File: pgs5.doc.html

package info (click to toggle)
pact 980714-3
  • links: PTS
  • area: main
  • in suites: slink
  • size: 13,096 kB
  • ctags: 26,034
  • sloc: ansic: 109,076; lisp: 9,645; csh: 7,147; fortran: 1,050; makefile: 136; lex: 95; sh: 32
file content (4023 lines) | stat: -rw-r--r-- 237,638 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
<html><head><title></title></head>

<body>

<a name="349951">
<h1>1.0   </a>Introduction</h1>
</a>
<a name="349963">
One of the biggest headaches for </a>portability is graphics. The objective evidence is that the field is immature. One cannot exactly say that there are no </a>graphics </a>standards. The real problem is that there are too many standards. Until such time that the world settles down, there will be the need for a tool like PGS.<p>
</a>
<a name="349964">
</a>PGS is an </a>application program interface (</a>API) that is independent of the underlying </a>host graphics system. All of the graphics portability headaches are confined to PGS and applications which use PGS are completely portable. PGS currently sits on top of </a>X Windows on </a>UNIX platforms, </a>Quickdraw on </a>Macintoshes, and Microsoft&#146;s graphics library on </a>DOS platforms.<p>
</a>
<a name="349965">
PGS takes a least common denominator approach regarding what graphics functionality it supports. The goal is to run on the widest variety of machines. This lets out high level graphics capabilities such as real time 3D rotations which depend on specific hardware. On the other hand, any rendering capability that can be implemented with reasonable efficiency in software is fair game for PGS. This model will almost certainly change in time as both graphics hardware and software evolve and become ubiquitous across platforms.<p>
</a>
<a name="349966">
PGS adopts a </a>model in which </a>graphics </a>devices such as display windows and </a>PostScript files are represented by a structure which contains all of their state information. Then PGS can manage an arbitrary number of devices simultaneously and any picture can be drawn to any device.<p>
</a>
<a name="349967">
PGS also structures display surfaces with a </a>viewport defined in </a>normalized coordinates, an enclosing boundary where axes are drawn which is defined as a set of offsets from the viewport window, and a </a>world coordinate system attached to the viewport. The enclosing boundary is useful for obtaining a </a>standoff between rendered data such as line plots and the axes used to measure the rendering.<p>
</a>
<a name="349968">
</a>PGS supports both </a>line and </a>text drawing primitives, </a>line and </a>text attributes, and </a>bit maps for handling images and other </a>cell array data. Most functionality in PGS is either </a>primitive operations such as moves and draws or at a very </a>high level such as axis drawing and the rendering algorithms that it supports. These </a>rendering algorithms have two interfaces: one for &#147;raw&#148; data; and one for PML type </a>mappings. This gives a great deal of flexibility to the application developer.<p>
</a>
<a name="349969">
PGS has the following </a>rendering algorithms currently: 1D</a> line plots; 2D </a>contour plots; 2D </a>vector plots; 2D</a> image plots; 3D </a>wire frame mesh plots (for 2D data sets); and </a>Grotrian diagram plots.<p>
</a>
<a name="349970">
<h1>2.0   </a>Overview of PGS</h1>
</a>
<a name="349971">
</a>PGS has two main goals: to provide a </a>portable interface to various </a>host graphics systems; and to provide </a>high level functionality to applications which most host graphics systems do not provide. To meet these goals it was necessary to develop a model of the kinds of devices which the various host graphics systems support so that the functional interface could be defined and implemented.<p>
</a>
<a name="349972">
It was also necessary to identify which </a>graphics primitives to support. Some host graphics systems have a very rich supply of graphics primitives. In fact, some go way beyond supplying primitive graphics functionality and provide high level rendering capabilities. Other host graphics systems have a relatively small set of primitive graphics operations. The decision was made to design PGS so as to depend on as small a subset of graphics primitives as possible. This makes PGS extremely portable. It also forces PGS to either implement or forego higher level graphics functionality. Hopefully, a useful balance has been struck on this issue.<p>
</a>
<a name="349973">
As the above discussion implies, PGS has two obvious layers. The first layer is a </a>low level one that communicates directly with the host graphics system. The other layer is oriented more toward the application and includes the </a>high level rendering and axis drawing functions. This layer actually breaks down into several layers. The details of this breakdown will be discussed as appropriate.<p>
</a>
<a name="349974">
The remainder of this section discusses the PGS device model and the PGS drawing model.<p>
</a>
<a name="349975">
<h2>2.1   The </a>PGS </a>Device Model</h2>
</a>
<a name="349976">
To provide the maximum degree of </a>portability in what is an inherently </a>platform dependent field, the attempt has been made to isolate all of the platform dependencies behind </a>abstraction barriers. The </a>functional interface provides one set of abstraction barriers. This however does not help with the problem of the notion of </a>graphics state. Graphics state consists of information such as the current default line attributes, default text attributes, coordinate systems, and so on. Furthermore, in a general purpose setting, an application may wish to manage multiple independent devices each with its own separate graphics state.<p>
</a>
<a name="349977">
First, PGS defines a </a>graphics device as an abstract entity containing a logical two dimensional drawing surface and a set of parameters which describe how and where all drawing functions are to be performed on the drawing surface.<p>
</a>
<a name="349978">
Nearly all host graphics systems have their own abstraction barrier wrapped around their drawing surface(s). However, they almost all provide a pointer or index to applications to specify which drawing surface is intended for a particular operation. This latter point is most relevant to windows on display screens, although a file indicator is the correct analog for PostScript or CGM type devices. In any case, PGS handles the interface to the host graphics system and hides it from applications. In the place of the host graphics device indicator, PGS supplies a structure called a </a>PG_device. Applications open and manipulate PG_device&#146;s only. This way all PGS based applications have a single portable interface to all devices supported by PGS.<p>
</a>
<a name="349979">
The </a>PG_device not only contains the host graphics </a>device indicators, it also contains the </a>graphics state for each device. In this way each PG_device is independent of every other PG_device. This gives applications the ability to draw the same picture on every device by simply changing the PG_device passed to the drawing functions. No device conditional logic is required of applications.<p>
</a>
<a name="349980">
The </a>host graphics systems supported by PGS currently are:<p>
</a>
<A NAME="349981"><PRE>          </a>X Windows
</PRE><A NAME="349982"><PRE>          </a>PostScript
</PRE><A NAME="349983"><PRE>          </a>CGM (Computer Graphics Metafile)
