB file. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by var.<p>
</a>
<a name="934554">
The elements to be read from an array are designated by start, stop, step triples (one for each dimension) passed in the argument ind.<p>
</a>
<a name="933509">
The arguments to </a>PFPTRD are: fileid, an integer identifier which designates the PDB file from which to attempt the read; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to lookup; space, the location where the data is to be placed; and ind, an array of integers which specify the elements to be read.<p>
</a>
<a name="933503">
Note: In each </a>PFPTRD operation, the type of space must be a pointer to the type of name.<p>
</a>
<a name="933504">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="933505">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933510">
See also </a>PFREAD, </a>PFRDAS, and </a>PFRDAD.<p>
</a>
<a name="933506">
<p>
</a>
<A NAME="933507"><PRE><B>integer </a>PFPTRD(integer fileid,
</B></PRE><A NAME="934541"><PRE><B> integer nchr,
</B></PRE><A NAME="934542"><PRE><B> character name,
</B></PRE><A NAME="934545"><PRE><B> void space
</B></PRE><A NAME="934549"><PRE><B> integer ind)
</B></PRE><A NAME="933511"><B>
</B><HR><A NAME="933512"><PRE> integer </a>pfptrd
</PRE><A NAME="933513"><PRE> integer fileid, ind(3)
</PRE><A NAME="933514"><PRE> real xodd(10)
</PRE><A NAME="933519"><PRE> .
</PRE><A NAME="933520"><PRE> .
</PRE><A NAME="933521"><PRE> .
</PRE><A NAME="933522"><PRE> c read the first 10 odd elements of x into array xodd
</PRE><A NAME="932921"><PRE> ind(1) = 1
</PRE><A NAME="933515"><PRE> ind(2) = 20
</PRE><A NAME="933516"><PRE> ind(3) = 2
</PRE><A NAME="934298"><PRE> if (</a>pfptrd(fileid, 1, ’x’, xodd, ind) .eq. 0)
</PRE><A NAME="934488"><PRE> $ call errproc
</PRE><A NAME="934535"><PRE> .
</PRE><A NAME="934536"><PRE> .
</PRE><A NAME="934537"><PRE> .
</PRE><a name="935786">
<h2>6.24 PFPWD</h2>
</a>
<A NAME="935812"><PRE><B>
</B></PRE><A NAME="935813"><PRE><B>integer </a>PFPWD(integer fileid,
</B></PRE><A NAME="935814"><PRE><B> integer nchr,
</B></PRE><A NAME="935815"><PRE><B> char *dirname)
</B></PRE><a name="935816">
</a>Get the </a>current </a>directory for a PDB file.<p>
</a>
<a name="935817">
PDBLib supports an optional </a>hierarchical </a>directory structure inside PDB files. A directory or a variable in a directory may be specified by either a </a>relative path or an </a>absolute path. Slashes separate nodes in a </a>path name. Absolute paths begin with a slash. Nodes consisting of two periods, “..”, refer to the next higher level directory.<p>
</a>
<a name="935818">
The arguments to </a>PFPWD are: fileid, an integer file identifier; nchr, an integer to contain the number of characters returned in string dirname; and dirname, an ASCII string to contain the path name of the </a>current </a>directory.<p>
</a>
<a name="935808">
This function copies the path name of a directory into the dirname, if successful. The application must ensure that dirname is large enough to contain the longest directory name (although PDBLib permits names of arbitrary length, 256 characters would probably be more than enough). <p>
</a>
<a name="935819">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935821">
See also </a>PFCD, </a>PFDLS, </a>PFGLS, </a>PFLN, </a>PFLST, </a>PFMKDR.<p>
</a>
<a name="935822">
<p>
</a>
<A NAME="935905"><PRE><B>integer </a>PFPWD(integer fileid,
</B></PRE><A NAME="935906"><PRE><B> integer nchr,
</B></PRE><A NAME="935909"><PRE><B> char *dirname)
</B></PRE><A NAME="935910"><B>
</B><HR><A NAME="935911"><PRE> integer pfpwd
</PRE><A NAME="935912"><PRE> integer fileid, nchr
</PRE><A NAME="935805"><PRE> character dirname(256)
</PRE><A NAME="935914"><PRE> .
</PRE><A NAME="935915"><PRE> .
</PRE><A NAME="935917"><PRE> .
</PRE><A NAME="935918"><PRE> if (</a>pfpwd(fileid, nchr, dirname) .eq. 0)
</PRE><A NAME="935967"><PRE> $ call errproc
</PRE><A NAME="935991"><PRE> .
</PRE><A NAME="935992"><PRE> .
</PRE><A NAME="935993"><PRE> .
</PRE><a name="934618">
<h2>6.25 PFRATT — (PD_rem_attribute)</h2>
</a>
<A NAME="934620"><PRE><B>
</B></PRE><A NAME="934628"><PRE><B>integer </a>PFRATT(integer fileid,
</B></PRE><A NAME="934633"><PRE><B> integer na
</B></PRE><A NAME="934634"><PRE><B> char *attr)
</B></PRE><a name="934636">
</a>Remove the specified </a>attribute. PDBLib will remove the values of this attribute which may be associated with entities in the file.<p>
</a>
<a name="934637">
The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by calling </a>PFSVAT. The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934638">
The arguments to </a>PFRATT are: fileid, an integer identifier which designates the PDB file from which to remove the attribute; na, an integer number of characters in the attr string; and attr, an ASCII string containing the name of the attribute.<p>
</a>
<a name="934639">
The return value is 1 if successful and 0 otherwise.<p>
</a>
<a name="934640">
See also </a>PFDATT, </a>PFGVAT, and </a>PFSVAT.<p>
</a>
<a name="934784">
<p>
</a>
<A NAME="934851"><PRE><B>integer </a>PFRATT(integer fileid,
</B></PRE><A NAME="934853"><PRE><B> integer na
</B></PRE><A NAME="934854"><PRE><B> char *attr)
</B></PRE><A NAME="934831"><B>
</B><HR><A NAME="934833"><PRE> integer pfratt
</PRE><A NAME="934834"><PRE> integer fileid
</PRE><A NAME="934836"><PRE> .
</PRE><A NAME="934838"><PRE> .
</PRE><A NAME="934839"><PRE> .
</PRE><A NAME="934840"><PRE> if (</a>pfratt(fileid, 4, ‘date’) .eq. 0)
</PRE><A NAME="934841"><PRE> $ call errproc
</PRE><A NAME="934849"><PRE> .
</PRE><A NAME="934850"><PRE> .
</PRE><A NAME="934783"><PRE> .
</PRE><a name="936536">
<h2>6.26 PFRDAD — (PD_read_as_alt)</h2>
</a>
<A NAME="936537"><PRE><B>
</B></PRE><A NAME="936542"><PRE><B>integer </a>PFRDAD(integer fileid,
</B></PRE><A NAME="936543"><PRE><B> integer nchr,
</B></PRE><A NAME="936673"><PRE><B> character name,
</B></PRE><A NAME="936809"><PRE><B> integer ntype,
</B></PRE><A NAME="936811"><PRE><B> character intype,
</B></PRE><A NAME="936674"><PRE><B> void space
</B></PRE><A NAME="936675"><PRE><B> integer ind)
</B></PRE><a name="936676">
</a>Read all or part of a data entry from an open PDB file as data type intype. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by space.<p>
</a>
<a name="936677">
The elements to be read from an array are designated by start, stop, step triples (one for each dimension) passed in the argument ind.<p>
</a>
<a name="936678">
The arguments to </a>PFRDAD are: fileid, an integer identifier which designates the PDB file from which to attempt the read; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to lookup; ntype, an integer number of characters in the intype string; intype, an ASCII string specifying the type of data to which space points; space, the location where the data is to be placed; and ind, an array of integers which specify the elements to be read.<p>
</a>
<a name="936679">
Note: In each </a>PFRDAD operation, the type of space must be a pointer to the type of intype.<p>
</a>
<a name="936680">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="936681">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="936682">
See also PFPTRD, PFRDAS, and PFREAD.<p>
</a>
<a name="936683">
<p>
</a>
<A NAME="936684"><PRE><B>integer </a>PFRDAD(integer fileid,
</B></PRE><A NAME="936685"><PRE><B> integer nchr,
</B></PRE><A NAME="936686"><PRE><B> character name,
</B></PRE><A NAME="936812"><PRE><B> integer ntype,
</B></PRE><A NAME="936813"><PRE><B> character intype,
</B></PRE><A NAME="936687"><PRE><B> void space
</B></PRE><A NAME="936688"><PRE><B> integer ind)
</B></PRE><A NAME="936689"><B>
</B><HR><A NAME="936690"><PRE> integer </a>pfrdad
</PRE><A NAME="936691"><PRE> integer fileid, ind(3)
</PRE><A NAME="936692"><PRE> real*8 xdd(10)
</PRE><A NAME="936693"><PRE> .
</PRE><A NAME="936694"><PRE> .
</PRE><A NAME="936695"><PRE> .
</PRE><A NAME="936696"><PRE> c read the first 10 elements of float x into array xdd
</PRE><A NAME="936824"><PRE> c as type double.
</PRE><A NAME="936664"><PRE>
</PRE><A NAME="936697"><PRE> ind(1) = 1
</PRE><A NAME="936698"><PRE> ind(2) = 10
</PRE><A NAME="936699"><PRE> ind(3) = 1
</PRE><A NAME="936700"><PRE> if (</a>pfrdad(fileid, 1, ’x’, 6, ‘double’, xdd, ind) .eq. 0)
</PRE><A NAME="936701"><PRE> $ call errproc
</PRE><A NAME="936702"><PRE> .
</PRE><A NAME="936703"><PRE> .
</PRE><A NAME="936704"><PRE> .
</PRE><a name="936632">
<h2>6.27 PFRDAS — (PD_read_as)</h2>
</a>
<A NAME="936633"><PRE><B>
</B></PRE><A NAME="936634"><PRE><B>integer </a>PFRDAS(integer fileid,
</B></PRE><A NAME="936635"><PRE><B> integer nchr,
</B></PRE><A NAME="936636"><PRE><B> character name,
</B></PRE><A NAME="936814"><PRE><B> integer ntype,
</B></PRE><A NAME="936815"><PRE><B> character intype,
</B></PRE><A NAME="936637"><PRE><B> void space)
</B></PRE><a name="936638">
</a>Read data from an open PDB file as data type intype. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by space.<p>
</a>
<a name="936639">
The arguments to </a>PFRDAS are: fileid, an integer identifier which designates the PDB file from which to attempt the read; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to lookup; ntype, an integer number of characters in the intype string; intype, an ASCII string specifying the type of data to which space points; and space, the location where the data is to be placed.<p>
</a>
<a name="936640">
Note: In each </a>PFRDAS operation, the type of space must be a pointer to the type of intype.<p>
</a>
<a name="936641">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="936642">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="936826">
See also PFPTRD, PFRDAD, and PFREAD.<p>
</a>
<a name="936643">
<p>
</a>
<A NAME="936644"><PRE><B>integer </a>PFRDAS(integer fileid,
</B></PRE><A NAME="936645"><PRE><B> integer nchr,
</B></PRE><A NAME="936646"><PRE><B> character name,
</B></PRE><A NAME="936816"><PRE><B> integer ntype,
</B></PRE><A NAME="936817"><PRE><B> character intype,
</B></PRE><A NAME="936647"><PRE><B> void space)
</B></PRE><A NAME="936648"><B>
</B><HR><A NAME="936649"><PRE> integer </a>pfrdas
</PRE><A NAME="936650"><PRE> integer fileid
</PRE><A NAME="936651"><PRE> real*8 xx(20)
</PRE><A NAME="936655"><PRE> .
</PRE><A NAME="936657"><PRE> .
</PRE><A NAME="936658"><PRE> .
</PRE><A NAME="936659"><PRE> c read array x into array xx as type double
</PRE><A NAME="936660"><PRE> if (</a>pfrdas(fileid, 1, ’x’, 6, ’double’, xx) .eq. 0)
</PRE><A NAME="936661"><PRE> $ call errproc
</PRE><A NAME="932454"><PRE> .
</PRE><A NAME="936672"><PRE> .
</PRE><A NAME="936584"><PRE> .
</PRE><a name="936671">
<h2>6.28 PFREAD — (PD_read)</h2>
</a>
<A NAME="934778"><PRE><B>
</B></PRE><A NAME="932771"><PRE><B>integer </a>PFREAD(integer fileid,
</B></PRE><A NAME="932772"><PRE><B> integer nchr,
</B></PRE><A NAME="932774"><PRE><B> character name,
</B></PRE><A NAME="932773"><PRE><B> void space)
</B></PRE><a name="934785">
</a>Read data from an open PDB file. The symbol table of the given PDB file is searched for the given name and if it is found the information there is used to read the proper number of bytes from the file, do any conversions, and put the result in memory pointed to by space.<p>
</a>
<a name="934790">
The arguments to </a>PFREAD are: fileid, an integer identifier which designates the PDB file from which to attempt the read; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to lookup; and space, the location where the data is to be placed.<p>
</a>
<a name="934793">
Note: In each </a>PFREAD operation, the type of space must be a pointer to the type of name.<p>
</a>
<a name="934797">
Note: When reading part of a variable, especially a structured variable, the path to the desired part must contain one array reference for each level of </a>indirection traversed.<p>
</a>
<a name="934800">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="936652">
See also PFPTRD, PFRDAD, and PFRDAS.<p>
</a>
<a name="933722">
<p>
</a>
<A NAME="933723"><PRE><B>integer </a>PFREAD(integer fileid,
</B></PRE><A NAME="933774"><PRE><B> integer nchr,
</B></PRE><A NAME="933775"><PRE><B> character name,
</B></PRE><A NAME="933776"><PRE><B> void space)
</B></PRE><A NAME="933721"><B>
</B><HR><A NAME="933724"><PRE> integer </a>pfread
</PRE><A NAME="933925"><PRE> integer fileid
</PRE><A NAME="934005"><PRE> real x(20)
</PRE><A NAME="933934"><PRE> common /abc/ a(2), b, c(2,2:4)
</PRE><A NAME="933935"><PRE> real a, b, c
</PRE><A NAME="933940"><PRE> common /jkl/ j, k, l
</PRE><A NAME="933922"><PRE> integer j, k, l
</PRE><A NAME="934007"><PRE> .
</PRE><A NAME="933923"><PRE> .
</PRE><A NAME="933924"><PRE> .
</PRE><A NAME="933920"><PRE> c read array x
</PRE><A NAME="934028"><PRE> if (</a>pfread(fileid, 1, ’x’, x) .eq. 0)
</PRE><A NAME="933927"><PRE> $ call errproc
</PRE><A NAME="933936"><PRE>
</PRE><A NAME="934057"><PRE> c read first element of member c of structure abc
</PRE><A NAME="934029"><PRE> if (</a>pfread(fileid, 10, ’abc.c(1,2)’, c) .eq. 0)
</PRE><A NAME="933938"><PRE> $ call errproc
</PRE><A NAME="934006"><PRE>
</PRE><A NAME="934058"><PRE> c read entire structure jkl
</PRE><A NAME="934030"><PRE> if (</a>pfread(fileid, 3, ’jkl’, j) .eq. 0)
</PRE><A NAME="934008"><PRE> $ call errproc
</PRE><A NAME="933930"><PRE> .
</PRE><A NAME="933931"><PRE> .
</PRE><A NAME="933932"><PRE> .