</PRE><A NAME="349984"><PRE>          </a>Quickdraw (Apple Macintosh)
</PRE><A NAME="349985"><PRE>          </a>Microsoft Graphics Library
</PRE><a name="349986">
<p>
</a>
<a name="349987">
<h2>2.2   The </a>PGS </a>Drawing Model</h2>
</a>
<a name="349988">
Almost all </a>host graphics systems employ a drawing model. This specifies information such as coordinate systems and their origins, how clipping is done, and so on. PGS has a somewhat more difficult time coming up with a drawing model since it must present a drawing model that is compatible with all host graphics systems even when the various host graphics systems are in conflict with one another. PGS accomplishes this task by using the least common denominator of the host systems, defining as much of the drawing model as possible, and mapping host graphics systems models into the PGS model.<p>
</a>
<a name="349989">
A PG_device can be thought of as a window on the display area of the host graphics system. In that view, a PGS window can be defined as the region of the host graphics system display surface controlled by PGS during drawing operations. PGS windows then map naturally onto the kinds of windows associated with such host graphics systems as </a>X Windows and </a>Quickdraw. This idea also has application to a </a>PostScript or </a>CGM device.<p>
</a>
<a name="349990">
<h3>2.2.1   </a>PGS </a>Window Placement</h3>
</a>
<a name="349991">
In placing a PGS window which contains the drawing surface on a display screen or a PostScript page, the position of the upper left corner of the PGS window is given in </a>normalized coordinates relative to a coordinate origin in the upper left corner of the </a>host graphics system device.<p>
</a>
<a name="349992">
<p>
</a>
<a name="349993">
<p>
</a>
<a name="349994">
<p>
</a>
<a name="349995">
<p>
</a>
<a name="349996">
<p>
</a>
<a name="349997">
<p>
</a>
<a name="349998">
<p>
</a>
<a name="349999">
<p>
</a>
<a name="350000">
<p>
</a>
<a name="350001">
<p>
</a>
<a name="350002">
<p>
</a>
<a name="350003">
<h3>2.2.2   </a>Frames, </a>Viewports, and </a>View Boundaries</h3>
</a>
<a name="350004">
Any part of the interior of a </a>PGS </a>window may be drawn on by PGS routines. Windows do have some additional structure to help applications conveniently handle high level plotting constructs.<p>
</a>
<a name="350470">
A window may be </a>partitioned into frames with a view to drawing more than one plot at a time. Within each frame there is a preferred drawing area called the </a>viewport. The viewport is defined relative to its enclosing frame and by default each window has a single frame which is the same size as the window. PGS supports </a>clipping which can render it impossible to draw to any part of the window but the current viewport.<p>
</a>
<a name="350005">
In addition to the viewport there is a bounding region of the viewport which is used to offset axes from the viewport so that there is a nice, application controllable separation between the axes and whatever is drawn in the viewport. This bounding region is called the view boundary.<p>
</a>
<a name="350006">
<p>
</a>
<a name="350007">
<p>
</a>
<a name="350008">
<p>
</a>
<a name="350009">
<p>
</a>
<a name="350010">
<p>
</a>
<a name="350011">
<p>
</a>
<a name="350012">
<p>
</a>
<a name="350013">
<p>
</a>
<a name="350014">
<p>
</a>
<a name="350015">
<p>
</a>
<a name="350016">
<p>
</a>
<a name="350017">
<p>
</a>
<a name="350018">
<p>
</a>
<a name="350019">
<p>
</a>
<a name="350020">
<p>
</a>
<a name="350021">
<p>
</a>
<a name="350022">
The </a>viewport and </a>view boundary are tied together. When an application defines the viewport, the view boundary is implicitly defined in terms of offsets from the viewport. These are referred to as </a>topspace, </a>leftspace, </a>rightspace, and </a>botspace.<p>
</a>
<a name="350023">
The application can move the frame or viewport around in the PGS window at any time as well as altering its size.<p>
</a>
<a name="350024">
<h3>2.2.3   </a>Coordinate Systems</h3>
</a>
<a name="350025">
Inside a </a>PGS </a>window there are three coordinate systems: </a>world coordinates, </a>normalized coordinates, and </a>pixel coordinates. World coordinates are application defined and have whatever meaning the application requires. The lower left corner of the </a>viewport corresponds to the minium x and y values of the world coordinate domain. Normalized coordinates represent the fraction of the PGS window width and height that a point is from the origin which is in the lower left corner of the PGS window. Pixel coordinates represent the integer number of pixels that a point is from the origin which is in the lower left corner of the PGS window.<p>
</a>
<a name="350026">
PGS supplies a set of macros to convert between all of the coordinate systems which a PGS window may have.<p>
</a>
<a name="350027">
<h1>3.0   </a>The PGS User Interface Model</h1>
</a>
<a name="350028">
The subject of user interfaces can be a rather complicated one. For many applications the most natural interface is a graphical one. However, some systems make the mistake of insisting that a graphical interface is the only interface which an application may have. PGS supports a model of user interfaces that permits the application developer to seek the natural interface for his or her application. This means that PGS supports development of </a>textual interfaces, </a>graphical interfaces, and hybrids. In the following sections, we will discuss the concepts underlying user interfaces from PGS&#146;s point of view (PGS emphasizes portability and flexibility especially).<p>
</a>
<a name="350029">
<h2>3.1   </a>A Textual Interface</h2>
</a>
<a name="350030">
Consider the following program fragment which is typical of an application with a textual interface:<p>
</a>
<A NAME="350031"><PRE> char s[MAXLINE], *t;
</PRE><A NAME="350032"><PRE> char *dispatch(char *s);
</PRE><A NAME="350033"><PRE> 
</PRE><A NAME="350034"><PRE> printf(&#147;-&gt; &#147;);
</PRE><A NAME="350035"><PRE> while (fgets(s, MAXLINE, stdin) != NULL)
</PRE><A NAME="350036"><PRE>    {t = dispatch(s);
</PRE><A NAME="350037"><PRE>     printf(&#147;%s\n-&gt; &#147;, t);};
</PRE><A NAME="350038"><PRE> 
</PRE><a name="350039">
This code prints a prompt, gets some input (</a>fgets), processes it (dispatch), and prints the result. It does this in a loop until something ends the program.<p>
</a>
<a name="350040">
For a program so simple and ordinary, it is astonishing how difficult some systems make it to run this code. One of the peg points of PGS is that it must be &#147;easy&#148; to run such an application whether the system wants to make it easy or hard. Some of the graphical user interface models can be ported with some careful abstraction barriers (and PGS does this too), but this example is something of a lowest common denominator. So we will start with this and build up a model that supports this simple text driven style and the most elaborate graphical application.<p>
</a>
<a name="350041">
<h2>3.2   </a>Adding Abstraction Barriers</h2>
</a>
<a name="350042">
By adding two macros and two function pointers we can make an enormous shift in the portability of this program:<p>
</a>
<A NAME="350043"><PRE> #define </a>GETLN (*getln)
</PRE><A NAME="350044"><PRE> #define </a>PRINT (*putln)
</PRE><A NAME="350045"><PRE> char *(*</a>getln)(char *s, int n, FILE *fp)
</PRE><A NAME="350046"><PRE> int (*</a>putln)(FILE *fp, char *fmt, ...)