</PRE><a name="934631">
<h2>6.29 PFSVAT — (PD_set_attribute)</h2>
</a>
<A NAME="934632"><PRE><B>
</B></PRE><A NAME="934635"><PRE><B>integer </a>PFSVAT(integer fileid,
</B></PRE><A NAME="934641"><PRE><B> integer nv,
</B></PRE><A NAME="934642"><PRE><B> char *var,
</B></PRE><A NAME="934643"><PRE><B> integer na
</B></PRE><A NAME="934644"><PRE><B> char *attr,
</B></PRE><A NAME="934646"><PRE><B> void value)
</B></PRE><a name="934647">
</a>Set the value of the specified </a>attribute for the named entity.<p>
</a>
<a name="934648">
The </a>model of an attribute in PDBLib is an entity that has a name and type. The two supported operations on attributes are to create them and to remove them. An entity in a PDB file can be assigned an </a>attribute value simply by calling </a>PFSVAT. The only association between an entry in a PDB file and any attribute is made by the name in the attribute table and the entry in the symbol table. In particular, this mechanism allows the application developer to define and use entities in a PDB file solely in terms of attributes.<p>
</a>
<a name="934649">
The arguments to </a>PFSVAT are: fileid, an integer identifier which designates the PDB file in which the attribute is being set; nv, an integer number of characters in the var string; var, an ASCII string containing the name of an entity; na, an integer number of characters in the attr string; attr, an ASCII string containing the name of the attribute being set; and value containing the attribute value.<p>
</a>
<a name="933283">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="934651">
See also </a>PFDATT, </a>PFRATT, and </a>PFGVAT.<p>
</a>
<a name="934795">
<p>
</a>
<A NAME="934789"><PRE><B>integer </a>PFSVAT(integer fileid,
</B></PRE><A NAME="934889"><PRE><B> integer nv,
</B></PRE><A NAME="934890"><PRE><B> char *var,
</B></PRE><A NAME="934891"><PRE><B> integer na
</B></PRE><A NAME="934892"><PRE><B> char *attr,
</B></PRE><A NAME="934893"><PRE><B> void value)
</B></PRE><A NAME="934864"><B>
</B><HR><A NAME="934828"><PRE> integer pfsvat
</PRE><A NAME="934830"><PRE> integer scftcs
</PRE><A NAME="934865"><PRE> integer fileid
</PRE><A NAME="934868"><PRE> character*80 dt
</PRE><A NAME="934869"><PRE> .
</PRE><A NAME="934870"><PRE> .
</PRE><A NAME="934882"><PRE> .
</PRE><A NAME="935026"><PRE> scftcs(dt, ‘Mon March 27, 1921’, 18)
</PRE><A NAME="934827"><PRE> if (pfsvat(fileid, 3, ‘foo’, 4, ‘date’, dt) .eq. 0)
</PRE><A NAME="934884"><PRE> $ call errproc
</PRE><A NAME="934885"><PRE> .
</PRE><A NAME="934886"><PRE> .
</PRE><A NAME="934887"><PRE> .
</PRE><a name="934806">
<h2>6.30 PFTRGT — (PD_target)</h2>
</a>
<A NAME="934809"><PRE><B>
</B></PRE><A NAME="932775"><PRE><B>integer </a>PFTRGT(integer is,
</B></PRE><A NAME="932777"><PRE><B> integer ia)
</B></PRE><a name="934822">
Write the next PDB file to be created according to the specified </a>data standard and </a>alignment. PDBLib has a general binary data conversion mechanism called </a>parametrized </a>data </a>conversion (</a>PDC). An integer type is described by one set of parameters and a floating point type is described by another. A general purpose conversion routine takes the description of the input type and a description of the desired output type and does the conversion. In this way, PDBLib avoids an N2 increase in data conversion routines as it ports to new machines. In fact, the number of data standards and alignments grows more slowly than N because many machines share common formats.<p>
</a>
<a name="934825">
An additional advantage to PDC is that by specifying a format involving the minimal number of bits to represent the data for a file, PDBLib can carry out a large class of data compressions.<p>
</a>
<a name="934829">
PDBLib carries several predefined </a>data_standard and </a>data_alignment structures which describe a large number of binary data formats. In the C API these may be directly referenced and their names are given here for completeness.<p>
</a>
<a name="934832">
Data standards: </a>IEEEA_STD, </a>IEEEB_STD, </a>IEEEC_STD, </a>INTELA_STD, </a>INTELB_STD, </a>VAX_STD, and </a>CRAY_STD.<p>
</a>
<a name="933191">
Data alignments: </a>DEF_ALIGNMENT, </a>SPARC_ALIGNMENT, </a>MIPS_ALIGNMENT, </a>RS6000_ALIGNMENT, </a>68000_ALIGNMENT, </a>INTEL_ALIGNMENT, </a>CRAY_ALIGNMENT, and </a>UNICOS_ALIGNMENT.<p>
</a>
<a name="934835">
In the FORTRAN API, these structures are placed in two arrays and the indices into these arrays are passed into </a>PFTRGT to specify the binary format to be targeted.<p>
</a>
<a name="934837">
The list of standards is:<p>
</a>
<a name="934842">
<dd>1 - </a>IEEEA_STD<P>
</a>
<a name="934843">
<dd>2 - </a>IEEEB_STD<P>
</a>
<a name="934844">
<dd>3 - </a>IEEEC_STD<P>
</a>
<a name="934845">
<dd>4 - </a>INTELA_STD<P>
</a>
<a name="934846">
<dd>5 - </a>INTELB_STD<P>
</a>
<a name="934847">
<dd>6 - </a>VAX_STD<P>
</a>
<a name="934848">
<dd>7 - </a>CRAY_STD<P>
</a>
<a name="934852">
The list of </a>alignments is:<p>
</a>
<dl>
<a name="934856">
<dt>1 - </a>M68000_ALIGNMENT
</a>
<a name="934857">
<dt>2 - </a>SPARC_ALIGNMENT
</a>
<a name="934858">
<dt>3 - </a>MIPS_ALIGNMENT
</a>
<a name="934859">
<dt>4 - </a>INTEL_ALIGNMENT
</a>
<a name="934860">
<dt>5 - </a>DEF_ALIGNMENT
</a>
<a name="934861">
<dt>6 - </a>CRAY_ALIGNMENT
</a>
<a name="933253">
<dt>7 - </a>UNICOS_ALIGNMENT
</a>
<a name="933258">
<dt>8 - </a>RS6000_ALIGNMENT
</a>
<a name="934866">
Some common </a>configurations are:<p>
</a>
<a name="934871">
<dt>Motorola - </a>PFTRGT(1, 1)
</a>
<a name="934872">
<dt>SPARC - PFTRGT(1, 2)
</a>
<a name="933308">
<dt>MIPS, SGI - PFTRGT(1, 3)
</a>
<a name="934873">
<dt>IBM RS6000 - PFTRGT(1, 8)
</a>
<a name="934874">
<dt>Mac/Think C - PFTRGT(2, 1)
</a>
<a name="934875">
<dt>Mac/MPW - PFTRGT(3, 1)
</a>
<a name="934876">
<dt>DOS - PFTRGT(4, 4)
</a>
<a name="934877">
<dt>Intel 80x86 UNIX - PFTRGT(5, 4)
</a>
<a name="934878">
<dt>DEC Vax - PFTRGT(6, 5)
</a>
<a name="934879">
<dt>DEC 3100 - PFTRGT(5, 3)
</a>
<a name="934880">
<dt>NLTSS Cray - PFTRGT(7, 6)
</a>
<a name="934881">
<dt>UNICOS Cray - </a>PFTRGT(7, 7)
</a>
<a name="934888">
The argument, is, is an index corresponding one of the </a>data_standard structures listed above, and the argument, ia, is an index corresponding to one of the </a>data_alignment structures above. See the section on Data Structures later on in this manual.<p>
</a>
<a name="932528">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933727">
<p>
</a>
<A NAME="933728"><PRE><B>integer </a>PFTRGT(integer is,
</B></PRE><A NAME="933777"><PRE><B> integer ia)
</B></PRE><A NAME="933729"><B>
</B><HR><A NAME="933725"><PRE> integer </a>pftrgt
</PRE><A NAME="933963"><PRE> integer is, ia
</PRE><A NAME="933964"><PRE> .
</PRE><A NAME="933965"><PRE> .
</PRE><A NAME="933966"><PRE> .
</PRE><A NAME="933962"><PRE> c set target architecture (MIPS, SGI)
</PRE><A NAME="933942"><PRE> c IEEEA_STD
</PRE><A NAME="933943"><PRE> is = 1
</PRE><A NAME="933945"><PRE> c MIPS_ALIGNMENT
</PRE><A NAME="933946"><PRE> ia = 3
</PRE><A NAME="933947"><PRE> if (</a>pftrgt(is, ia) .eq. 0)
</PRE><A NAME="933960"><PRE> $ call errproc
</PRE><A NAME="933967"><PRE> .
</PRE><A NAME="933968"><PRE> .
</PRE><A NAME="933969"><PRE> .
</PRE></dl>
<a name="933269">
<h2>6.31 PFVART</h2>
</a>
<A NAME="933274"><PRE><B>
</B></PRE><A NAME="934650"><PRE><B>integer </a>PFVART(integer fileid,
</B></PRE><A NAME="935285"><PRE><B> integer order,
</B></PRE><A NAME="935284"><PRE><B> integer nvars)
</B></PRE><a name="933270">
</a>Generate an internal table of variables in the specified PDB file. With subsequent calls to </a>PFGVAR, each entry can be obtained one at a time by ordinal index. The table is sorted according to a specified scheme. The current choices are alphabetic and by disk address.<p>
</a>
<a name="933272">
The arguments to this function are: <em>fileid, </em>an integer which identifies the PDBfile; order, an integer specifying the </a>sort ordering; and nvars, an integer in which the number of variables in the file is returned. The choices for order are: 1, for an alphabetic sort; and 2, for a disk address order sort.<p>
</a>
<a name="933268">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="935240">
See also </a>PFDVAR and </a>PFGVAR.<p>
</a>
<a name="933730">
<p>
</a>
<A NAME="933880"><PRE><B>integer </a>PFVART(integer fileid,
</B></PRE><A NAME="933731"><PRE><B> integer order,
</B></PRE><A NAME="935287"><PRE><B> integer nvars)
</B></PRE><A NAME="933732"><B>
</B><HR><A NAME="933273"><PRE> integer </a>pfvart
</PRE><A NAME="933975"><PRE> integer fileid, nvar, order
</PRE><A NAME="933976"><PRE> .
</PRE><A NAME="933977"><PRE> .
</PRE><A NAME="933978"><PRE> .
</PRE><A NAME="933941"><PRE> c create table of variable names in alphabetic order
</PRE><A NAME="933970"><PRE> order = 1
</PRE><A NAME="933971"><PRE> if (</a>pfvart(fileid, order, nvar) .eq. 0)
</PRE><A NAME="933973"><PRE> $ call errproc
</PRE><A NAME="933979"><PRE> .
</PRE><A NAME="933980"><PRE> .
</PRE><A NAME="933981"><PRE> .
</PRE><a name="932529">
<h2>6.32 PFWIMA</h2>
</a>
<A NAME="934901"><PRE><B>
</B></PRE><A NAME="932778"><PRE><B>integer </a>PFWIMA(integer fileid,
</B></PRE><A NAME="932779"><PRE><B> integer nchr,
</B></PRE><A NAME="932781"><PRE><B> character name,
</B></PRE><A NAME="932782"><PRE><B> integer pkn,
</B></PRE><A NAME="932783"><PRE><B> integer pkx,
</B></PRE><A NAME="933688"><PRE><B> integer pln,
</B></PRE><A NAME="933689"><PRE><B> integer plx,
</B></PRE><A NAME="932789"><PRE><B> real*8 data,
</B></PRE><A NAME="932800"><PRE><B> real*8 pxn,
</B></PRE><A NAME="932801"><PRE><B> real*8 pxx,
</B></PRE><A NAME="932802"><PRE><B> real*8 pyn,
</B></PRE><A NAME="932803"><PRE><B> real*8 pyx,
</B></PRE><A NAME="934222"><PRE><B> integer pim)
</B></PRE><a name="934230">
</a>Build a PD_image structure out of the given input data and write it to a PDB file.<p>
</a>
<a name="934231">
Rationale: The </a>PD_image structure is a useful and general purpose representation of a </a>raster </a>image. The nature of the generalization is that the values in the raster are floating point numbers. So in addition to the standard data sets that can be rasterized, the PD_image can be used to display the computational matrix of some system of equations, for example. This function is a convenient way for FORTRAN programs to put out their data into PDB files as PD_image’s for later visualization and processing by other programs. It allows a rectangular subset of a two dimensional array to be specified for the PD_image.<p>
</a>
<a name="934920">
The calling application must keep track of how many PM_image’s have been written to each file. PDBLib will write each PM_image under the name composed of the string, ‘Image’, and the integer pim. For example if pim is 9, the PM_image will be written under the name ‘Image9’. If the application passes the same value for pim more than once only the last one will survive in the symbol table even though the data for each PM_image will persist in the file!<p>
</a>
<a name="934931">
The arguments to </a>PFWIMA are: fileid, an integer identifier which designates the PDB file to which to attempt to write; nchr, an integer number of characters in name; name, an ASCII string containing the name of the image; pkn, the integer minimum column index of the data array; pkx, the integer maximum column index of the data array; pln, the integer minimum row index of the data array; plx, the integer maximum row index of the data array; data, an array of real*8 values containing the image data; pxn, a real*8 value specifying the minimum column index in image; pxx, a real*8 value specifying the maximum column index in image; pyn, a real*8 value specifying the minimum row index in image; pyx, a real*8 value specifying the maximum row index in image; and pim, a counter specifying the number of the image being written out.<p>
</a>
<a name="934935">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933734">
<p>
</a>
<A NAME="933735"><PRE><B>integer </a>PFWIMA(integer fileid,
</B></PRE><A NAME="933778"><PRE><B> integer nchr,
</B></PRE><A NAME="933779"><PRE><B> character name,
</B></PRE><A NAME="933780"><PRE><B> integer pkn,
</B></PRE><A NAME="933781"><PRE><B> integer pkx,
</B></PRE><A NAME="933783"><PRE><B> integer pln,
</B></PRE><A NAME="933784"><PRE><B> integer plx,
</B></PRE><A NAME="933786"><PRE><B> real*8 data,
</B></PRE><A NAME="933787"><PRE><B> real*8 pxn,
</B></PRE><A NAME="933788"><PRE><B> real*8 pxx,
</B></PRE><A NAME="933789"><PRE><B> real*8 pyn,
</B></PRE><A NAME="933790"><PRE><B> real*8 pyx,
</B></PRE><A NAME="934223"><PRE><B> integer pim)
</B></PRE><A NAME="933737"><B>
</B><HR><A NAME="933986"><PRE> integer </a>pfwima
</PRE><A NAME="933985"><PRE> integer fileid, k, l
</PRE><A NAME="933987"><PRE> c these arguments to pfwima must have 8 byte element size
</PRE><A NAME="934034"><PRE> double precision xmin, xmax, ymin, ymax, data(0:10,0:10)
</PRE><A NAME="933733"><PRE> .
</PRE><A NAME="933982"><PRE> .
</PRE><A NAME="933983"><PRE> .
</PRE><A NAME="933984"><PRE> xmin = 0.
</PRE><A NAME="933988"><PRE> xmax = 10.
</PRE><A NAME="933994"><PRE> ymin = 0.
</PRE><A NAME="933999"><PRE> ymax = 10.
</PRE><A NAME="934003"><PRE> do 100 l = 0, 10
</PRE><A NAME="933990"><PRE> do 101 k = 0, 10
</PRE><A NAME="933991"><PRE> data(k, l) = (k - 5)**2 + (l - 5)**2
</PRE><A NAME="933992"><PRE> 101 continue
</PRE><A NAME="933993"><PRE> 100 continue
</PRE><A NAME="933996"><PRE>
</PRE><A NAME="934004"><PRE> if (</a>pfwima(fileid, 10, ’Test image’, 0, 10, 0, 10,
</PRE><A NAME="933997"><PRE> $ data, xmin, xmax, ymin, ymax, 1) .eq. 0)
</PRE><A NAME="933998"><PRE> $ call errproc
</PRE><A NAME="934002"><PRE> .
</PRE><A NAME="934000"><PRE> .
</PRE><A NAME="933995"><PRE> .