</PRE><a name="350047">
These items are defined in </a>score.h which is #included by </a>pgs.h<p>
</a>
<a name="350048">
With these elements we can modify the original example as follows:<p>
</a>
<A NAME="350049"><PRE> char s[MAXLINE], *t;
</PRE><A NAME="350050"><PRE> char *dispatch(char *s);
</PRE><A NAME="350051"><PRE> 
</PRE><A NAME="350052"><PRE> getln = fgets;
</PRE><A NAME="350053"><PRE> putln = fprintf;
</PRE><A NAME="350054"><PRE> 
</PRE><A NAME="350055"><PRE> PRINT(stdout, &#147;-&gt; &#147;);
</PRE><A NAME="350056"><PRE> while (GETLN(s, MAXLINE, stdin) != NULL)
</PRE><A NAME="350057"><PRE>    {t = dispatch(s);
</PRE><A NAME="350058"><PRE>     PRINT(stdout, &#147;%s\n-&gt; &#147;, t);};
</PRE><A NAME="350059"><PRE> 
</PRE><a name="350060">
This doesn&#146;t look like much at all, but the impact of this change is enormous! Now we can insert other functions which are call compatible with the standard C library functions, </a>fgets and </a>fprintf. PGS supplies two such functions: </a>PG_wind_fgets and </a>PG_fprintf. In fact, when a call to </a>PG_open_device or </a>PG_open_console is made these functions are connected to </a>getln and </a>putln for you!<p>
</a>
<a name="350061">
PG_wind_fgets, in addition to looking for input from the terminal as </a>fgets does, also looks for events from the windowing system under which the application is running. </a>PG_fprintf prints your formatted text to a terminal or to a screen window depending on what is appropriate to the system on which the application is running.<p>
</a>
<a name="350062">
This example can be filled out to a complete program (modulo the definition of the dispatch function) which is completely portable:<p>
</a>
<A NAME="350063"><PRE> #include &lt;pgs.h&gt;
</PRE><A NAME="350064"><PRE> main(int c, char **v)
</PRE><A NAME="350065"><PRE>    {char s[MAXLINE], *t;
</PRE><A NAME="350066"><PRE>     char *dispatch(char *s);
</PRE><A NAME="350067"><PRE> 
</PRE><A NAME="350068"><PRE>     PG_open_console(&#147;test&#148;, &#147;COLOR&#148;, TRUE, 0.1, 0.7, 0.5, 0.3);
</PRE><A NAME="350069"><PRE>     PRINT(stdout, &#147;-&gt; &#147;);
</PRE><A NAME="350070"><PRE>     while (GETLN(s, MAXLINE, stdin) != NULL)
</PRE><A NAME="350071"><PRE>        {t = dispatch(s);
</PRE><A NAME="350072"><PRE>         PRINT(stdout, &#147;%s\n-&gt; &#147;, t);};
</PRE><A NAME="350073"><PRE>     return(0);}
</PRE><a name="350074">
There is an important issue remaining here and that is the subject of the next section.<p>
</a>
<a name="350075">
<h2>3.3   </a>Multiplexed I/O and Interrupt Driven I/O</h2>
</a>
<a name="350076">
In the program we have been discussing, input is gathered from either the terminal or the windowing system. This is an example of </a>multiplexed I/O. Many applications use multiplexed I/O. It is common in networking programs for example. With multiplexed I/O a variety of input sources are polled to see whether there is any input ready. Depending on the device that has input, the application takes the appropriate action as it becomes available. In the more efficient applications the operating system is usually involved since it is better able to control machine resources than any application.<p>
</a>
<a name="350077">
Our sample program doesn&#146;t necessarily need to do multiplexed I/O (on the other hand we haven&#146;t said what the dispatch function does!). If it were a graphical application however the chances are that it would have to handle input from both the terminal and from the windowing system. </a>GETLN, more specifically </a>PG_wind_fgets, does just that. If the specified FILE pointer is stdin, it obtains input from either source, and copies terminal input into the buffer passed in as an argument or dispatches input from the windowing system (also referred to as events) to functions which are registered with PGS to handle specific kinds of events. If the specified FILE pointer is in fact something beside stdin it simple performs an &#147;fgets&#148; on that file. </a>PG_wind_fgets only returns when a newline or an end of file condition is encountered. For terminal input this means typing a carriage return.<p>
</a>
<a name="350078">
It appears that input can only be handled when </a>GETLN is called. However, it is often desirable to have input handled whenever it comes in. Some operating systems support this through the use of assignable interrupts. Input handled this way is said to be interrupt driven. In PGS, when a screen window is opened all of the machinery is put into place to allow interrupt driven I/O. The application switches interrupt handling on and off through the macro </a>PG_IO_INTERRUPTS which take a value of TRUE to turn it on and FALSE to turn it off. When I/O interrupts are on input from the terminal is saved in a buffer to be copied into the buffer of the next </a>GETLN call, and input from the windowing system is dispatched to the appropriate event handler. After the input is processed the interrupt handler returns and execution resumes from the point where the interrupt occurred.<p>
</a>
<a name="350079">
With </a>interrupt driven I/O activated, our simple program has all the capabilities of a vastly more complicated application written for certain specific operating environments which enforce a graphical interface only mode of programming. The fact that PGS runs on such systems as wells as those that support text only or </a>hybrid interfaces should give some idea of the idea of portability and flexibility which PGS aims to provide.<p>
</a>
<a name="350080">
<h2>3.4   </a>Event Handling</h2>
</a>
<a name="350081">
Now that we have seen how input is handled in the broadest terms and how PGS presents a portable application interface for input handling, let&#146;s turn to an closer examination of the way in which input from a windowing system is dealt with. Generically, window input is said to consist of sequences of </a>events. Events can be such things as key presses when the mouse or locator is in a window, mouse button presses and releases, or the locator entering or leaving a window.<p>
</a>
<a name="350082">
Different windowing system define varying sets of events. PGS supports the following set of </a>events everywhere:<p>
</a>
<A NAME="350083"></a>KEY_DOWN_EVENT				a </a>key on the </a>keyboard is </a>pressed