</PRE><a name="934941">
<h2>6.33 PFWMAP</h2>
</a>
<A NAME="934945"><PRE><B>
</B></PRE><A NAME="932804"><PRE><B>integer </a>PFWMAP(integer fileid,
</B></PRE><A NAME="932805"><PRE><B> character dname,
</B></PRE><A NAME="932806"><PRE><B> integer dp,
</B></PRE><A NAME="932807"><PRE><B> real*8 dm,
</B></PRE><A NAME="932808"><PRE><B> character rname,
</B></PRE><A NAME="932810"><PRE><B> integer rp,
</B></PRE><A NAME="932811"><PRE><B> real*8 rm,
</B></PRE><A NAME="932812"><PRE><B> integer pim)
</B></PRE><a name="934949">
</a>Build a PM_mapping structure out of the given input data and write it to a PDB file.<p>
</a>
<a name="934956">
Rationale: The </a>PM_mapping structure is a convenient medium of exchange between data production systems such as simulation codes, storage systems such as PDBLib, and </a>visualization systems such as PDBView. This function is a convenient way for FORTRAN programs to put out their data into PDB files as PM_mapping’s for later visualization and processing by other programs. <p>
</a>
<a name="934963">
The PM_mapping is a structure with two main parts: a </a>domain and a </a>range. These two parts are in turn represented by a structure called a </a>PM_set. Because they are both represented as the same type of data object, they are specified similarly in </a>PFWMAP. For each of the domain and range </a>sets the following information is given: a name; an array of integer quantities specifying such information as the </a>dimensionality of the set, the dimensionality of the elements, the number of elements, and so on; and a linear array containing the elements of the set.<p>
</a>
<a name="934965">
The entries in the arrays dp and rp are as follows:<p>
</a>
<dl>
<a name="934970">
<dt>1 - the number of characters in the corresponding set name
</a>
<a name="934971">
<dt>2 - the dimensionality of the set, nd
</a>
<a name="934972">
<dt>3 - the dimensionality of the set elements, nde
</a>
<a name="934973">
<dt>4 - the number of elements in the set, ne
</a>
<a name="934974">
<dt>5 thru 5+ nd-1 - the sizes in each dimension
</a>
<a name="934978">
The layout of the set elements in dm and rm is:<p>
</a>
<a name="934982">
<dt>1 thru ne - values of the first component
</a>
<a name="934983">
<dt>ne+1 thru 2*ne - values of the second component
</a>
<a name="934984">
<dt>... - values of components
</a>
<a name="934985">
<dt>(nde-1)*ne+1 thru nde*ne - values of the nde’th component
</a>
<a name="934996">
The calling application must keep track of how many PM_mapping’s have been written to each file. PDBLib will write each PM_mapping under the name composed of the string, ‘Mapping’, and the integer pim. For example if pim is 9, the PM_mapping will be written under the name ‘Mapping9’. If the application passes the same value for pim more than once only the last one will survive in the symbol table even though the data for each PM_mapping will persist in the file!<p>
</a>
<a name="935006">
The arguments to </a>PFWMAP are: fileid, an integer identifier which designates the PDB file to which to attempt to write; dname, an ASCII string containing the name of the domain set; dp, an integer array of parameters defining the domain set; dm, an array of real*8 values containing the set elements component by component; rname, an ASCII string containing the name of the range set; rp, an integer array of parameters defining the range set; rm, an array of real*8 values containing the range elements component by component; and pim a counter specifying the number of the mapping being written out.<p>
</a>
<a name="935010">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933739">
<p>
</a>
<A NAME="933740"><PRE><B>integer </a>PFWMAP(integer fileid,
</B></PRE><A NAME="933792"><PRE><B> character dname,
</B></PRE><A NAME="933794"><PRE><B> integer dp,
</B></PRE><A NAME="933795"><PRE><B> real*8 dm,
</B></PRE><A NAME="933796"><PRE><B> character rname,
</B></PRE><A NAME="933797"><PRE><B> integer rp,
</B></PRE><A NAME="933798"><PRE><B> real*8 rm,
</B></PRE><A NAME="933800"><PRE><B> integer pim)
</B></PRE><A NAME="933738"><B>
</B><HR><A NAME="933741"><PRE> integer </a>pfwmap
</PRE><A NAME="934052"><PRE> integer fileid, dp(5), rp(5)
</PRE><A NAME="934073"><PRE> double precision dm(0:99), rm(0:99)
</PRE><A NAME="934074"><PRE> .
</PRE><A NAME="934096"><PRE> .
</PRE><A NAME="934097"><PRE> .
</PRE><A NAME="934076"><PRE> dp(1) = 6
</PRE><A NAME="934077"><PRE> dp(2) = 1
</PRE><A NAME="934078"><PRE> dp(3) = 1
</PRE><A NAME="934079"><PRE> dp(4) = 100
</PRE><A NAME="934080"><PRE> dp(5) = 100
</PRE><A NAME="934081"><PRE> rp(1) = 6
</PRE><A NAME="934082"><PRE> rp(2) = 1
</PRE><A NAME="934083"><PRE> rp(3) = 1
</PRE><A NAME="934084"><PRE> rp(4) = 100
</PRE><A NAME="934085"><PRE> rp(5) = 100
</PRE><A NAME="934086"><PRE>
</PRE><A NAME="934087"><PRE> do 100 i = 0, 99
</PRE><A NAME="934088"><PRE> dm(i) = 6.28*float(i)/99.
</PRE><A NAME="934089"><PRE> rm(i) = sin(6.28*float(i)/99.)
</PRE><A NAME="934090"><PRE> 100 continue
</PRE><A NAME="934091"><PRE>
</PRE><A NAME="934092"><PRE> if (</a>pfwmap(fileid, ‘Domain’, dp, dm, ‘Range’, rp, rm, 0)
</PRE><A NAME="934093"><PRE> $ .eq. 0)
</PRE><A NAME="934094"><PRE> $ call errproc
</PRE><A NAME="934095"><PRE> .
</PRE><A NAME="934098"><PRE> .
</PRE><A NAME="934099"><PRE> .
</PRE></dl>
<a name="936662">
<h2>6.34 PFWRAD — (PD_write_as_alt)</h2>
</a>
<A NAME="936669"><PRE><B>
</B></PRE><A NAME="936670"><PRE><B>integer </a>PFWRAD(integer fileid,
</B></PRE><A NAME="936713"><PRE><B> integer nchr,
</B></PRE><A NAME="936715"><PRE><B> character name,
</B></PRE><A NAME="936716"><PRE><B> integer ntypin,
</B></PRE><A NAME="936717"><PRE><B> character intype,
</B></PRE><A NAME="936718"><PRE><B> integer ntypout,
</B></PRE><A NAME="936750"><PRE><B> character outtype,
</B></PRE><A NAME="936751"><PRE><B> void space,
</B></PRE><A NAME="936752"><PRE><B> integer nd,
</B></PRE><A NAME="936753"><PRE><B> integer ind)
</B></PRE><a name="936754">
Write the data of type intype to the PDB file as data of type outtype.<p>
</a>
<a name="936755">
The rationale for this function is: <br>1) that in some situations, it is desirable to not only convert the formats of data of a specified type, but to convert between types. An example that occurs in practice often enough is converting a 32 bit int to a 32 bit long on a machine which only has a 16 bit int.<br>2) that in some situations, it is desirable to be able to specify the dimensions without building them into an ASCII string.<p>
</a>
<a name="936756">
The arguments to </a>PFWRAD are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; ntypin, an integer number of characters in the intype string; intype, an ASCII string specifying the variable type in space; ntypout, an integer number of characters in the outtype string; outtype, an ASCII string specifying the variable type in the PDB file; space, the data to be written; nd, an integer number of dimensions; and ind, an array of nd integer triples containing the minimum and maximum index and the stride for each dimension.<p>
</a>
<a name="936757">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="936758">
See also PFAPAS, PFAPAD, PFAPPA, PFAPPD, PFWRAS, PFWRTA, and PFWRTD.<p>
</a>
<a name="936759">
<p>
</a>
<a name="936760">
<p>
</a>
<A NAME="936761"><PRE><B>integer </a>PFWRAD(integer fileid,
</B></PRE><A NAME="936762"><PRE><B> integer nchr,
</B></PRE><A NAME="936763"><PRE><B> character name,
</B></PRE><A NAME="936764"><PRE><B> integer ntypin,
</B></PRE><A NAME="936765"><PRE><B> character intype,
</B></PRE><A NAME="936766"><PRE><B> integer ntypout,
</B></PRE><A NAME="936767"><PRE><B> character outtype,
</B></PRE><A NAME="936768"><PRE><B> void space,
</B></PRE><A NAME="936769"><PRE><B> integer nd,
</B></PRE><A NAME="936770"><PRE><B> integer ind)
</B></PRE><A NAME="936771"><B>
</B><HR><A NAME="936772"><PRE> integer </a>pfwrad
</PRE><A NAME="936773"><PRE> integer fileid, nd, ind(6)
</PRE><A NAME="936774"><PRE> real*8 c(2,2:4)
</PRE><A NAME="936775"><PRE> .
</PRE><A NAME="936776"><PRE> .
</PRE><A NAME="936777"><PRE> .
</PRE><A NAME="936778"><PRE> c write array c of type double as type float
</PRE><A NAME="936779"><PRE> nd = 2
</PRE><A NAME="936780"><PRE> ind(1) = 1
</PRE><A NAME="936781"><PRE> ind(2) = 2
</PRE><A NAME="936782"><PRE> ind(3) = 1
</PRE><A NAME="936783"><PRE> ind(4) = 2
</PRE><A NAME="936784"><PRE> ind(5) = 4
</PRE><A NAME="936785"><PRE> ind(6) = 1
</PRE><A NAME="936786"><PRE> if (</a>pfwrad(fileid, 1, ‘c’, 6, ‘double’,
</PRE><A NAME="936792"><PRE> $ 5, ‘float’, c, nd, ind) .eq. 0)
</PRE><A NAME="936788"><PRE> $ call errproc
</PRE><A NAME="936789"><PRE> .
</PRE><A NAME="936790"><PRE> .
</PRE><A NAME="936791"><PRE> .
</PRE><a name="935015">
<h2>6.35 PFWRAN</h2>
</a>
<A NAME="935019"><PRE><B>
</B></PRE><A NAME="932813"><PRE><B>integer </a>PFWRAN(integer fileid,
</B></PRE><A NAME="932814"><PRE><B> character dname,
</B></PRE><A NAME="932817"><PRE><B> integer nchr,
</B></PRE><A NAME="932816"><PRE><B> character rname,
</B></PRE><A NAME="932818"><PRE><B> integer rp,
</B></PRE><A NAME="932819"><PRE><B> real*8 rm,
</B></PRE><A NAME="932820"><PRE><B> integer pim)
</B></PRE><a name="935023">
</a>Build a PM_mapping structure out of the given input data and write it to a PDB file.<p>
</a>
<a name="935030">
Rationale: The </a>PM_mapping structure is a convenient medium of exchange between data production systems such as simulation codes, storage systems such as PDBLib, and visualization systems such as PDBView. This function is a convenient way for FORTRAN programs to put out their data into PDB files as PM_mapping’s for later </a>visualization and processing by other programs.<p>
</a>
<a name="935038">
The PM_mapping is a structure with two main parts: a </a>domain and a </a>range. These two parts are in turn represented by a structure called a </a>PM_set. In many cases a number of PM_mapping’s share a common domain set. It is therefore more efficient to write the unique domain </a>sets out separately and use </a>PFWRAN to write out the PM_mapping’s without their domains. Post processor codes such as PDBView (by definition) know how to put the full PM_mapping back together. Note: the domain name given for </a>PFWRAN must be the same as the domain name passed to the corresponding </a>PFWSET call.<p>
</a>
<a name="935043">
For each range set the following information is given: a name; an array of integer quantities specifying such information as the </a>dimensionality of the set, the dimensionality of the elements, the number of elements, and so on; and a linear array containing the elements of the set.<p>
</a>
<a name="935045">
The entries in the array rp are as follows:<p>
</a>
<dl>
<a name="935050">
<dt>1 - the number of characters in the corresponding set name
</a>
<a name="935051">
<dt>2 - the dimensionality of the set, nd
</a>
<a name="935052">
<dt>3 - the dimensionality of the set elements, nde
</a>
<a name="935053">
<dt>4 - the number of elements in the set, ne
</a>
<a name="935054">
<dt>5 thru 5+ nd-1 - the sizes in each dimension
</a>
<a name="935058">
The layout of the set elements in rm is:<p>
</a>
<a name="935062">
<dt>1 thru ne - values of the first component
</a>
<a name="935063">
<dt>ne+1 thru 2*ne - values of the second component
</a>
<a name="935064">
<dt>... - values of components
</a>
<a name="935065">
<dt>(nde-1)*ne+1 thru nde*ne - values of the nde’th component
</a>
<a name="935076">
The calling application must keep track of how many PM_mapping’s have been written to each file. PDBLib will write each PM_mapping under the name composed of the string, ‘Mapping’, and the integer pim. For example if pim is 9, the PM_mapping will be written under the name ‘Mapping9’. If the application passes the same value for pim more than once only the last one will survive in the symbol table even though the data for each PM_mapping will persist in the file.<p>
</a>
<a name="935085">
The arguments to PFWRAN are: fileid, an integer identifier which designates the PDB file to which to attempt to write; dname, an ASCII string containing the name of the domain set; nchr, an integer number of characters in dname; rname, an ASCII string containing the name of the range set; rp, an integer array of parameters defining the range set; rm, an array of real*8 values containing the range elements component by component; and pim a counter specifying the number of the mapping being written out.<p>
</a>
<a name="935089">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933743">
<p>
</a>
<A NAME="933744"><PRE><B>integer </a>PFWRAN(integer fileid,
</B></PRE><A NAME="933801"><PRE><B> character dname,
</B></PRE><A NAME="933802"><PRE><B> integer nchr,
</B></PRE><A NAME="933803"><PRE><B> character rname,
</B></PRE><A NAME="933804"><PRE><B> integer rp,
</B></PRE><A NAME="933806"><PRE><B> real*8 rm,
</B></PRE><A NAME="933807"><PRE><B> integer pim)
</B></PRE><A NAME="933745"><B>
</B><HR><A NAME="933742"><PRE> integer </a>pfwran
</PRE><A NAME="934075"><PRE> integer fileid, i, pim, rp(5)
</PRE><A NAME="934100"><PRE> double precision rm(0:99)
</PRE><A NAME="934102"><PRE> .
</PRE><A NAME="934103"><PRE> .
</PRE><A NAME="934104"><PRE> .
</PRE><A NAME="934105"><PRE> pim = 0
</PRE><A NAME="934121"><PRE> rp(1) = 6
</PRE><A NAME="934108"><PRE> rp(2) = 1
</PRE><A NAME="934109"><PRE> rp(3) = 1
</PRE><A NAME="934110"><PRE> rp(4) = 100
</PRE><A NAME="934111"><PRE> rp(5) = 100
</PRE><A NAME="934112"><PRE>
</PRE><A NAME="934113"><PRE> do 100 i = 0, 99
</PRE><A NAME="934115"><PRE> rm(i) = sin(6.28*float(i)/99.)
</PRE><A NAME="934116"><PRE> 100 continue
</PRE><A NAME="934117"><PRE>
</PRE><A NAME="934120"><PRE> c ‘Domain’ written previously by pfwset
</PRE><A NAME="934122"><PRE> if (</a>pfwran(fileid, ‘Domain’, 6, ‘Range’, rp, rm, pim)
</PRE><A NAME="934114"><PRE> $ .eq. 0)
</PRE><A NAME="934118"><PRE> $ call errproc
</PRE><A NAME="934119"><PRE> .
</PRE><A NAME="934106"><PRE> .
</PRE><A NAME="934107"><PRE> .
</PRE></dl>
<a name="936705">
<h2>6.36 PFWRAS — (PD_write_as)</h2>
</a>
<A NAME="936706"><PRE><B>
</B></PRE><A NAME="936707"><PRE><B>integer </a>PFWRAS(integer fileid,
</B></PRE><A NAME="936708"><PRE><B> integer nchr,
</B></PRE><A NAME="936709"><PRE><B> character name,
</B></PRE><A NAME="936653"><PRE><B> integer ntypin,
</B></PRE><A NAME="936710"><PRE><B> character intype,
</B></PRE><A NAME="936654"><PRE><B> integer ntypout,
</B></PRE><A NAME="936711"><PRE><B> character outtype,
</B></PRE><A NAME="936712"><PRE><B> void space)
</B></PRE><a name="936714">
Write the data of type intype to the PDB file as data of type outtype.<p>
</a>
<a name="936656">
The rationale for this function is that in some situations, it is desirable to not only convert the formats of data of a specified type, but to convert between types. An example that occurs in practice often enough is converting a 32 bit int to a 32 bit long on a machine which only has a 16 bit int.<p>
</a>
<a name="936663">
The arguments to PFWRAS are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; ntypin, an integer number of characters in the intype string; intype, an ASCII string specifying the variable type in space; ntypout, an integer number of characters in the outtype string; outtype, an ASCII string specifying the variable type in the PDB file; and space, the data to be written.<p>
</a>
<a name="936719">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR<p>
</a>
<a name="936821">
See also PFAPAS, PFAPAD, PFAPPA, PFAPPD, PFWRAD, PFWRTA, and PFWRTD.<p>
</a>
<a name="936720">
<p>
</a>
<A NAME="936721"><PRE><B>integer </a>PFWRAS(integer fileid,
</B></PRE><A NAME="936722"><PRE><B> integer nchr,
</B></PRE><A NAME="936723"><PRE><B> character name,
</B></PRE><A NAME="936724"><PRE><B> integer ntypin,
</B></PRE><A NAME="936725"><PRE><B> character intype,
</B></PRE><A NAME="936667"><PRE><B> integer ntypout,
</B></PRE><A NAME="936668"><PRE><B> character outtype,
</B></PRE><A NAME="936726"><PRE><B> void space)
</B></PRE><A NAME="936727"><B>
</B><HR><A NAME="936728"><PRE> integer </a>pfwras
</PRE><A NAME="936729"><PRE> integer fileid
</PRE><A NAME="936730"><PRE> real*8 x(20)
</PRE><A NAME="936731"><PRE> .
</PRE><A NAME="936734"><PRE> .
</PRE><A NAME="936735"><PRE> .
</PRE><A NAME="936736"><PRE> c write array x of type double as type float
</PRE><A NAME="936737"><PRE> if (</a>pfwras(fileid, 5, ‘x(20)’, 6, ‘double’,
</PRE><A NAME="936666"><PRE> $ 5, ‘float’, x) .eq. 0)
</PRE><A NAME="936738"><PRE> $ call errproc
</PRE><A NAME="936743"><PRE> .
</PRE><A NAME="936744"><PRE> .
</PRE><A NAME="936745"><PRE> .
</PRE><a name="935094">
<h2>6.37 PFWRTA — (PD_write)</h2>
</a>
<A NAME="935098"><PRE><B>
</B></PRE><A NAME="932822"><PRE><B>integer </a>PFWRTA(integer fileid,
</B></PRE><A NAME="932823"><PRE><B> integer nchr,
</B></PRE><A NAME="932828"><PRE><B> character name,
</B></PRE><A NAME="932826"><PRE><B> integer ntype,
</B></PRE><A NAME="932829"><PRE><B> character type,
</B></PRE><A NAME="932827"><PRE><B> void space)
</B></PRE><a name="935109">
</a>Write data to a PDB file. Before writing data to the PDB file an entry is prepared for the symbol table consisting of the name, the type, the </a>dimension information, the disk address to which the data will be written, and the total number of bytes as computed with the help of the structure chart. After the entry is installed in the symbol table the data from memory is converted (only if the </a>target machine type is different from the current machine type) and then written out to disk starting at the current disk address. <p>
</a>
<a name="935115">
The </a>primitive </a>data types which the PDBLib system knows about by default are: ‘short’, ‘integer’, ‘long’, ‘float’, ‘double’, and ‘char’ for short integer, integer, long integer, floating point or real*8 number, double precision floating point number, and character or single byte respectively.<p>
</a>
<a name="935121">
Rationale: When writing out scalar variables (i.e. non-dimensioned variables - structured variables are scalars unless specifically dimensioned) or arrays with fixed dimensions this function is the most convenient to use. Dimension information can be encoded in the name of the entry. PDBLib will strip that information off the name before creating the symbol table entry.<p>
</a>
<a name="935126">
Dimensions can be given in two ways. If the default offset value for the PDB file can be taken as the minimum value for the range which a dimension index can legally run, the maximum value may be specified alone. Alternatively, the minimum value, maximum value, and stride (separated by colons) may be specified. The stride is optional and defaults to 1. For example:<p>
</a>
<a name="933627">
<dd> pfwrta(pid, 10, ‘u(30,1:10)’, 5, ‘float’, u)<P>
</a>
<a name="934323">
The arguments to PFWRTA are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; ntype, an integer number of characters in the type string; type, an ASCII string specifying the variable type; and space, the data to be written.<p>
</a>
<a name="934324">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="936820">
See also PFAPAS, PFAPAD, PFAPPA, PFAPPD, PFWRAD, PFWRAS, and PFWRTD.<p>
</a>
<a name="933748">
<p>
</a>
<A NAME="933749"><PRE><B>integer </a>PFWRTA(integer fileid,
</B></PRE><A NAME="933824"><PRE><B> integer nchr,
</B></PRE><A NAME="933825"><PRE><B> character name,
</B></PRE><A NAME="933826"><PRE><B> integer ntype,
</B></PRE><A NAME="933827"><PRE><B> character type,
</B></PRE><A NAME="933828"><PRE><B> void space)
</B></PRE><A NAME="933750"><B>
</B><HR><A NAME="933747"><PRE> integer </a>pfwrta
</PRE><A NAME="933625"><PRE> integer fileid
</PRE><A NAME="934018"><PRE> real x(20)
</PRE><A NAME="934019"><PRE> common /abc/ a(2), b, c(2,2:4)
</PRE><A NAME="934020"><PRE> real a, b, c
</PRE><A NAME="934024"><PRE> .
</PRE><A NAME="934025"><PRE> .
</PRE><A NAME="934026"><PRE> .
</PRE><A NAME="934023"><PRE> c write array x
</PRE><A NAME="934043"><PRE> if (</a>pfwrta(fileid, 5, ‘x(20)’, 5, ‘float’, x) .eq. 0)
</PRE><A NAME="934031"><PRE> $ call errproc
</PRE><A NAME="934032"><PRE>
</PRE><A NAME="934059"><PRE> c write entire structure abc (previous defined with pfdefs)
</PRE><A NAME="934035"><PRE> if (</a>pfwrta(fileid, 3, ‘abc’, 3, ‘abc’, a) .eq. 0)
</PRE><A NAME="934036"><PRE> $ call errproc
</PRE><A NAME="934001"><PRE> .
</PRE><A NAME="934041"><PRE> .
</PRE><A NAME="934042"><PRE> .
</PRE><a name="935156">
<h2>6.38 PFWRTD — (PD_write_alternate)</h2>
</a>
<A NAME="935163"><PRE><B>
</B></PRE><A NAME="932830"><PRE><B>integer </a>PFWRTD(integer fileid,
</B></PRE><A NAME="932832"><PRE><B> integer nchr,
</B></PRE><A NAME="932837"><PRE><B> character name,
</B></PRE><A NAME="932833"><PRE><B> integer ntype,
</B></PRE><A NAME="932836"><PRE><B> character type,
</B></PRE><A NAME="932834"><PRE><B> void space,
</B></PRE><A NAME="932838"><PRE><B> integer nd,
</B></PRE><A NAME="932840"><PRE><B> integer ind)
</B></PRE><a name="935174">
</a>Write data to a PDB file. Before writing data to the PDB file an entry is prepared for the symbol table consisting of the name, the type, the </a>dimension information, the disk address to which the data will be written, and the total number of bytes as computed with the help of the structure chart. After the entry is installed in the symbol table the data from memory is converted (only if the </a>target machine type is different from the current machine type) and then written out to disk starting at the current disk address.<p>
</a>
<a name="934050">
The </a>primitive </a>data types which the PDBLib system knows about by default are: ‘short’, ‘integer’, ‘long’, ‘float’, ‘double’, and ‘char’ for short integer, integer, long integer, floating point or real number, double precision floating point number, and character or single byte respectively.<p>
</a>
<a name="934051">
The rationale for this function is that in some situations, it is desirable to be able to specify the dimensions without building them into an ASCII string.<p>
</a>
<a name="934072">
The arguments to </a>PFWRTD are: fileid, an integer identifier which designates the PDB file to which to write; nchr, an integer number of characters in the name string; name, an ASCII string containing the name of the variable to install in the symbol table; ntype, an integer number of characters in the type string; type, an ASCII string specifying the variable type; space, the data to be written; nd, an integer number of dimensions; and ind, an array of nd integer triples containing the minimum and maximum index and the stride for each dimension.<p>
</a>
<a name="936822">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="936823">
See also PFAPAS, PFAPAD, PFAPPA, PFAPPD, PFWRAD, PFWRAS, and PFWRTA.<p>
</a>
<a name="935206">
<p>
</a>
<a name="933752">
<p>
</a>
<A NAME="933753"><PRE><B>integer </a>PFWRTD(integer fileid,
</B></PRE><A NAME="933829"><PRE><B> integer nchr,
</B></PRE><A NAME="933830"><PRE><B> character name,
</B></PRE><A NAME="933832"><PRE><B> integer ntype,
</B></PRE><A NAME="933833"><PRE><B> character type,
</B></PRE><A NAME="933835"><PRE><B> void space,
</B></PRE><A NAME="933836"><PRE><B> integer nd,
</B></PRE><A NAME="933837"><PRE><B> integer ind)
</B></PRE><A NAME="933754"><B>
</B><HR><A NAME="934053"><PRE> integer </a>pfwrtd
</PRE><A NAME="933626"><PRE> integer fileid, nd, ind(6)
</PRE><A NAME="934046"><PRE> real c(2,2:4)
</PRE><A NAME="934022"><PRE> .
</PRE><A NAME="934033"><PRE> .
</PRE><A NAME="934037"><PRE> .
</PRE><A NAME="934060"><PRE> c write array c
</PRE><A NAME="933751"><PRE> nd = 2
</PRE><A NAME="934038"><PRE> ind(1) = 1
</PRE><A NAME="934039"><PRE> ind(2) = 2
</PRE><A NAME="933622"><PRE> ind(3) = 1
</PRE><A NAME="934047"><PRE> ind(4) = 2
</PRE><A NAME="934049"><PRE> ind(5) = 4
</PRE><A NAME="934325"><PRE> ind(6) = 1
</PRE><A NAME="934055"><PRE> if (</a>pfwrtd(fileid, 1, ‘c’, 5, ‘float’, c, nd, ind) .eq. 0)
</PRE><A NAME="934054"><PRE> $ call errproc
</PRE><A NAME="934048"><PRE> .
</PRE><A NAME="934045"><PRE> .
</PRE><A NAME="934044"><PRE> .
</PRE><a name="932841">
<h2>6.39 PFWSET)</h2>
</a>
<A NAME="932842"><PRE><B>
</B></PRE><A NAME="932844"><PRE><B>integer </a>PFWSET(integer fileid,
</B></PRE><A NAME="932845"><PRE><B> character dname,
</B></PRE><A NAME="933623"><PRE><B> integer dp,
</B></PRE><A NAME="933649"><PRE><B> real*8 dm)
</B></PRE><a name="933653">
</a>Build a PM_set structure out of the given input data and write it to a PDB file.<p>
</a>
<a name="933665">
Rationale: The </a>PM_set structure is a fundamental component of the </a>PM_mapping structure which is a convenient medium of exchange between data production systems such as simulation codes, storage systems such as PDBLib, and </a>visualization systems such as PDBView. Although the function </a>PFWMAP most conveniently writes a mapping out to a PDB file, it does not make the best use of limited storage space. In many cases a number of PM_mapping’s share a common </a>domain set. It is therefore more efficient to write the unique domain </a>sets out separately and use </a>PFWRAN to write out the PM_mapping’s without their domains. Post processor codes such as PDBView (by definition) know how to put the full PM_mapping back together. Note: the domain name given for </a>PFWSET must be the same as the domain name passed to the corresponding </a>PFWRAN call!<p>
</a>
<a name="933666">
For each PM_set the following information is given: a name; an array of integer quantities specifying such information as the dimensionality of the set, the dimensionality of the elements, the number of elements, etc.; and a linear array containing the elements of the set.<p>
</a>
<a name="933667">
The entries in the array dp are as follows:<p>
</a>
<dl>
<a name="933668">
<dt>1 - the number of characters in the corresponding set name
</a>
<a name="933669">
<dt>2 - the dimensionality of the set, nd
</a>
<a name="933670">
<dt>3 - the dimensionality of the set elements, nde
</a>
<a name="933671">
<dt>4 - the number of elements in the set, ne
</a>
<a name="933673">
<dt>5 thru 5+nd-1 - the sizes in each dimension
</a>
<a name="933674">
The layout of the set elements in dm is:<p>
</a>
<a name="933675">
<dt>1 thru ne - values of the first component
</a>
<a name="933676">
<dt>ne+1 thru 2*ne - values of the second component
</a>
<a name="933678">
<dt>... - values of components
</a>
<a name="933679">
<dt>(nde-1)*ne+1 thru nde*ne - values of the nde’th component
</a>
<a name="933680">
The arguments to </a>PFWSET are: fileid, an integer identifier which designates the PDB file to which to write; dname, an ASCII string containing the name of the PM_set; dp, an integer array of parameters defining the PM_set; and dm, an array of real*8 values containing the set elements component by component.<p>
</a>
<a name="933681">
The return value is 1, if successful; otherwise, 0 is returned and an error message may be retrieved by invoking function PFGERR.<p>
</a>
<a name="933756">
<p>
</a>
<A NAME="933757"><PRE><B>integer </a>PFWSET(integer fileid,
</B></PRE><A NAME="933838"><PRE><B> character dname,
</B></PRE><A NAME="933839"><PRE><B> integer dp,
</B></PRE><A NAME="933840"><PRE><B> real*8 dm)
</B></PRE><A NAME="933759"><B>
</B><HR><A NAME="933755"><PRE> integer </a>pfwset
</PRE><A NAME="934123"><PRE> integer fileid, i, dp(5)
</PRE><A NAME="934124"><PRE> double precision dm(0:99)
</PRE><A NAME="934126"><PRE> .
</PRE><A NAME="934127"><PRE> .
</PRE><A NAME="934128"><PRE> .
</PRE><A NAME="934132"><PRE> dp(1) = 6
</PRE><A NAME="934133"><PRE> dp(2) = 1
</PRE><A NAME="934134"><PRE> dp(3) = 1
</PRE><A NAME="934135"><PRE> dp(4) = 100
</PRE><A NAME="934136"><PRE> dp(5) = 100
</PRE><A NAME="934137"><PRE>
</PRE><A NAME="934143"><PRE> do 100 i = 0, 99
</PRE><A NAME="934129"><PRE> dm(i) = 6.28*float(i)/99.
</PRE><A NAME="934139"><PRE> 100 continue
</PRE><A NAME="934140"><PRE>
</PRE><A NAME="934142"><PRE> if (</a>pfwset(fileid, ‘Domain’, dp, dm) .eq. 0)
</PRE><A NAME="934138"><PRE> $ call errproc
</PRE><A NAME="934141"><PRE> .
</PRE><A NAME="934130"><PRE> .
</PRE><A NAME="934131"><PRE> .