<P><A NAME="350084"></a>KEY_UP_EVENT				a key on the keyboard is </a>released
<P><A NAME="350085"></a>MOUSE_DOWN_EVENT				a </a>mouse button is pressed
<P><A NAME="350086"></a>MOUSE_UP_EVENT				a mouse button is released
<P><A NAME="350087"></a>UPDATE_EVENT				the window system says that the window has changed
<P><A NAME="350088">				in some way
<P><A NAME="350089"></a>EXPOSE_EVENT				the window has become fully visible (is no longer
<P><A NAME="350090">				obscured by another window
<P><A NAME="350091"></a>MOTION_EVENT				the mouse has moved in the window
<P><a name="350092">
It should be understood that all events have a context. They all happen in or relate to a particular screen window. So when PGS get notified by the windowing system that there is an event present, it determines which window is effected. It then passes both the pointer to the effected window and the event on to the function which is going to handle the event.<p>
</a>
<a name="350093">
<h3>3.4.1   Event Handling Functions</h3>
</a>
<a name="350094">
Given the above list of recognized events, PGS defines a function pointer (hook) associated with each type of event so that applications may control what is done with specific events. The following functions let applications assign their function to these hooks.<p>
</a>
<A NAME="350095><I>C Binding: </I></a>PFByte </a>PG_set_key_down_event_handler(PG_device *d, void 
(*fnc)())
<BR><A NAME="352504"><I>F77 Binding: </I>integer </a>pgsekd(integer d, fnc)
<BR><A NAME="352505"><I>SX Binding: </I>
<P><A NAME="352524"><PRE>          
</PRE><A NAME="350096><I>C Binding: </I></a>PFByte </a>PG_set_key_up_event_handler(PG_device *d, void (*fnc)())
<BR><A NAME="352517"><I>F77 Binding: </I>integer </a>pgseku(integer d, fnc)
<BR><A NAME="352516"><I>SX Binding: </I>
<P><A NAME="352523"><PRE>          
</PRE><A NAME="350097><I>C Binding: </I></a>PFByte </a>PG_set_mouse_down_event_handler(PG_device *d, void 
(*fnc)())
<BR><A NAME="352515"><I>F77 Binding: </I>integer </a>pgsemd(integer d, fnc)
<BR><A NAME="352514"><I>SX Binding: </I>
<P><A NAME="352522"><PRE>          
</PRE><A NAME="350098><I>C Binding: </I></a>PFByte </a>PG_set_mouse_up_event_handler(PG_device *d, void 
(*fnc)())
<BR><A NAME="352513"><I>F77 Binding: </I>integer </a>pgsemu(integer d, fnc)
<BR><A NAME="352512"><I>SX Binding: </I>
<P><A NAME="352521"><PRE>          
</PRE><A NAME="350099><I>C Binding: </I></a>PFByte </a>PG_set_update_event_handler(PG_device *d, void (*fnc)())
<BR><A NAME="352511"><I>F77 Binding: </I>integer </a>pgseup(integer d, fnc)
<BR><A NAME="352510"><I>SX Binding: </I>
<P><A NAME="352520"><PRE>          
</PRE><A NAME="350100><I>C Binding: </I></a>PFByte </a>PG_set_expose_event_handler(PG_device *d, void (*fnc)())
<BR><A NAME="352508"><I>F77 Binding: </I>integer </a>pgseex(integer d, fnc)
<BR><A NAME="352509"><I>SX Binding: </I>
<P><A NAME="352519"><PRE>          
</PRE><A NAME="350101><I>C Binding: </I></a>PFByte </a>PG_set_default_event_handler(PG_device *d, void (*fnc)())
<BR><A NAME="352506"><I>F77 Binding: </I>integer </a>pgsedf(integer d, fnc)
<BR><A NAME="352507"><I>SX Binding: </I>
<P><A NAME="352518"><PRE>          
</PRE><a name="350102">
These assign the specified function fnc to be the event handler for the device, d. The function fnc is a pointer to a function returning nothing which takes a PG_device pointer and a PG_event pointer as arguments.The C routines all return the old value of the hook and the following typedef applies:<p>
</a>
<A NAME="350103"><PRE>   typedef void (*</a>PFByte)();
</PRE><a name="350104">
To explicitly call these functions in a generic way (i.e. regardless of the specific function attached to the hook) use the following macros:<p>
</a>
<A NAME="350105"><BR><B>void </a>PG_handle_key_down_event(PG_device *d, PG_event *ev)
</B><BR><A NAME="350106"><BR><B>void </a>PG_handle_key_up_event(PG_device *d, PG_event *ev)
</B><BR><A NAME="350107"><BR><B>void </a>PG_handle_mouse_down_event(PG_device *d, PG_event *ev)
</B><BR><A NAME="350108"><BR><B>void </a>PG_handle_mouse_up_event(PG_device *d, PG_event *ev)
</B><BR><A NAME="350109"><BR><B>void </a>PG_handle_update_event(PG_device *d, PG_event *ev)
</B><BR><A NAME="350110"><BR><B>void </a>PG_handle_expose_event(PG_device *d, PG_event *ev)
</B><BR><A NAME="350111"><BR><B>void </a>PG_handle_default_event(PG_device *d, PG_event *ev)
</B><BR><a name="350112">
These simply call the specified event handler with the PG_device and PG_event. The default event handler is an additional way to handle events. The application can have a single handler for all events. For example, when PGS gets a mouse down event it first checks to see whether there is a mouse down handler. If so it is called. If not it then checks to see whether there is a default handler and if so calls it.<p>
</a>
<a name="350113">
<h3>3.4.2   Event Related Macros</h3>
</a>
<a name="350114">
In addition to the above which have to do with routing events off to handlers, there are some other macros which the event handlers or user call-back functions can use to access event information.<p>
</a>
<a name="352529">
<p>
</a>
<A NAME="350115><I>C Binding: </I>void </a>PG_GET_NEXT_EVENT(PG_event ev)
<BR><A NAME="352525"><I>F77 Binding: </I>
<BR><A NAME="352526"><I>SX Binding: </I>
<P><a name="350116">
Does a blocking read of the next event from the windowing system and fills in the specified PG_event structure, ev.<p>
</a>
<a name="352541">
<p>
</a>
<A NAME="352536><I>C Binding: </I>void </a>PG_KEY_EVENT_INFO(PG_device *d, PG_event ev, int *x, int 
*y, char *bf, int *n, int *mod)
<BR><A NAME="352537"><I>F77 Binding: </I>integer </a>pgqkbd(integer d, integer x, integer y, integer c, integer mod)
<BR><A NAME="352538"><I>SX Binding: </I>
<P><a name="352539">
Return the state of the  </a>keyboard for the specified window, d. The x and y coordinates of the mouse or locator, which key is pressed, and which modifiers are present are returned in x, y, c, and mod respectively.  In the F77 binding this is associated only with one specific keyboard event. It should be called only a single time from a </a>key-down-event handler. In the C binding the actual keyboard event is supplied in ev.<p>
</a>
<a name="352540">
<p>
</a>
<A NAME="350117><I>C Binding: </I>void </a>PG_query_pointer(PG_device *d, int *px, int *py, int *pb, int 