</PRE></dl>
<a name="935279">
<h1>7.0 </a>PDBLib </a>Design Philosophy</h1>
</a>
<a name="935281">
<h2>7.1 Overview</h2>
</a>
<a name="935286">
Perhaps the most fundamental element in the design of PDBLib is the concept of </a>modularity through </a>abstraction barriers. In essence, the functionality is broken down into modular units and abstraction barriers are used to preserve the integrity of the units.<p>
</a>
<a name="935295">
An abstraction barrier is simply a technique or device which allows a section of code to be written assuming other functions or routines are defined and that their internal workings are irrelevant to their use. In this way a routine or module can be changed without any other part of the code which uses it being affected (so long as the definition of its function does not change). Abstraction barriers are most effectively created by a careful choice of the basic functional units and by the interfaces between them.<p>
</a>
<a name="935303">
For example, if all variables in the code were global there would be little or no chance of having any abstraction barriers at all. Similarly, monolithic functions which are defined to ‘solve the worlds problems’ do not lend themselves to the more easy maintenance that abstraction barriers afford a program. For a good discussion of the principles and applications of these ideas see Abelson and Sussman’s marvelous book, The Structure and Interpretation of Computer Programs.<p>
</a>
<a name="935310">
The main </a>functional units in the PDBLib system are: the </a>hash package which controls the maintenance of the data in both the symbol table and structure chart; the </a>conversion package which handles all data format conversions; the </a>data reading routine which is defined to bring data in from the disk, perform any necessary conversion, and store it in the specified location(s) of memory; and the </a>data writing routine which does the reverse of the reading routine.<p>
</a>
<a name="935314">
These units are put together in such a way that they are used over and over again in the process of doing any of the high level functions. In this way the code size was kept relatively small. Again this is one of the rewards of modularity.<p>
</a>
<a name="935316">
<h2>7.2 </a>Data Conversion and </a>Compression</h2>
</a>
<a name="935339">
PDBLib has a quasi-universal </a>data </a>translation capability. It is called </a>Parametrized </a>Data </a>Conversion (</a>PDC). A set of parameters which characterizes a large set of integer and floating point formats was developed. It describes the byte size and order of integer types. For floating point data it describes the bit location and width of the sign, exponent, and mantissa field as well as the byte size and order of the data. Using this information a single integer conversion routine and a single floating point conversion routine handle all of the data conversions in PDBLib. The advantage of this approach is that there is no increase in the size of the library for each port to a new environment. Furthermore, it will allow future releases to auto-configure themselves to the machines on which they run. Another benefit is that a data representation may be targeted without regard to its implementation. This provides a vehicle for developing data representations, evaluating them, or using them in a highly abstract manner. The sole drawback of this approach is that it makes assumptions about the representation of data in computers. While the assumptions are general and the result of incorporating data representations outside these assumptions is more work on the library itself, it is philosophically unsatisfying to make any assumptions about how things are to be done or data to be represented. The other drawback is that by being general purpose the conversion routines are slightly slower than specific ones. This is more than made up for in the saving in library size and ease of porting the library.<p>
</a>
<a name="935345">
Alternative data conversion strategies are either hub and spoke (such as Sun’s </a>XDR) or specific format to format. The latter suffers from an N2 growth in the number of conversion routines where N is the number of machine/architectures which the library supports. On the other hand, hub and spoke strategies necessitate a conversion on each read or write operation.<p>
</a>
<a name="935352">
PDC prevents the conversion problem from being N2. At worst, the PDC method should grow like N in the number of parameter sets required. In practice, it is even better than that. Most computer systems today are based on a handful of CPU’s which are the most constraining factor in binary data formats. For the convenience of the users of PDBLib, several </a>data_standard’s and </a>data_alignment’s are predefined by the library itself.<p>
</a>
<a name="932584">
A significant advantage to PDC is that a class of data compression algorithms is implicit in the method. By simply describing a format which describes data in the correct range (up to a possible overall offset for each type), PDBLib can do all of the work to store and retrieve the data in a compressed form.<p>
</a>
<a name="935358">
<h3>7.2.1 DATA_STANDARD’S</h3>
</a>
<a name="935363">
See the section on the </a>data_standard structure for a detailed discussion of its members. The following is a list of the data_standard’s which PDBLib provides by default. The purpose is twofold: to help users identify target formats; and to guide users who wish to create their own data_standard’s.<p>
</a>
<a name="932530">
The members of the data_standard are indicated in the template:<p>
</a>
<dl>
<a name="932538">
<dt> STAND
</a>
<a name="932548">
<dd>{size of pointer,<P>
</a>
<a name="932539">
<dd> size and order of short,<P>
</a>
<a name="932540">
<dd> size and order of int,<P>
</a>
<a name="932541">
<dd> size and order of long,<P>
</a>
<a name="932542">
<dd> size, format, and order of float,<P>
</a>
<a name="932543">
<dd> size, format, and order of double}<P>
</a>
<a name="932544">
The various variables indicated are defined by PDBLib.<p>
</a>
<a name="932547">
<p>
</a>
<a name="932532">
<dt></a>DEF_STD
</a>
<a name="932550">
<dd>{4,<P>
</a>
<a name="935364">
<dd> 2, NORMAL_ORDER,<P>
</a>
<a name="935365">
<dd> 4, NORMAL_ORDER,<P>
</a>
<a name="935366">
<dd> 4, NORMAL_ORDER,<P>
</a>
<a name="935367">
<dd> 4, def_float, def_float_order,<P>
</a>
<a name="935368">
<dd> 8, def_double, def_double_order}<P>
</a>
<a name="932455">
<p>
</a>
<a name="932531">
<dt> </a>IEEEA_STD
</a>
<a name="932551">
<dd>{4,<P>
</a>
<a name="935370">
<dd> 2, NORMAL_ORDER,<P>
</a>
<a name="935371">
<dd> 4, NORMAL_ORDER,<P>
</a>
<a name="935372">
<dd> 4, NORMAL_ORDER,<P>
</a>
<a name="935373">
<dd> 4, ieee_float, ieee_float_order,<P>
</a>
<a name="935374">
<dd> 8, ieeea_double, ieeea_double_order}<P>
</a>
<a name="932533">
<p>
</a>
<a name="932545">
<dt> </a>IEEEB_STD
</a>
<a name="932559">
<dd>{4,<P>
</a>
<a name="935376">
<dd> 2, NORMAL_ORDER,<P>
</a>
<a name="935377">
<dd> 2, NORMAL_ORDER,<P>
</a>
<a name="935378">
<dd> 4, NORMAL_ORDER,<P>
</a>
<a name="935379">
<dd> 4, ieee_float, ieee_float_order,<P>
</a>
<a name="935380">
<dd> 12, ieeeb_double, ieeeb_double_order}<P>
</a>
<a name="935381">
<p>
</a>
<a name="932534">
<dt> </a>IEEEC_STD
</a>
<a name="932560">
<dd>{4,<P>
</a>
<a name="935382">
<dd> 2, NORMAL_ORDER,<P>
</a>
<a name="935383">
<dd> 4, NORMAL_ORDER,<P>
</a>
<a name="935384">
<dd> 4, NORMAL_ORDER,<P>
</a>
<a name="935385">
<dd> 4, ieee_float, ieee_float_order,<P>
</a>
<a name="935386">
<dd> 12, ieeeb_double, ieeeb_double_order}<P>
</a>
<a name="935387">
<p>
</a>
<a name="932535">
<dt> </a>INTELA_STD
</a>
<a name="932561">
<dd>{4,<P>
</a>
<a name="935388">
<dd> 2, REVERSE_ORDER,<P>
</a>
<a name="935389">
<dd> 2, REVERSE_ORDER,<P>
</a>
<a name="935390">
<dd> 4, REVERSE_ORDER,<P>
</a>
<a name="935391">
<dd> 4, intel_float, intel_float_order,<P>
</a>
<a name="935393">
<dd> 8, intel_double, intel_double_order}<P>
</a>
<a name="932557">
<p>
</a>
<a name="932537">
<dt> </a>INTELB_STD
</a>
<a name="932553">
<dd>{4,<P>
</a>
<a name="935394">
<dd> 2, REVERSE_ORDER,<P>
</a>
<a name="935395">
<dd> 4, REVERSE_ORDER,<P>
</a>
<a name="935396">
<dd> 4, REVERSE_ORDER,<P>
</a>
<a name="935397">
<dd> 4, intel_float, intel_float_order,<P>
</a>
<a name="935398">
<dd> 8, intel_double, intel_double_order},<P>
</a>
<a name="935399">
<p>
</a>
<a name="932556">
<dt> </a>VAX_STD
</a>
<a name="932552">
<dd>{4,<P>
</a>
<a name="935400">
<dd> 2, REVERSE_ORDER,<P>
</a>
<a name="935401">
<dd> 4, REVERSE_ORDER,<P>
</a>
<a name="935402">
<dd> 4, REVERSE_ORDER,<P>
</a>
<a name="935403">
<dd> 4, vax_float, vax_float_order,<P>
</a>
<a name="935404">
<dd> 8, vax_double, vax_double_order}<P>
</a>
<a name="935405">
<p>
</a>
<a name="932555">
<dt> </a>CRAY_STD
</a>
<a name="932554">
<dd>{8,<P>
</a>
<a name="935406">
<dd> 8, NORMAL_ORDER,<P>
</a>
<a name="935407">
<dd> 8, NORMAL_ORDER,<P>
</a>
<a name="935408">
<dd> 8, NORMAL_ORDER,<P>
</a>
<a name="935409">
<dd> 8, cray_float, cray_float_order,<P>
</a>
<a name="935410">
<dd> 8, cray_float, cray_float_order}<P>
</a>
</dl>
<a name="935417">
<h4>7.2.1.1 </a>Floating Point Format Descriptor</h4>
</a>
<a name="935418">
The description of a floating point number consists of an array of 8 long integer parameters. The parameters are:<p>
</a>
<a name="935419">
<dd>format[0] = # of bits per number<P>
</a>
<a name="935420">
<dd>format[1] = # of bits in exponent<P>
</a>
<a name="935421">
<dd>format[2] = # of bits in mantissa<P>
</a>
<a name="935422">
<dd>format[3] = start bit of sign<P>
</a>
<a name="935423">
<dd>format[4] = start bit of exponent<P>
</a>
<a name="935424">
<dd>format[5] = start bit of mantissa<P>
</a>
<a name="935425">
<dd>format[6] = high order mantissa bit<P>
</a>
<a name="935426">
<dd>format[7] = bias of exponent<P>
</a>
<a name="935429">
The following floating point format descriptors are defined in PDBLib and used in the </a>data_standard’s described in the last section:<p>
</a>
<a name="935441">
<dd> </a>ieee_float = {32L, 8L, 23L, 0L, 1L, 9L, 0L, 0x7FL}<P>
</a>
<a name="935442">
<dd> </a>ieeea_double = {64L, 11L, 52L, 0L, 1L, 12L, 0L, 0x3FFL}<P>
</a>
<a name="935443">
<dd> </a>ieeeb_double = {96L, 15L, 64L, 0L, 1L, 32L, 1L, 0x3FFEL}<P>
</a>
<a name="935444">
<dd> </a>intel_float = {32L, 8L, 23L, 0L, 1L, 9L, 0L, 0x7FL}<P>
</a>
<a name="935445">
<dd> </a>intel_double = {64L, 11L, 52L, 0L, 1L, 12L, 0L, 0x3FFL}<P>
</a>
<a name="935455">
<dd> </a>cray_float = {64L, 15L, 48L, 0L, 1L, 16L, 1L, 0x4000L}<P>
</a>
<a name="932572">
Note: There are several variants of floating type format on the VAX. Accordingly the user must decide which one to use and PDBLib has the descriptions:<p>
</a>
<a name="932581">
When using GFLOATs<p>
</a>
<a name="932574">
<dd> </a>vax_float = {32L, 8L, 23L, 0L, 1L, 9L, 0L, 0x81L}<P>
</a>
<a name="932576">
<dd> </a>vax_double = {64L, 11L, 52L, 0L, 1L, 12L, 0L, 0x401L}<P>
</a>
<a name="932577">
otherwise<p>
</a>
<a name="932578">
<dd> </a>vax_float = {32L, 8L, 23L, 0L, 1L, 9L, 0L, 0x81L}<P>
</a>
<a name="932580">
<dd> </a>vax_double = {64L, 8L, 55L, 0L, 1L, 9L, 0L, 0x81L}<P>
</a>
<a name="935461">
<h4>7.2.1.2 </a>Byte Ordering</h4>
</a>
<a name="932573">
There is much discussion in the literature about </a>little endian and </a>big endian machines. Those two refer to two possible byte orderings for binary data. That is not the most general way to talk about byte ordering however. In fact the VAX format exemplifies the need for generality. PDBLib simply uses an array of integers which describe the order of the bytes in memory relative to CPU’s such as the Motorola and SPARC families.<p>
</a>
<a name="932563">
<dd> </a>ieee_float_order = {1, 2, 3, 4}<P>
</a>
<a name="932564">
<dd> </a>ieeea_double_order = {1, 2, 3, 4, 5, 6, 7, 8}<P>
</a>
<a name="932565">
<dd> </a>ieeeb_double_order = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}<P>
</a>
<a name="932566">
<dd> </a>intel_float_order = {4, 3, 2, 1}<P>
</a>
<a name="932567">
<dd> </a>intel_double_order = {8, 7, 6, 5, 4, 3, 2, 1}<P>
</a>
<a name="932568">
<dd> </a>vax_float_order = {2, 1, 4, 3}<P>
</a>
<a name="932570">
<dd> </a>vax_double_order = {2, 1, 4, 3, 6, 5, 8, 7}<P>
</a>
<a name="932571">
<dd> </a>cray_float_order = {1, 2, 3, 4, 5, 6, 7, 8}<P>
</a>
<a name="935463">
<h3>7.2.2 </a>DATA_ALIGNMENTS</h3>
</a>
<a name="935466">
The term </a>alignment refers to the fact that many CPU’s require certain data types to begin at memory locations whose addresses are even multiples of some integer number of bytes. So for example, to say that the alignment of a double is 8 means that a double must begin at an address which is a multiple of 8.<p>
</a>
<a name="932562">
Compilers hide this concept from almost all applications. PDBLib is one that must know data alignments precisely. It employs a structure called a </a>data_alignment to record the alignments of the default </a>primitive </a>data types which PDBLib supports. See the discussion of the </a>data_alignment structure in the section on data structures.<p>
</a>
<a name="935482">
The following is the list of </a>data_alignment’s which PDBLib provides automatically (applications can add their own as needed):<p>
</a>
<a name="935485">
<dd> </a>SPARC_ALIGNMENT = {1, 4, 2, 4, 4, 4, 8}<P>
</a>
<a name="933405">
<dd> </a>MIPS_ALIGNMENT = {1, 4, 2, 4, 4, 4, 8}<P>
</a>
<a name="933450">
<dd></a>RS6000_ALIGNMENT = {1, 4, 2, 4, 4, 4, 4}<P>
</a>
<a name="935487">
<dd> </a>CRAY_ALIGNMENT = {8, 8, 8, 8, 8, 8, 8}<P>
</a>
<a name="935488">
<dd> </a>UNICOS_ALIGNMENT = {1, 8, 8, 8, 8, 8, 8}<P>
</a>
<a name="935489">
<dd> </a>M68000_ALIGNMENT = {1, 2, 2, 2, 2, 2, 2}<P>
</a>
<a name="935490">
<dd> </a>INTELA_ALIGNMENT = {1, 2, 2, 2, 2, 2, 2}<P>
</a>
<a name="932442">
<dd> </a>INTELB_ALIGNMENT = {4, 4, 4, 4, 4, 4, 4}<P>
</a>
<a name="932443">
<dd> </a>INTELC_ALIGNMENT = {2, 4, 2, 4, 4, 4, 4}<P>
</a>
<a name="935491">
<dd> </a>DEF_ALIGNMENT = {1, 4, 4, 4, 4, 4, 4}<P>
</a>
<a name="935508">
<h1>8.0 </a>Data Structures in PDBLib</h1>
</a>
<a name="935515">
The data structures with which the PDBLib system works are passed back to the application program as the result of the high level calls. This gives the programmer access to a great deal of information about the PDB file, the symbol table and the structure chart. Hopefully, this also makes the package more powerful without pushing any special responsibility onto the programmer. <p>
</a>
<a name="935520">
For application developers who require all of the information from a PDB file, the hash lookup function, </a>SC_def_lookup, can be used to obtain symbol table entries (</a>syment) and structure definitions (</a>defstr) from the symbol table or structure chart. Examples can be found in the section at the end of the manual.<p>
</a>
<a name="935525">
<h2>8.1 </a>DATA_ALIGNMENT</h2>
</a>
<a name="935528">
The set of </a>alignments for the primitive types is kept in a structure called </a>data_alignment. Its actual definition is:<p>
</a>
<A NAME="932586"><PRE> struct s_data_alignment
</PRE><A NAME="935532"><PRE> {int char_alignment;
</PRE><A NAME="935533"><PRE> int ptr_alignment;
</PRE><A NAME="935534"><PRE> int short_alignment;
</PRE><A NAME="935535"><PRE> int int_alignment;
</PRE><A NAME="935536"><PRE> int long_alignment;
</PRE><A NAME="935537"><PRE> int float_alignment;
</PRE><A NAME="935538"><PRE> int double_alignment;};
</PRE><A NAME="935539"><PRE>
</PRE><A NAME="935540"><PRE> typedef struct s_data_alignment </a>data_alignment;
</PRE><a name="935547">
Each member is an integer which specifies the alignment for a primitive type. The alignment is a number of bytes such that a piece of data of this type must begin at an address which is an even multiple of that number. For example, if ptr_alignment is 4, a pointer must begin at an address divisible by 4.<p>
</a>
<a name="935552">
<h2>8.2 </a>DATA_STANDARD</h2>
</a>
<a name="935557">
The set of information describing all of the </a>primitive </a>data types is organized into a structure called a </a>data_standard. The </a>data_standard characterizes the CPU architecture because all types are either primitive or derived from known types.<p>
</a>
<a name="935558">
Its actual definition is:<p>
</a>
<A NAME="935561"><PRE> struct s_data_standard
</PRE><A NAME="935562"><PRE> {int ptr_bytes;
</PRE><A NAME="935563"><PRE> int short_bytes;
</PRE><A NAME="935564"><PRE> int short_order;
</PRE><A NAME="935565"><PRE> int int_bytes;
</PRE><A NAME="935566"><PRE> int int_order;
</PRE><A NAME="935567"><PRE> int long_bytes;
</PRE><A NAME="935568"><PRE> int long_order;
</PRE><A NAME="935569"><PRE> int float_bytes;
</PRE><A NAME="935570"><PRE> long *float_format;
</PRE><A NAME="935571"><PRE> int *float_order;
</PRE><A NAME="935572"><PRE> int double_bytes;
</PRE><A NAME="935573"><PRE> long *double_format;
</PRE><A NAME="935574"><PRE> int *double_order;};
</PRE><A NAME="935575"><PRE>
</PRE><A NAME="935576"><PRE> typedef struct s_data_standard </a>data_standard;
</PRE><a name="935582">
The integer types only require a number of bytes and their order. The floating point types require additional information describing the bit layout of the components of the number: the sign bit; the exponent; and the mantissa. These are given as an array of 8 integers as follows:<p>
</a>
<a name="935585">
<dd> format[0] = # of bits per number<P>
</a>
<a name="935586">
<dd> format[1] = # of bits in exponent<P>
</a>
<a name="935587">
<dd> format[2] = # of bits in mantissa<P>
</a>
<a name="935588">
<dd> format[3] = start bit of sign<P>
</a>
<a name="935589">
<dd> format[4] = start bit of exponent<P>
</a>
<a name="935590">
<dd> format[5] = start bit of mantissa<P>
</a>
<a name="935591">
<dd> format[6] = high order mantissa bit<P>
</a>
<a name="935592">
<dd> format[7] = bias of exponent<P>
</a>
<a name="932467">
<h2>8.3 </a>DEFSTR</h2>
</a>
<a name="935601">
An entry in the structure chart is represented by a structure called a </a>defstr. It contains information about the </a>data type such as the type name, the byte size and alignment, and a list of members.<p>
</a>
<a name="932468">
<h2>8.4 </a>DIMDES</h2>
</a>
<a name="935634">
A </a>dimdes or </a>dimension descriptor contains the information necessary to characterize a list of dimension specifications. It contains such information as the minimum and maximum values the dimension index may have and the net size of the dimension index range.<p>
</a>
<a name="932469">
<h2>8.5 </a>MEMDES</h2>
</a>
<a name="935658">
A </a>memdes or </a>member descriptor is the structure used to contain the information about a member of a </a>defstr. It contains information about the type of the member, the name of the member, any dimensions which the member may have, and any casts which have been defined via </a>PD_cast.<p>
</a>
<a name="933300">
<h2>8.6 </a>PDBFILE</h2>
</a>
<a name="933301">
The </a>PDBfile is the analog to the </a>FILE structure in standard C I/O. In fact, the PDBfile contains a FILE pointer to access the file via the standard C library functions. In addition, the PDBfile contains information such as: the symbol table, the structure charts for the file and the host platform; </a>data_standard’s and </a>data_alignment’s for the file and the host platform; and a modification date.<p>
</a>
<a name="935775">
<h2>8.7 </a>SYMENT</h2>
</a>
<a name="935779">
Just as the </a>defstr type describes entries in the structure chart the </a>syment type describes entries in the symbol table. The </a>syment includes information about the data type of the entry, the number of elements, the dimensions of the entry, and its disk address.<p>
</a>
<a name="935803">
<h1>9.0 </a>PDBLib by </a>Example</h1>
</a>
<a name="935807">
The following code fragments illustrate the functionality of PDBLib. Some of the code is taken from the validation suite and some from the library itself.<p>
</a>
<a name="935809">
<h2>9.1 Working with PDB files</h2>
</a>
<a name="935820">
This routine is taken from the validation suite for PDBLib. In it, a target for the PDB file is chosen with the routine <em>test_target</em> (see the section on </a><em>PD_target</em> for the definition of this function), a PDB file created, some structures defined, data written, and the file closed. The file is then reopened in append mode, some more data written to the file, and the file is closed again. Finally, the file is opened in read mode, the data read, some comparisons done, and the file is closed. The read and write operations are hidden in this example. The significance of the example is that a PDB file is created, closed, and opened in both append and read-only mode.<p>
</a>
<a name="935823">
<p>
</a>
<A NAME="935824"><PRE> test_1(base, tgt, n)
</PRE><A NAME="935825"><PRE> char *base, *tgt;
</PRE><A NAME="935826"><PRE> int n;
</PRE><A NAME="935827"><PRE> {PDBfile *strm;
</PRE><A NAME="935828"><PRE> char datfile[MAXLINE], fname[MAXLINE];
</PRE><A NAME="935829"><PRE> int err;
</PRE><A NAME="935830"><PRE> FILE *fp;
</PRE><A NAME="935831"><PRE>
</PRE><A NAME="935832"><PRE> /* target the file as asked */
</PRE><A NAME="935833"><PRE> test_target(tgt, base, n, fname, datfile);
</PRE><A NAME="935834"><PRE>
</PRE><A NAME="935835"><PRE> fp = fopen(fname, “w”);
</PRE><A NAME="935836"><PRE>
</PRE><A NAME="935837"><PRE> /* create the named file */
</PRE><A NAME="935838"><PRE> if ((strm = </a>PD_open(datfile, “w”)) == NULL)
</PRE><A NAME="935839"><PRE> {fprintf(fp, “Test couldn’t create file %s\r\n”, datfile);
</PRE><A NAME="935840"><PRE> exit(1);};
</PRE><A NAME="935841"><PRE> fprintf(fp, “File %s created\n”, datfile);
</PRE><A NAME="935842"><PRE>
</PRE><A NAME="935843"><PRE> prep_test_1_data();
</PRE><A NAME="935844"><PRE>
</PRE><A NAME="935845"><PRE> /* make a few defstructs */
</PRE><A NAME="935846"><PRE> </a>PD_defstr(strm, “l_frame”,
</PRE><A NAME="935847"><PRE> “float x_min”, “float x_max”, “float y_min”,
</PRE><A NAME="935848"><PRE> “float y_max”, LAST);
</PRE><A NAME="935849"><PRE> </a>PD_defstr(strm, “plot”,
</PRE><A NAME="935850"><PRE> “float x_axis(10)”, “float y_axis(10)”, “integer npts”,
</PRE><A NAME="935851"><PRE> “char * label”, “l_frame view”, LAST);
</PRE><A NAME="935852"><PRE>
</PRE><A NAME="935853"><PRE> /* write the test data */
</PRE><A NAME="935854"><PRE> write_test_1_data(strm);
</PRE><A NAME="935855"><PRE>
</PRE><A NAME="935856"><PRE> /* close the file */
</PRE><A NAME="935857"><PRE> if (!</a>PD_close(strm))
</PRE><A NAME="935858"><PRE> {fprintf(fp, “Test couldn’t close file %s\r\n”, datfile);
</PRE><A NAME="935859"><PRE> exit(1);};
</PRE><A NAME="935860"><PRE> fprintf(fp, “File %s closed\n”, datfile);
</PRE><A NAME="935861"><PRE>
</PRE><A NAME="935862"><PRE> /* reopen the file to append */
</PRE><A NAME="935863"><PRE> if ((strm = </a>PD_open(datfile, “a”)) == NULL)
</PRE><A NAME="935864"><PRE> {fprintf(fp, “Test couldn’t open file %s to append\r\n”,
</PRE><A NAME="932485"><PRE> datfile);
</PRE><A NAME="935865"><PRE> exit(1);};
</PRE><A NAME="935866"><PRE> fprintf(fp, “File %s opened to append\n”, datfile);
</PRE><A NAME="935867"><PRE>
</PRE><A NAME="935868"><PRE> append_test_1_data(strm);
</PRE><A NAME="935869"><PRE>
</PRE><A NAME="935870"><PRE> /* close the file after append */
</PRE><A NAME="935871"><PRE> if (!</a>PD_close(strm))
</PRE><A NAME="935872"><PRE> {fprintf(fp, “Test couldn’t close file %s after append\r\n”,
</PRE><A NAME="935873"><PRE> datfile);
</PRE><A NAME="935874"><PRE> exit(1);};
</PRE><A NAME="935875"><PRE> fprintf(fp, “File %s closed after append\n”, datfile);
</PRE><A NAME="935876"><PRE>
</PRE><A NAME="935877"><PRE> /* reopen the file */
</PRE><A NAME="935878"><PRE> if ((strm = </a>PD_open(datfile, “r”)) == NULL)
</PRE><A NAME="935879"><PRE> {fprintf(fp, “Test couldn’t open file %s\r\n”, datfile);
</PRE><A NAME="935880"><PRE> exit(1);};
</PRE><A NAME="935881"><PRE> fprintf(fp, “File %s opened\n”, datfile);
</PRE><A NAME="935882"><PRE>
</PRE><A NAME="935883"><PRE> /* dump the symbol table */
</PRE><A NAME="935884"><PRE> dump_test_symbol_table(fp, strm->symtab, 1);
</PRE><A NAME="935885"><PRE>
</PRE><A NAME="935886"><PRE> /* read the data from the file */
</PRE><A NAME="935887"><PRE> read_test_1_data(strm);
</PRE><A NAME="935888"><PRE>
</PRE><A NAME="935889"><PRE> /* compare the original data with that read in */
</PRE><A NAME="935890"><PRE> err = compare_test_1_data(strm, fp);
</PRE><A NAME="935891"><PRE>
</PRE><A NAME="935892"><PRE> /* close the file */
</PRE><A NAME="935893"><PRE> if (!</a>PD_close(strm))
</PRE><A NAME="935894"><PRE> {fprintf(fp, “Test couldn’t close file %s\r\n”, datfile);
</PRE><A NAME="935895"><PRE> exit(1);};
</PRE><A NAME="935896"><PRE> fprintf(fp, “File %s closed\n”, datfile);
</PRE><A NAME="935897"><PRE>
</PRE><A NAME="935898"><PRE> /* print it out to stdout */
</PRE><A NAME="935899"><PRE> print_test_1_data(fp);
</PRE><A NAME="935900"><PRE>
</PRE><A NAME="935901"><PRE> fclose(fp);
</PRE><A NAME="935902"><PRE>
</PRE><A NAME="935903"><PRE> return(err);}
</PRE><a name="935908">
<h2>9.2 </a>Writing Data to PDB files</h2>
</a>
<a name="935913">
These two routines exemplify the various write routines of PDBLib. In particular, they were built to test the spectrum of write calls. Notice their demonstration of the rules for write operations: the variable must be a pointer to data of the type specified.<p>
</a>
<a name="935916">
The identifiers beginning with ‘N_’ are ‘#defined’ constants whose values are irrelevant to these examples.<p>
</a>
<a name="935919">
<p>
</a>
<A NAME="935920"><PRE> static char
</PRE><A NAME="935921"><PRE> cs_w,
</PRE><A NAME="935922"><PRE> ca_w[N_CHAR],
</PRE><A NAME="935923"><PRE> *cap_w[N_DOUBLE];
</PRE><A NAME="935924"><PRE>
</PRE><A NAME="935925"><PRE> static short
</PRE><A NAME="935926"><PRE> ss_w,
</PRE><A NAME="935927"><PRE> sa_w[N_INT];
</PRE><A NAME="935928"><PRE>
</PRE><A NAME="935929"><PRE> static int
</PRE><A NAME="935930"><PRE> is_w,
</PRE><A NAME="935931"><PRE> ia_w[N_INT],
</PRE><A NAME="935932"><PRE> p_w[N_INT],
</PRE><A NAME="935933"><PRE> len;
</PRE><A NAME="935934"><PRE>
</PRE><A NAME="935935"><PRE> static float
</PRE><A NAME="935936"><PRE> fs_w,
</PRE><A NAME="935937"><PRE> fa2_w[N_FLOAT][N_DOUBLE];
</PRE><A NAME="935938"><PRE>
</PRE><A NAME="935939"><PRE> static double
</PRE><A NAME="935940"><PRE> ds_w,
</PRE><A NAME="935941"><PRE> da_w[N_FLOAT];
</PRE><A NAME="935942"><PRE>
</PRE><A NAME="935943"><PRE> static plot
</PRE><A NAME="935944"><PRE> graph_w;
</PRE><A NAME="935945"><PRE>