*pq)
<BR><A NAME="352527"><I>F77 Binding: </I>integer </a>pgqptr(integer d, integer x, integer y, integer b, integer q)
<BR><A NAME="352528"><I>SX Binding: </I>
<P><a name="350118">
Return the state of the </a>mouse </a>locator or pointer for the specified window, d. The x and y coordinates, which button is pressed, and with modifiers are present are returned in px, py, pb, and pq respectively. <p>
</a>
<a name="350119">
The buttons are:<p>
</a>
<A NAME="350120"></a>MOUSE_LEFT
<P><A NAME="350121"></a>MOUSE_MIDDLE
<P><A NAME="350122"></a>MOUSE_RIGHT
<P><a name="350123">
The modifiers are:<p>
</a>
<A NAME="350124"></a>KEY_SHIFT
<P><A NAME="350125"></a>KEY_CNTL
<P><A NAME="350126"></a>KEY_ALT
<P><A NAME="350127"></a>KEY_LOCK
<P><A NAME="352530">
<P><A NAME="350128><I>C Binding: </I>PG_device *</a>PG_get_event_device(PG_event ev)
<BR><A NAME="352531"><I>F77 Binding: </I>
<BR><A NAME="352532"><I>SX Binding: </I>
<P><a name="350129">
Return a pointer to the PG_device (screen window) in which the event, ev, occurred or to which it relates.<p>
</a>
<a name="352535">
<p>
</a>
<A NAME="350130><I>C Binding: </I>int </a>PG_get_char(PG_device *d)
<BR><A NAME="352533"><I>F77 Binding: </I>
<BR><A NAME="352534"><I>SX Binding: </I>
<P><a name="350131">
Return the ASCII code of the next character entered from the keyboard into the specified PG_device, d.<p>
</a>
<a name="350132">
<h2>3.5   </a>Interface Objects</h2>
</a>
<a name="350133">
As it stands we have explained the basic machinery by which PGS provides applications with the capability to get input from the terminal or from the windowing system and how various events may be handled. This is a foundation upon which graphical user interfaces may be built. PGS also provides more machinery (which is layered on top of what we have already discussed) to support the construction and editing of graphical user interfaces. The goal goes beyond portability and flexibility to that of enabling the design, construction, testing, and modification of graphical interfaces. This is done in a way that is extremely compact to implement and to use. It lets application developers pass on to their users the ability to modify user interfaces to suit their own individual needs. This can even be done at run time! It is also portable!!!<p>
</a>
<a name="350134">
The principal notion underlying this facility is the abstraction called an interface object. It identifies and encapsulates the fundamental interactions of a user with the windowing system which underlies everything and the &#147;atoms&#148; of such a system. An interface object is a structure which contains the following information and methods:<p>
</a>
<A NAME="350135">Type		a string which identifies and differentiates interface objects
<P><A NAME="350136">Region		a polygonal region in the window defining the context of the object
<P><A NAME="350137">Visible flag		specifies whether the object is to be drawn or not
<P><A NAME="350138">Selectable flag		specifies whether the object can be selected or not
<P><A NAME="350139">Active flag		specifies whether the object is currently active or not
<P><A NAME="350140">Draw method		how to draw the object if it is visible
<P><A NAME="350141">Select method		how to select the object if it is selectable
<P><A NAME="350142">Action method		what action to take when the object is active or activated
<P><A NAME="350143">Parent		interface object of which this is a child
<P><A NAME="350144">Children		array of child interface objects
<P><a name="350145">
Each PG_device has a tree of interface objects associated with it. Interface objects are created by calls to </a>PG_make_interface_object. These objects individually and by virtue of their relationship in a hierarchy allow one to define the conventional graphical interface tools such as buttons, slider bars, and text boxes. The mechanism is very open ended and extensible. By defining the draw, select, and action methods and building trees of interface objects, application developers can generate virtually any kind of graphical interface functionality they wish.<p>
</a>
<a name="350146">
The window region defines a place on the screen to which to assign certain interpretations of mouse events, most notably button press and motion events. Keeping in mind such elements of a graphical interface as &#147;dialog boxes&#148;, it is clear that an object may or may not be drawn at all times. That is left to the interface designer to decide. So a flag and a method control the visibility of an interface object. Similarly depending on the context, an interface object may or may not be selectable. Selection is the process in which mouse events are associated with the designated window region. If an interface object is not selectable, no association is made between a mouse event and the region of the object. The action associated with an interface object can be very nebulous indeed. It can range from a function call when the object is selected to a value to be assigned to an associated variable when the object is selected. Here again, it is up to the application designer to decide.<p>
</a>
<a name="350147">
When defining one interface object to be the child of another, the region of the child is defined in coordinates normalized with respect to the enclosing rectangle of the parent. This makes for a much more flexible and intuitive design in that deeply nested objects only refer to their parents not to the entire outer context. Changing subtrees is much easier since the children are specified relative to the parents.<p>
</a>
<a name="350148">
In addition, interface objects have a border width, a foreground and background color, and a pointer to which anything can be assigned (e.g. a variable or some other structure). These items may be used in fairly arbitrary ways by applications. PGS uses them for the pre-defined objects as discussed in the next section.<p>
</a>
<a name="350149">
<h3>3.5.1   </a>Event Handling and Interface Objects</h3>
</a>
<a name="350150">
The event handler embedded in </a>PG_wind_fgets treats events from the windowing system in following order fashion:<p>
</a>
<A NAME="350151"><PRE>     </PRE>Checks to see whether a mouse down or key down event occurred inside any selectable 
interface object.