</PRE><A NAME="935946"><PRE> static l_frame
</PRE><A NAME="935947"><PRE> view_w;
</PRE><A NAME="935948"><PRE>
</PRE><A NAME="935949"><PRE> static lev1
</PRE><A NAME="935950"><PRE> *tar_w;
</PRE><A NAME="935951"><PRE>
</PRE><A NAME="935952"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="935953"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="935954"><PRE>
</PRE><A NAME="935955"><PRE> void write_test_1_data(strm)
</PRE><A NAME="935956"><PRE> PDBfile *strm;
</PRE><A NAME="935957"><PRE> {
</PRE><A NAME="935958"><PRE>
</PRE><A NAME="935959"><PRE> /* write scalars into the file */
</PRE><A NAME="935960"><PRE> </a>PD_write(strm, “cs”, “char”, &cs_w);
</PRE><A NAME="935961"><PRE> PD_write(strm, “ss”, “short”, &ss_w);
</PRE><A NAME="935962"><PRE> PD_write(strm, “is”, “integer”, &is_w);
</PRE><A NAME="935963"><PRE> PD_write(strm, “fs”, “float”, &fs_w);
</PRE><A NAME="935964"><PRE> PD_write(strm, “ds”, “double”, &ds_w);
</PRE><A NAME="935965"><PRE>
</PRE><A NAME="935966"><PRE> /* write primitive arrays into the file */
</PRE><A NAME="935968"><PRE> PD_write(strm, “sa(5)”, “short”, sa_w);
</PRE><A NAME="935969"><PRE> PD_write(strm, “ia(5)”, “integer”, ia_w);
</PRE><A NAME="935973"><PRE>
</PRE><A NAME="935974"><PRE> /* write structures into the file */
</PRE><A NAME="935975"><PRE> PD_write(strm, “view”, “l_frame”, &view_w);
</PRE><A NAME="935976"><PRE> PD_write(strm, “graph”, “plot”, &graph_w);
</PRE><A NAME="935977"><PRE>
</PRE><A NAME="935978"><PRE> return;}
</PRE><A NAME="935979"><PRE>
</PRE><A NAME="935980"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="935981"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="935982"><PRE>
</PRE><A NAME="935983"><PRE> void write_test_2_data(strm)
</PRE><A NAME="935984"><PRE> PDBfile *strm;
</PRE><A NAME="933624"><PRE> {
</PRE><A NAME="933628"><PRE>
</PRE><A NAME="935986"><PRE> </a>PD_write(strm, “tar”, “lev1 *”, &tar_w);
</PRE><A NAME="932486"><PRE>
</PRE><A NAME="932487"><PRE> return;}
</PRE><A NAME="935987"><PRE>
</PRE><A NAME="935988"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="935989"><PRE> /*-----------------------------------------------------------------*/
</PRE><a name="935994">
<h2>9.3 </a>Reading Data from PDB files</h2>
</a>
<a name="936002">
These two routines exemplify the various read routines of PDBLib. In particular, they were built to test the spectrum of read operations. They read the data written out in the previous example. Notice their demonstration of the rules for read operations: the variable must be a pointer to data of the type specified. This is often a more difficult proposition for reads since the type information isn’t supplied in the read call.<p>
</a>
<a name="936006">
The member read operations at the end of the first routine should be studied carefully. They are not the most general read example, but they are among the most useful.<p>
</a>
<a name="936011">
The second routine reads not only the entire structure, but picks out each part individually. It demonstrates the rule about dereferencing pointers in the partial read operation. Study the structures of this example carefully!<p>
</a>
<a name="936016">
The identifiers beginning with ‘N_’ are ‘#defined’ constants whose values are irrelevant to these examples. Also, take for granted that the unspecified variables to contain parts of the structures have the correct declarations.<p>
</a>
<A NAME="936020"><PRE>
</PRE><A NAME="932484"><PRE> struct s_lev2
</PRE><A NAME="936021"><PRE> {char **s;
</PRE><A NAME="936022"><PRE> int type;};
</PRE><A NAME="936023"><PRE>
</PRE><A NAME="936024"><PRE> typedef struct s_lev2 lev2;
</PRE><A NAME="936025"><PRE>
</PRE><A NAME="936026"><PRE> struct s_lev1
</PRE><A NAME="936027"><PRE> {int *a;
</PRE><A NAME="936028"><PRE> double *b;
</PRE><A NAME="936029"><PRE> lev2 *c;};
</PRE><A NAME="936030"><PRE>
</PRE><A NAME="936031"><PRE> typedef struct s_lev1 lev1;
</PRE><A NAME="936032"><PRE>
</PRE><A NAME="936033"><PRE> static char
</PRE><A NAME="936034"><PRE> cs_r,
</PRE><A NAME="936035"><PRE> ca_r[N_CHAR],
</PRE><A NAME="936036"><PRE> *cap_r[N_DOUBLE];
</PRE><A NAME="936037"><PRE>
</PRE><A NAME="936038"><PRE> static short
</PRE><A NAME="936039"><PRE> ss_r,
</PRE><A NAME="936040"><PRE> sa_r[N_INT];
</PRE><A NAME="936041"><PRE>
</PRE><A NAME="936042"><PRE> static int
</PRE><A NAME="936043"><PRE> is_r,
</PRE><A NAME="936044"><PRE> ia_r[N_INT];
</PRE><A NAME="936045"><PRE>
</PRE><A NAME="936046"><PRE> static float
</PRE><A NAME="936047"><PRE> fs_r,
</PRE><A NAME="936048"><PRE> fs_app_r,
</PRE><A NAME="936049"><PRE> fs_p1_r,
</PRE><A NAME="936050"><PRE> fs_p2_r,
</PRE><A NAME="936051"><PRE> fs_p3_r,
</PRE><A NAME="936052"><PRE> fa2_r[N_FLOAT][N_DOUBLE],
</PRE><A NAME="936053"><PRE> fa2_app_r[N_FLOAT][N_DOUBLE];
</PRE><A NAME="936054"><PRE>
</PRE><A NAME="936055"><PRE> static double
</PRE><A NAME="936056"><PRE> ds_r,
</PRE><A NAME="936057"><PRE> da_r[N_FLOAT];
</PRE><A NAME="936058"><PRE>
</PRE><A NAME="936059"><PRE> static plot
</PRE><A NAME="936060"><PRE> graph_r;
</PRE><A NAME="936061"><PRE>
</PRE><A NAME="936062"><PRE> static l_frame
</PRE><A NAME="936063"><PRE> view_r;
</PRE><A NAME="936064"><PRE>
</PRE><A NAME="936065"><PRE> static lev1
</PRE><A NAME="936066"><PRE> *tar_r;
</PRE><A NAME="936067"><PRE>
</PRE><A NAME="936068"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936069"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936070"><PRE>
</PRE><A NAME="936071"><PRE> void read_test_1_data(strm)
</PRE><A NAME="936072"><PRE> PDBfile *strm;
</PRE><A NAME="936073"><PRE> {
</PRE><A NAME="936074"><PRE>
</PRE><A NAME="936075"><PRE> /* read the scalar data from the file */
</PRE><A NAME="936076"><PRE> </a>PD_read(strm, “cs”, &cs_r);
</PRE><A NAME="936077"><PRE> PD_read(strm, “ss”, &ss_r);
</PRE><A NAME="936078"><PRE> PD_read(strm, “is”, &is_r);
</PRE><A NAME="936079"><PRE> PD_read(strm, “fs”, &fs_r);
</PRE><A NAME="936080"><PRE> PD_read(strm, “ds”, &ds_r);
</PRE><A NAME="936081"><PRE>
</PRE><A NAME="936082"><PRE> /* read the primitive arrays from the file */
</PRE><A NAME="936083"><PRE> PD_read(strm, “ca”, ca_r);
</PRE><A NAME="936084"><PRE> PD_read(strm, “sa”, sa_r);
</PRE><A NAME="936085"><PRE> PD_read(strm, “ia”, ia_r);
</PRE><A NAME="936086"><PRE> PD_read(strm, “fa2”, fa2_r);
</PRE><A NAME="936087"><PRE> PD_read(strm, “da”, da_r);
</PRE><A NAME="936088"><PRE> PD_read(strm, “cap”, cap_r);
</PRE><A NAME="936089"><PRE>
</PRE><A NAME="936090"><PRE> /* read the entire structures from the file */
</PRE><A NAME="936091"><PRE> PD_read(strm, “view”, &view_r);
</PRE><A NAME="936092"><PRE> PD_read(strm, “graph”, &graph_r);
</PRE><A NAME="936093"><PRE>
</PRE><A NAME="936094"><PRE> /* read the appended data from the file */
</PRE><A NAME="936095"><PRE> PD_read(strm, “fs_app”, &fs_app_r);
</PRE><A NAME="936096"><PRE> PD_read(strm, “fa2_app”, fa2_app_r);
</PRE><A NAME="936100"><PRE>
</PRE><A NAME="936101"><PRE> /* struct member test */
</PRE><A NAME="936103"><PRE> PD_read(strm, “graph.view.x_max”, &fs_p2_r);
</PRE><A NAME="936104"><PRE> </a>PD_read(strm, “view.y_max”, &fs_p3_r);
</PRE><A NAME="936105"><PRE>
</PRE><A NAME="936106"><PRE> return;}
</PRE><A NAME="936107"><PRE>
</PRE><A NAME="936108"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936109"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936110"><PRE>
</PRE><A NAME="936111"><PRE> /* READ_TEST_2_DATA - read the test data from the file */
</PRE><A NAME="936112"><PRE>
</PRE><A NAME="936113"><PRE> void read_test_2_data(strm)
</PRE><A NAME="936114"><PRE> PDBfile *strm;
</PRE><A NAME="936115"><PRE> {do_r = strm->default_offset;
</PRE><A NAME="936116"><PRE>
</PRE><A NAME="936117"><PRE> </a>PD_read(strm, “tar”, &tar_r);
</PRE><A NAME="936118"><PRE> PD_read(strm, “p”, p_r);
</PRE><A NAME="936119"><PRE>
</PRE><A NAME="936120"><PRE> PD_read(strm, “tar(0).a”, &ap1);
</PRE><A NAME="936121"><PRE> PD_read(strm, “tar(1).a”, &ap2);
</PRE><A NAME="936122"><PRE>
</PRE><A NAME="936123"><PRE> PD_read(strm, “tar(0).a(0)”, &aa[0]);
</PRE><A NAME="936124"><PRE> PD_read(strm, “tar(0).a(1)”, &aa[1]);
</PRE><A NAME="936125"><PRE> PD_read(strm, “tar(1).a(0)”, &aa[2]);
</PRE><A NAME="936126"><PRE> PD_read(strm, “tar(1).a(1)”, &aa[3]);
</PRE><A NAME="936127"><PRE>
</PRE><A NAME="936128"><PRE> PD_read(strm, “tar(0).b”, &bp1);
</PRE><A NAME="936129"><PRE> PD_read(strm, “tar(1).b”, &bp2);
</PRE><A NAME="936130"><PRE>
</PRE><A NAME="936131"><PRE> PD_read(strm, “tar(0).b(0)”, &ba[0]);
</PRE><A NAME="936132"><PRE> PD_read(strm, “tar(0).b(1)”, &ba[1]);
</PRE><A NAME="936133"><PRE> PD_read(strm, “tar(1).b(0)”, &ba[2]);
</PRE><A NAME="936134"><PRE> PD_read(strm, “tar(1).b(1)”, &ba[3]);
</PRE><A NAME="936135"><PRE>
</PRE><A NAME="936136"><PRE> PD_read(strm, “tar(0).c”, &cp1);
</PRE><A NAME="936137"><PRE> PD_read(strm, “tar(1).c”, &cp2);
</PRE><A NAME="936138"><PRE>
</PRE><A NAME="936139"><PRE> PD_read(strm, “tar(0).c(0)”, &ca[0]);
</PRE><A NAME="936140"><PRE> PD_read(strm, “tar(0).c(1)”, &ca[1]);
</PRE><A NAME="936141"><PRE> PD_read(strm, “tar(1).c(0)”, &ca[2]);
</PRE><A NAME="936142"><PRE> PD_read(strm, “tar(1).c(1)”, &ca[3]);
</PRE><A NAME="936143"><PRE>
</PRE><A NAME="936144"><PRE> PD_read(strm, “tar(0).c(0).s”, &sp1);
</PRE><A NAME="936145"><PRE> PD_read(strm, “tar(0).c(1).s”, &sp2);
</PRE><A NAME="936146"><PRE> PD_read(strm, “tar(1).c(0).s”, &sp3);
</PRE><A NAME="936147"><PRE> PD_read(strm, “tar(1).c(1).s”, &sp4);
</PRE><A NAME="936148"><PRE>
</PRE><A NAME="936149"><PRE> PD_read(strm, “tar(0).c(0).s(0)”, &tp1);
</PRE><A NAME="936150"><PRE> PD_read(strm, “tar(0).c(0).s(1)”, &tp2);
</PRE><A NAME="936151"><PRE> PD_read(strm, “tar(0).c(1).s(0)”, &tp3);
</PRE><A NAME="936152"><PRE> PD_read(strm, “tar(0).c(1).s(1)”, &tp4);
</PRE><A NAME="936153"><PRE>
</PRE><A NAME="936154"><PRE> PD_read(strm, “tar(0).c(0).s(0)(2)”, &ta[0]);
</PRE><A NAME="936155"><PRE> PD_read(strm, “tar(0).c(0).s(1)(1)”, &ta[1]);
</PRE><A NAME="936156"><PRE> PD_read(strm, “tar(0).c(1).s(0)(3)”, &ta[2]);
</PRE><A NAME="936157"><PRE> PD_read(strm, “tar(0).c(1).s(1)(2)”, &ta[3]);
</PRE><A NAME="936158"><PRE>
</PRE><A NAME="936159"><PRE> PD_read(strm, “tar(1).c(0).s(0)”, &tp5);
</PRE><A NAME="936160"><PRE> PD_read(strm, “tar(1).c(0).s(1)”, &tp6);
</PRE><A NAME="936161"><PRE> PD_read(strm, “tar(1).c(1).s(0)”, &tp7);
</PRE><A NAME="936162"><PRE> </a>PD_read(strm, “tar(1).c(1).s(1)”, &tp8);
</PRE><A NAME="936163"><PRE>
</PRE><A NAME="936164"><PRE> return;}
</PRE><a name="936172">
<h2>9.4 </a>Inquiries in PDBLib</h2>
</a>
<a name="936176">
The following fragments show how to obtain information about PDB files and their contents.<p>
</a>
<A NAME="936179"><PRE>
</PRE><A NAME="932488"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936180"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936181"><PRE>
</PRE><A NAME="936182"><PRE> myread(file, name, var, offset, number)
</PRE><A NAME="936183"><PRE> PDBfile *file;
</PRE><A NAME="936184"><PRE> char *name;
</PRE><A NAME="936185"><PRE> void *var;
</PRE><A NAME="936186"><PRE> long offset, number;
</PRE><A NAME="936187"><PRE> {long addr, num;
</PRE><A NAME="936188"><PRE> char *token, *type, memb[MAXLINE];
</PRE><A NAME="936189"><PRE> dimdes *dims;
</PRE><A NAME="936190"><PRE> syment *ep;
</PRE><A NAME="936191"><PRE>
</PRE><A NAME="936192"><PRE> strcpy(memb, name);
</PRE><A NAME="936193"><PRE> token = strtok(memb, “.([“);
</PRE><A NAME="936194"><PRE>
</PRE><A NAME="936195"><PRE> /* look up the variable name */
</PRE><A NAME="936196"><PRE> ep = </a>PD_inquire_entry(file, token);
</PRE><A NAME="932716"><PRE> if (ep == NULL)
</PRE><A NAME="936197"><PRE> PD_error(“VARIABLE NOT IN SYMBOL TABLE - MYREAD”,
</PRE><A NAME="932489"><PRE> READ);
</PRE><A NAME="936198"><PRE>
</PRE><A NAME="936199"><PRE> addr = </a>PD_entry_address(ep);
</PRE><A NAME="936200"><PRE> dims = </a>PD_entry_dimensions(ep);
</PRE><A NAME="936201"><PRE> num = </a>PD_entry_number(ep);
</PRE><A NAME="936202"><PRE> type = </a>PD_entry_type(ep);
</PRE><A NAME="936203"><PRE>
</PRE><A NAME="936204"><PRE> /* with ep in hand, we know the variable type, number of elements,
</PRE><A NAME="936205"><PRE> * dimensions, and disk address
</PRE><A NAME="936206"><PRE> */
</PRE><A NAME="936207"><PRE> .
</PRE><A NAME="936208"><PRE> .
</PRE><A NAME="936209"><PRE> .
</PRE><A NAME="936210"><PRE>
</PRE><A NAME="936211"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936212"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936213"><PRE>
</PRE><A NAME="936214"><PRE> _PD_wr_leaf(file, var, nitems, type)
</PRE><A NAME="936215"><PRE> PDBfile *file;
</PRE><A NAME="936216"><PRE> char *var;
</PRE><A NAME="936217"><PRE> long nitems;
</PRE><A NAME="936218"><PRE> char *type;
</PRE><A NAME="936219"><PRE> {char *svar;
</PRE><A NAME="936220"><PRE> int size;
</PRE><A NAME="936221"><PRE> FILE *fp;
</PRE><A NAME="936222"><PRE> defstr *dp;
</PRE><A NAME="936223"><PRE> memdes *desc, *mem_lst;
</PRE><A NAME="936224"><PRE>
</PRE><A NAME="936225"><PRE> fp = file->stream;
</PRE><A NAME="936226"><PRE> .
</PRE><A NAME="936227"><PRE> .
</PRE><A NAME="936228"><PRE> .
</PRE><A NAME="936229"><PRE>
</PRE><A NAME="936230"><PRE> /* dispatch all other writes */
</PRE><A NAME="936231"><PRE> if (file->conversions)
</PRE><A NAME="936232"><PRE> .
</PRE><A NAME="936233"><PRE> .
</PRE><A NAME="936234"><PRE> .