<BR><A NAME="350152"><PRE>     </PRE>If inside an interface object that has an action, then that action is called.
<BR><A NAME="350153"><PRE>     </PRE>Otherwise if there is a handler for the event type, it is called.
<BR><a name="350154">
<h3>3.5.2   </a>Portable User Interface Description</h3>
</a>
<a name="350155">
PGS has an ASCII representation of interface objects so that interface designers can simply write text files, called </a>portable user interface files, that describe the interface and have PGS read and interpret them at run time, modify them interactively, and write them back out again. Thus the interfaces can be edited graphically at run time or textually with your favorite text editor. At this writing the only option which PGS supplies for graphical editing is moving objects around. Creation, deletion, duplication, and resizing are planned for future releases. However, these options can all be accomplished by editing the interface file or by application supplied editing routines.<p>
</a>
<a name="350156">
<h4>3.5.2.1   </a>Syntax for Interface Description</h4>
</a>
<a name="350157">
The syntax for describing an interface object is:<p>
</a>
<A NAME="350158">type [operator(parameters)]* BND(parameter) points [{ children }]
<P><a name="350159">
Valid operators are:<p>
</a>
<A NAME="350160">ACT	names function that does object action when active
<P><A NAME="350161">BND	boundary specifier
<P><A NAME="350162">CLR	specifies fore and background colors (by index)
<P><A NAME="350163">DRW	names function that draws object when visible
<P><A NAME="350164">FLG	state flags
<P><A NAME="350165">NAME	object name
<P><A NAME="350166">SEL	names function that identifies object as selected when selectable
<P><a name="350167">
Valid BND parameters are:<p>
</a>
<A NAME="350168">n	an integer number of NDC points (x, y) follow
<P><A NAME="350169">RECT	2 NDC points specifying the lower left and upper right limits of a boundary 
rectangle follow
<P><a name="350170">
Valid FLG parameters are:<p>
</a>
<A NAME="350171">IsVis	object is visible
<P><A NAME="350172">IsSel	object is selectable
<P><A NAME="350173">IsAct	object is active
<P><a name="350174">
Valid CLR parameters are (using the standard color table):<p>
</a>
<A NAME="350175">0	logical </a>BLACK
<P><A NAME="350176">1	logical </a>WHITE
<P><A NAME="350177">2	</a>LGHT_WHITE
<P><A NAME="350178">3	</a>GRAY
<P><A NAME="350179">4	</a>BLUE
<P><A NAME="350180">5	</a>GREEN
<P><A NAME="350181">6	</a>CYAN
<P><A NAME="350182">7	</a>RED
<P><A NAME="350183">8	</a>MAGENTA
<P><A NAME="350184">9	</a>BROWN
<P><A NAME="350185">10	</a>LGHT_BLUE
<P><A NAME="350186">11	</a>LGHT_GREEN
<P><A NAME="350187">12	</a>LGHT_CYAN
<P><A NAME="350188">13	</a>LGHT_RED
<P><A NAME="350189">14	</a>YELLOW
<P><A NAME="350190">15	</a>LGHT_MAGENTA
<P><a name="350191">
The default for FLG parameters is IsVis and IsSel. You only need use the FLG operator if you wish to change this setting. Each parameter specified turns on its corresponding flag. To turn all flags off use FLG( ) (one space between the parentheses).<p>
</a>
<a name="350192">
A line break may occur between operator specifications. The descriptions of children of an object are delimited by curly braces.<p>
</a>
<a name="350193">
To make this text driven representation work, it is necessary to have a mechanism to register functions and variables with PGS so that a function or variable can be looked up by name. The functions </a>PG_register_callback and </a>PG_register_variable do just this.<p>
</a>
<a name="350194">
This is a very general mechanism for assigning events to actions and generically handling common activities on behalf of applications. PGS goes one step further and supplies a number of specific interface objects.<p>
</a>
<a name="350195">
<h2>3.6   PGS Interface Objects</h2>
</a>
<a name="350196">
The specific objects which PGS supplies are: CONTAINER, BUTTON, TEXT, and VARIABLE. With these objects and some defined relationships between them it is possible to build most of the common &#147;widgets&#148; found in the sets supplied with various systems.<p>
</a>
<a name="350197">
With all of the objects which PGS defines the following hold true: if an object is not visible, then its children are not visible either; if an object is not selectable then its children are not selectable either; if the border width is not zero, a black border is drawn around the object; and if the background color of an object is -1 the closest ancestor with a background color other than -1 supplies the background color.<p>
</a>
<a name="350198">
PGS interface objects have two kinds of containment associations: visual containment in which child objects appear visually (on the screen) within the region defined by their parents; and logical containment in which only the position in the hierarchy defines the containment association relationship, that is children are logically contained within their parents.<p>
</a>
<a name="350199">
The </a></a>CONTAINER object is defined simply to specify logical containment of objects. When looking up a hierarchy it is a natural breakpoint to identify groups of objects which may have to collectively respond to events (we&#146;ll see examples of this later). It also can be used just to ensure that a border is drawn around a group of other objects (these would have to be children of the container).<p>
</a>
<a name="350200">
The </a>BUTTON object is defined as a trigger. When a mouse down event happens in a button object a chain of events is set off. This covers initiation of call back functions, setting the value of a VARIABLE object, or moving a slider around. It depends on what the button means (as defined by context in a hierarchy or by its action method).<p>
</a>
<a name="350201">
A </a></a>TEXT object is an encapsulation of a PG_text_box structure and the methods which accompany it. The text box is a collection of text and editing functions. The editing functions supply an EMACS-like text manipulation facility for any quantity of text from one line to as much text as can be loaded into memory. Text boxes with a single line of text have the text centered in the box and multi-line text boxes have their text left justified.<p>
</a>
<a name="350202">
A </a></a>VARIABLE object binds a variable to an interface object. The parent, siblings, and children of the VARIABLE object define its actual behavior.<p>
</a>
<a name="350203">
PGS predefines the following methods using </a>PG_register_callback:<p>
</a>
<A NAME="350204"><CENTER><B></B></CENTER><A NAME="350205"></a>draw-text		draw a text object (default for TEXT objects)
<P><A NAME="350206"></a>draw-variable		draw a variable object (default for VARIABLE objects)
<P><A NAME="350207"></a>draw-container		draw a container object (default for CONTAINER objects)
<P><A NAME="350208"></a>draw-button		draw a button object (default for BUTTON objects)
<P><A NAME="350209"></a>draw-slider		draw a slider button
<P><A NAME="350210"><CENTER><B></B></CENTER><A NAME="350211"></a>select-visual		select based on visual containment
<P><A NAME="350212"></a>select-logical		select based on logical containment
<P><A NAME="350213"><CENTER><B></B></CENTER><A NAME="350214"></a>slider		action function for slider buttons
<P><A NAME="350215"></a>toggle		action function to toggle visibility and selectability of objects
<P><a name="350216">
With these building blocks in hand we will look at some common widgets found in many graphical user interface kits. It is very important to note that much of the behavior of these objects derives from their relative positions in the hierarchy of interface objects. This position relationship contributes as much as the atomic properties of the individual objects to the functioning of these combinations. This is a key feature in the flexibility of the PGS design.<p>
</a>
<a name="350217">
<h3>3.6.1   </a>Buttons</h3>
</a>
<a name="350218">
The intended functionality is a &#147;button&#148; on the screen which when selected by a mouse click invokes a function. For example, consider an &#147;End&#148; button to terminate an applications:<p>
</a>
<A NAME="350219"><CODE>Button CLR(3,2) DRW(draw-button) ACT(End) BND(RECT) (0.1,0.9) (0.2,0.95)
</CODE><BR><A NAME="350220"><CODE>   {Text NAME(End) CLR(10,-1) FLG(IsVis) DRW(draw-text) BND(RECT) (0.05,0.3) (0.95,0.7)}
</CODE><BR><a name="350221">
The action method of the button is the function associated with the string &#147;End&#148; in the callback table. The text &#147;End&#148; appears in the button and is visible but not selectable.<p>
</a>
<a name="350222">
<h3>3.6.2   </a>Enumerable Variables</h3>
</a>
<a name="350223">
Certain variables have a small number of possible values and it is convenient and pleasing to present buttons for each possible value and have the user select the desired one. This situation might look like this:<p>
</a>
<A NAME="350224"><CODE>Container CLR(0,0) BND(RECT) (0.1,0.82) (0.25,0.87)
</CODE><BR><A NAME="350225"><CODE>  {Variable NAME(Output) CLR(10,0) BND(RECT) (0.0,0.49) (1.0,1.0)
</CODE><BR><A NAME="350226"><CODE>     {Button CLR(3,2) ACT(1) BND(RECT) (0.0,-1.0) (0.5,0.0)
</CODE><BR><A NAME="350227"><CODE>        {Text NAME(On) CLR(10,-1) FLG(IsVis) BND(RECT) (0.05,0.05) (0.95,0.95)}
</CODE><BR><A NAME="350228"><CODE>      Button CLR(3,2) ACT(0) BND(RECT) (0.5,-1.0) (1.0,0.0)
</CODE><BR><A NAME="350229"><CODE>        {Text NAME(Off) CLR(10,-1) FLG(IsVis) BND(RECT) (0.05,0.05) (0.95,0.95)}}}
</CODE><BR><a name="350230">
The children of the variable registered using </a>PG_register_variable under the name &#147;Output&#148; are buttons which when selected set the value of the variable to the value taken from the action of the button (1 for the &#147;On&#148; button and 0 for the &#147;Off&#148; button). A second more elaborate example shows this same principle:<p>
</a>
<A NAME="350231"><CODE>Container CLR(0,0) BND(RECT) (0.85,0.88) (1.0,1.0)
</CODE><BR><A NAME="350232"><CODE>  {Variable NAME(Direction) CLR(10,0) BND(RECT) (0.2,0.0) (0.8,0.2)
</CODE><BR><A NAME="350233"><CODE>     {Button CLR(3,2) ACT(&#147;n&#148;)
</CODE><BR><A NAME="350234"><CODE>       BND(5) (0.51,3.12) (0.64,3.53) (0.51,3.88) (0.36,3.53) (0.51,3.12)
</CODE><BR><A NAME="350235"><CODE>         {Text NAME(N) CLR(10,0) FLG(IsVis) BND(RECT) (0.0,1.0) (1.0,2.0)}
</CODE><BR><A NAME="350236"><CODE>      Button CLR(3,2) ACT(&#147;e&#148;)
</CODE><BR><A NAME="350237"><CODE>      BND(5) (0.55,3.0) (0.7,2.59) (0.9,3.0) (0.7,3.41) (0.55,3.0)
</CODE><BR><A NAME="350238"><CODE>        {Text NAME(E) CLR(10,0) FLG(IsVis) BND(RECT) (1.0,0.0) (2.0,1.0)}
</CODE><BR><A NAME="350239"><CODE>      Button CLR(3,2) ACT(&#147;s&#148;)
</CODE><BR><A NAME="350240"><CODE>      BND(5) (0.51,2.88) (0.36,2.53) (0.51,2.12) (0.64,2.53) (0.51,2.88)
</CODE><BR><A NAME="350241"><CODE>        {Text NAME(S) CLR(10,0) FLG(IsVis) BND(RECT) (0.0,-1.0) (1.0,0.0)}
</CODE><BR><A NAME="350242"><CODE>      Button CLR(3,2) ACT(&#147;w&#148;)
</CODE><BR><A NAME="350243"><CODE>      BND(5) (0.45,3.0) (0.3,3.41) (0.1,3.0) (0.3,2.59) (0.45,3.0)
</CODE><BR><A NAME="350244"><CODE>        {Text NAME(W) CLR(10,0) FLG(IsVis) BND(RECT) (-1.0,0.0) (0.0,1.0)}}}
</CODE><BR><a name="350245">