</PRE><A NAME="936235"><PRE>
</PRE><A NAME="932492"><PRE> /* obtain a pointer to the defstr associated with type */
</PRE><A NAME="932493"><PRE> dp = PD_inquire_host_type(file, type);
</PRE><A NAME="932495"><PRE> if (dp == NULL)
</PRE><A NAME="932494"><PRE> PD_error(“BAD TYPE - WR-LEAF”, WRITE);
</PRE><A NAME="936239"><PRE>
</PRE><A NAME="936240"><PRE> /* if the structure has any pointered members loop over the members */
</PRE><A NAME="936241"><PRE> if (dp->n_indirects && ((mem_lst = dp->members) != NULL))
</PRE><A NAME="936242"><PRE> {size = dp->size;
</PRE><A NAME="936243"><PRE> for (svar = var, offset = 0L, i = 0L; i < nitems; i++)
</PRE><A NAME="936244"><PRE> {for (desc = mem_lst; desc != NULL; desc = desc->next)
</PRE><A NAME="936245"><PRE> { ... };
</PRE><A NAME="936246"><PRE> svar += size;};};
</PRE><A NAME="936248"><PRE> .
</PRE><A NAME="936249"><PRE> .
</PRE><A NAME="936250"><PRE> .
</PRE><A NAME="936251"><PRE>
</PRE><A NAME="936252"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="936253"><PRE> /*-----------------------------------------------------------------*/
</PRE><a name="936259">
<h2>9.5 </a>Writing PM_mappings with </a>PFWMAP</h2>
</a>
<a name="936266">
The following fragment shows how to write a </a>PM_mapping to a PDB file from a FORTRAN program. This example uses PFWMAP. PFWMAP writes out both </a>domain and </a>range as a complete mapping. The drawback to this approach is that many mappings might have the same domain which would be written out over and over again. This could lead to unacceptably large data files. See the next example for a more space saving approach.<p>
</a>
<A NAME="936269"><PRE> c
</PRE><A NAME="936270"><PRE> c************************************************************
</PRE><A NAME="936271"><PRE> c************************************************************
</PRE><A NAME="936272"><PRE> c
</PRE><A NAME="936273"><PRE> subroutine sxdmp(namesx, namelen)
</PRE><A NAME="936274"><PRE>
</PRE><A NAME="936275"><PRE> c traverse plot list to make dumps suitable for sx
</PRE><A NAME="936276"><PRE>
</PRE><A NAME="936277"><PRE> integer </a>pfopen, </a>pfclos, </a>pfgerr, </a>pfwmap, </a>pfwset, </a>pfwran
</PRE><A NAME="936278"><PRE> integer zscanleq
</PRE><A NAME="936279"><PRE>
</PRE><A NAME="936280"><PRE> integer pderr(32), rp(6), dp(6)
</PRE><A NAME="936281"><PRE> integer fileid, pim, dmnsn
</PRE><A NAME="936282"><PRE>
</PRE><A NAME="936283"><PRE> double precision rm(nsavept), dm(nsavept)
</PRE><A NAME="936284"><PRE>
</PRE><A NAME="936285"><PRE> c ... set up
</PRE><A NAME="936286"><PRE> .
</PRE><A NAME="936287"><PRE> .
</PRE><A NAME="936288"><PRE> .
</PRE><A NAME="936289"><PRE>
</PRE><A NAME="936290"><PRE> c ... open the file
</PRE><A NAME="936291"><PRE> fileid = </a>pfopen(namelen, namesx, ’w’)
</PRE><A NAME="936292"><PRE> if (fileid .eq. -1) then
</PRE><A NAME="936293"><PRE> iplpderr = </a>pfgerr(nchr, pderr)
</PRE><A NAME="936294"><PRE> call errproc(pderr, nchr, 0, 0)
</PRE><A NAME="936295"><PRE> endif
</PRE><A NAME="936296"><PRE>
</PRE><A NAME="936297"><PRE> pim = 0
</PRE><A NAME="936298"><PRE>
</PRE><A NAME="936299"><PRE> c ... loop over plots
</PRE><A NAME="936300"><PRE> do ...
</PRE><A NAME="936301"><PRE>
</PRE><A NAME="936302"><PRE> c ... setup domain
</PRE><A NAME="936303"><PRE> dname = <domain name>
</PRE><A NAME="936304"><PRE> dp(1) = <length of domain name>
</PRE><A NAME="936305"><PRE>
</PRE><A NAME="936306"><PRE> select case (dmnsn)
</PRE><A NAME="936307"><PRE> case (’d2r1’)
</PRE><A NAME="936308"><PRE> dp(2) = 2
</PRE><A NAME="936309"><PRE> dp(3) = 2
</PRE><A NAME="936310"><PRE> dp(4) = nr
</PRE><A NAME="936311"><PRE> dp(5) = kmax
</PRE><A NAME="936312"><PRE> dp(6) = lmax
</PRE><A NAME="936313"><PRE> call zmovewrd(dm(1), x2d, nr)
</PRE><A NAME="936314"><PRE> call zmovewrd(dm(nr+1), y2d, nr)
</PRE><A NAME="936315"><PRE> case (’d1r1’)
</PRE><A NAME="936316"><PRE> dp(2) = 1
</PRE><A NAME="936317"><PRE> dp(3) = 1
</PRE><A NAME="936318"><PRE> dp(4) = nr
</PRE><A NAME="936319"><PRE> dp(5) = nr
</PRE><A NAME="936320"><PRE> call zmovewrd(dm(1), <domain data>, nr)
</PRE><A NAME="936321"><PRE> endselect
</PRE><A NAME="936322"><PRE>
</PRE><A NAME="936323"><PRE> c ... set up range
</PRE><A NAME="936324"><PRE> rname = <range name>
</PRE><A NAME="936325"><PRE> rp(1) = <length of range name>
</PRE><A NAME="936326"><PRE>
</PRE><A NAME="936327"><PRE> rp(2) = dp(2)
</PRE><A NAME="936328"><PRE> rp(3) = 1
</PRE><A NAME="936329"><PRE> rp(4) = nr
</PRE><A NAME="936330"><PRE> rp(5) = dp(5)
</PRE><A NAME="936331"><PRE> rp(6) = dp(6)
</PRE><A NAME="936332"><PRE> call zmovewrd(rm(1), <range data>, nr)
</PRE><A NAME="936333"><PRE>
</PRE><A NAME="936334"><PRE> c ... write the mapping
</PRE><A NAME="936335"><PRE> ierr = </a>pfwmap(fileid, dname, dp, dm, rname, rp, rm, pim)
</PRE><A NAME="936336"><PRE> if (ierr.eq.0) then
</PRE><A NAME="936337"><PRE> </a>pfgerr(nchr, pderr)
</PRE><A NAME="936338"><PRE> call errproc(pderr, nchr, 0, 0)
</PRE><A NAME="936339"><PRE> endif
</PRE><A NAME="936340"><PRE> pim = pim + 1
</PRE><A NAME="936341"><PRE> repeat
</PRE><A NAME="936342"><PRE>
</PRE><A NAME="936343"><PRE> c ... close the file
</PRE><A NAME="936344"><PRE> icloseok = </a>pfclos(fileid)
</PRE><A NAME="936345"><PRE> if (icloseok.eq.0) then
</PRE><A NAME="936346"><PRE> </a>pfgerr(nchr, pderr)
</PRE><A NAME="936347"><PRE> call errproc(pderr, nchr, 0, 0)
</PRE><A NAME="936348"><PRE> endif
</PRE><A NAME="936349"><PRE>
</PRE><A NAME="936350"><PRE> return
</PRE><A NAME="936351"><PRE> end
</PRE><a name="936356">
<h2>9.6 </a>Writing PM_mappings with </a>PFWSET and </a>PFWRAN</h2>
</a>
<a name="936370">
The following fragment shows how to write a </a>PM_mapping to a PDB file from a FORTRAN program. This example uses </a>PFWSET and </a>PFWRAN. With PFWSET and PFWRAN an application can write mappings in the most space efficient way. Instead of writing the same domains over and over again as would be done with </a>PFWMAP, the application can select the unique domains and write them out with PFWSET. Then all mappings can be written using PFWRAN which writes out a PM_mapping with a null </a>domain. The post processing tools (such as PDBView) reconstruct the complete PM_mapping by looking for the domain as a variable with the same name as the domain component of the mapping name. This approach is clearly a little more involved than using PFWMAP and application developers should weigh the advantages and disadvantages before selecting one method over the other. See the previous example for an illustration of the use of PFWMAP.<p>
</a>
<A NAME="936373"><PRE> c
</PRE><A NAME="936374"><PRE> c************************************************************
</PRE><A NAME="936375"><PRE> c************************************************************
</PRE><A NAME="936376"><PRE> c
</PRE><A NAME="936377"><PRE> subroutine sxdmp(namesx, namelen)
</PRE><A NAME="936378"><PRE>
</PRE><A NAME="936379"><PRE> c traverse plot list to make dumps suitable for sx
</PRE><A NAME="936380"><PRE>
</PRE><A NAME="936381"><PRE> integer </a>pfopen, </a>pfclos, </a>pfgerr, </a>pfwmap, </a>pfwset, </a>pfwran
</PRE><A NAME="936382"><PRE> integer zscanleq
</PRE><A NAME="936383"><PRE>
</PRE><A NAME="936384"><PRE> integer pderr(32), rp(6), dp(6)
</PRE><A NAME="936385"><PRE> integer fileid, pim, dmnsn
</PRE><A NAME="936386"><PRE>
</PRE><A NAME="936387"><PRE> double precision rm(nsavept), dm(nsavept)
</PRE><A NAME="936388"><PRE>
</PRE><A NAME="936389"><PRE> c ... set up
</PRE><A NAME="936390"><PRE> .
</PRE><A NAME="936391"><PRE> .
</PRE><A NAME="936392"><PRE> .
</PRE><A NAME="936393"><PRE>
</PRE><A NAME="936394"><PRE> c ... open the file
</PRE><A NAME="936395"><PRE> fileid = </a>pfopen(namelen, namesx, ’w’)
</PRE><A NAME="936396"><PRE> if (fileid .eq. -1) then
</PRE><A NAME="936397"><PRE> iplpderr = </a>pfgerr(nchr, pderr)
</PRE><A NAME="936398"><PRE> call errproc(pderr, nchr, 0, 0)
</PRE><A NAME="936399"><PRE> endif
</PRE><A NAME="936400"><PRE>
</PRE><A NAME="936401"><PRE> pim = 0
</PRE><A NAME="936402"><PRE>
</PRE><A NAME="936403"><PRE> c ... loop over plots
</PRE><A NAME="936404"><PRE> do ...
</PRE><A NAME="936405"><PRE>
</PRE><A NAME="936406"><PRE> c ... setup domain
</PRE><A NAME="936407"><PRE> dname = <domain name>
</PRE><A NAME="936408"><PRE> dp(1) = <length of domain name>
</PRE><A NAME="936409"><PRE>
</PRE><A NAME="936410"><PRE> select case (dmnsn)
</PRE><A NAME="936411"><PRE> case (’d2r1’)
</PRE><A NAME="936412"><PRE> dp(2) = 2
</PRE><A NAME="936413"><PRE> dp(3) = 2
</PRE><A NAME="936414"><PRE> dp(4) = nr
</PRE><A NAME="936415"><PRE> dp(5) = kmax
</PRE><A NAME="936416"><PRE> dp(6) = lmax
</PRE><A NAME="936417"><PRE> call zmovewrd(dm(1), x2d, nr)
</PRE><A NAME="936418"><PRE> call zmovewrd(dm(nr+1), y2d, nr)
</PRE><A NAME="936419"><PRE> case (’d1r1’)
</PRE><A NAME="936420"><PRE> dp(2) = 1
</PRE><A NAME="936421"><PRE> dp(3) = 1
</PRE><A NAME="936422"><PRE> dp(4) = nr
</PRE><A NAME="936423"><PRE> dp(5) = nr
</PRE><A NAME="936424"><PRE> call zmovewrd(dm(1), <domain data>, nr)
</PRE><A NAME="936425"><PRE> endselect
</PRE><A NAME="936426"><PRE>
</PRE><A NAME="936427"><PRE> if <unique domain> then
</PRE><A NAME="936428"><PRE> ierr = </a>pfwset(fileid, dname, dp, dm)
</PRE><A NAME="936429"><PRE> if (ierr.eq.0) then
</PRE><A NAME="936430"><PRE> iplpderr = </a>pfgerr(nchr, pderr)
</PRE><A NAME="936431"><PRE> call errproc(pderr, nchr, 0, 0)
</PRE><A NAME="936432"><PRE> endif
</PRE><A NAME="936433"><PRE> endif
</PRE><A NAME="936434"><PRE>
</PRE><A NAME="936435"><PRE> c ... set up range
</PRE><A NAME="936436"><PRE> rname = <range name>
</PRE><A NAME="936437"><PRE> rp(1) = <length of range name>
</PRE><A NAME="936438"><PRE>
</PRE><A NAME="936439"><PRE> rp(2) = dp(2)
</PRE><A NAME="936440"><PRE> rp(3) = 1
</PRE><A NAME="936441"><PRE> rp(4) = nr
</PRE><A NAME="936442"><PRE> rp(5) = dp(5)
</PRE><A NAME="936443"><PRE> rp(6) = dp(6)
</PRE><A NAME="936444"><PRE> call zmovewrd(rm(1), <range data>, nr)
</PRE><A NAME="936445"><PRE>
</PRE><A NAME="936446"><PRE> c ... write out range
</PRE><A NAME="936447"><PRE> ierr = </a>pfwran(fileid, dname, dp(1), rname, rp, rm, pim)
</PRE><A NAME="936448"><PRE> if (ierr.eq.0) then
</PRE><A NAME="936449"><PRE> </a>pfgerr(nchr, pderr)
</PRE><A NAME="936450"><PRE> call errproc(pderr, nchr, 0, 0)
</PRE><A NAME="936451"><PRE> endif
</PRE><A NAME="936452"><PRE> pim = pim+1
</PRE><A NAME="936453"><PRE> repeat
</PRE><A NAME="936454"><PRE>
</PRE><A NAME="936455"><PRE> c ... close the file
</PRE><A NAME="936456"><PRE> icloseok = </a>pfclos(fileid)
</PRE><A NAME="936457"><PRE> if (icloseok.eq.0) then
</PRE><A NAME="936458"><PRE> </a>pfgerr(nchr, pderr)
</PRE><A NAME="936459"><PRE> call errproc(pderr, nchr, 0, 0)
</PRE><A NAME="936460"><PRE> endif
</PRE><A NAME="936461"><PRE>
</PRE><A NAME="936462"><PRE> return
</PRE><A NAME="936463"><PRE> end
</PRE><a name="936477">
<h1>10.0 Related </a>Documentation</h1>
</a>
<a name="932583">
PDBLib is one part of a collection of libraries called </a>PACT. PDBLib uses the </a>SCORE library in PACT for memory management, hash table, and string handling support. Interested readers should consult the SCORE manual as well as the PDBView manual, the ULTRA II manual, and the PANACEA manual for more information on how PDBLib is used.<p>
</a>
<a name="933048">
The list of </a>PACT documents is:<p>
</a>
<A NAME="933615"><PRE> PACT User’s Guide, UCRL-MA-112087
</PRE><A NAME="934299"><PRE> SCORE User’s Manual, UCRL-MA-108976 Rev.1
</PRE><A NAME="934300"><PRE> PPC User’s Manual UCRL-MA-108964 Rev.1
</PRE><A NAME="932596"><PRE> PML User’s Manual, UCRL-MA-108965 Rev.1
</PRE><A NAME="932597"><PRE> PDBLib User’s Manual, M-270 Rev.2 (this document)
</PRE><A NAME="932719"><PRE> PGS User’s Manual, UCRL-MA-108966 Rev.1
</PRE><A NAME="934304"><PRE> PANACEA User’s Manual, M-276 Rev.2
</PRE><A NAME="934305"><PRE> ULTRA II User’s Manual, UCRL-MA-108967 Rev.1
</PRE><A NAME="934306"><PRE> PDBDiff User’s Manual, UCRL-MA-108975 Rev.1
</PRE><A NAME="934307"><PRE> PDBView User’s Manual, UCRL-MA-108968 Rev.1
</PRE><A NAME="934308"><PRE> SX User’s Manual, UCRL-MA-112315
</PRE><a name="932582">
<p>
</a>
<p><hr>
</body></html>
|