Here a variable registered under the name &#147;Direction&#148; has four buttons (which are not rectangles), &#147;N&#148;, &#147;E&#148;, &#147;S&#148;, and &#147;W&#148; which take values that are strings and the text of the buttons is outside of the buttons at the points.<p>
</a>
<a name="350246">
<h3>3.6.3   </a>Nonenumerable Variables</h3>
</a>
<a name="350247">
Sometimes variables do not take a small set of discrete values. In such a case a reasonably natural way for a graphical interface to set the variable is to enter the text representation of the value and have it converted to the appropriate binary form. PGS currently only supports ints, longs, floats, doubles, and strings in this way. Here is an example of this:<p>
</a>
<A NAME="350248"><CODE>Container CLR(0,0) BND(RECT) (0.26,0.82) (0.39,0.87)
</CODE><BR><A NAME="350249"><CODE>  {Variable NAME(Theta) CLR(10,0) BND(RECT) (0.0,0.49) (1.0,1.0)
</CODE><BR><A NAME="350250"><CODE>     {Text NAME(30) CLR(10,-1) BND(RECT) (0.05,-0.95) (0.95,-0.05)}}
</CODE><BR><a name="350251">
The text &#147;30&#148; might be the initial value for the variable registered using </a>PG_register_variable under the name &#147;Theta&#148;. PGS uses the actual current value of the variable in the code for all display purposes. To change the value, you place the cursor in the region of the text, edit it to show the correct value, and hit a carriage return. The value of the variable is then set to that show in the text box. Note that the VARIABLE object must be selectable in order for the text box which actually controls the value to be selectable.<p>
</a>
<a name="350252">
<h3>3.6.4   </a>Sliders</h3>
</a>
<a name="350253">
Another way to set numeric variables is to use a button which can move within some limits and whose position within those bounds determines the value of the variable. This is what we call a slider. PGS supports both one dimensional sliders in which there is only one degree of freedom and controls one variable and two dimensional sliders in which there are two degrees of freedom and two variables are controlled simultaneously.<p>
</a>
<a name="350254">
An example of the one dimensional slider is:<p>
</a>
<A NAME="350255"><CODE>Container CLR(0,0) BND(RECT) (0.41,0.82) (0.54,0.88)
</CODE><BR><A NAME="350256"><CODE>  {Variable NAME(Phi) CLR(10,0) BND(RECT) (0.0,0.67) (1.0,1.0)
</CODE><BR><A NAME="350257"><CODE>     {Text NAME(-60) CLR(10,-1) BND(RECT) (0.05,-0.93) (0.95,-0.067)}
</CODE><BR><A NAME="350258"><CODE>   Container CLR(2,2) BND(RECT) (0.0,0.0) (1.0,0.3)
</CODE><BR><A NAME="350259"><CODE>     {Button CLR(0,0) DRW(draw-slider) ACT(slider) BND(RECT) (0.28,0.0) (0.43,1.0)}}
</CODE><BR><a name="350260">
What makes this a one dimensional slider is that the BUTTON with the slider action takes up the entire span in the y direction of the parent CONTAINER. The text is not strictly necessary here. It is nice to see the value, however, and you can also change the value by entering it in the text box. Either mode of setting the values causes both indicators to show the same value.<p>
</a>
<a name="350261">
An example of the two dimensional slider is:<p>
</a>
<A NAME="350262"><CODE>Container CLR(0,0) BND(RECT) (0.65,0.82) (0.8,0.97)
</CODE><BR><A NAME="350263"><CODE>  {Variable NAME(Theta) CLR(10,0) BND(RECT) (0.05,0.88) (0.45,0.99)
</CODE><BR><A NAME="350264"><CODE>     {Text NAME(45) CLR(10,-1) BND(RECT) (0.05,-0.95) (0.95,-0.05)}
</CODE><BR><A NAME="350265"><CODE>   Variable NAME(Phi) CLR(10,0) BND(RECT) (0.55,0.88) (0.95,0.99)
</CODE><BR><A NAME="350266"><CODE>     {Text NAME(0) CLR(10,-1) BND(RECT) (0.05,-0.95) (0.95,-0.05)}
</CODE><BR><A NAME="350267"><CODE>   Container CLR(2,2) BND(RECT) (0.0,0.0) (1.0,0.72)
</CODE><BR><A NAME="350268"><CODE>     {Button CLR(0,0) DRW(draw-slider) ACT(slider) BND(RECT) (0.0,0.0) (0.1,0.1)}}
</CODE><BR><a name="350269">
This is a two dimensional slider because the BUTTON with the slider action does not span either the entire x or y direction of the CONTAINER parent. The first VARIABLE, &#147;Theta&#148;, associates with the x direction and the second VARIABLE, &#147;Phi&#148;, with the y direction. The text boxes work the same way as for the one dimensional slider.<p>
</a>
<a name="350270">
<h3>3.6.5   </a>Transients</h3>
</a>
<a name="350271">
Certain interface objects may be visible only transiently in routine use. Pull down menus and dialog boxes are examples of such constructs. Here is an example of an object whose visibility and selectability are toggled when a button is selected.<p>
</a>
<A NAME="350272"><CODE>Container NAME(Menu) CLR(0,0) FLG( ) BND(RECT) (0.349,0.021) (0.551,0.121)
</CODE><BR><A NAME="350273"><CODE>  {Text NAME(A) CLR(10,-1) FLG(IsVis) BND(RECT) (0.052,0.014) (0.948,0.333)
</CODE><BR><A NAME="350274"><CODE>   Text NAME(B) CLR(10,-1) FLG(IsVis) BND(RECT) (0.052,0.333) (0.948,0.667)
</CODE><BR><A NAME="350275"><CODE>   Text NAME(C) CLR(10,-1) FLG(IsVis) BND(RECT) (0.052,0.667) (0.948,0.986)}
</CODE><BR><A NAME="350276"><CODE>
</CODE><BR><A NAME="350277"><CODE>Button CLR(3,2) DRW(draw-button) ACT(toggle,Menu) BND(RECT) (0.101,0.05) (0.200,0.10)
</CODE><BR><A NAME="350278"><CODE>  {Text NAME(Menu) CLR(10,-1) FLG(IsVis) DRW(draw-text)
</CODE><BR><A NAME="350279"><CODE>   BND(RECT) (0.053,0.286) (0.947,0.714)}
</CODE><BR><a name="350280">
The container &#147;Menu&#148; forms the subtree which is to be summoned and dismissed by actuating the button. Notice how the connection works. The action specifies both the toggle method and an interface object whose visibility and selectability are to be toggled. Compare this with the next example below.<p>
</a>
<A NAME="350281"><CODE>Container NAME(Rendering) CLR(0,0) FLG( ) BND(RECT) (0.399,0.051) (0.601,0.151)
</CODE><BR><A NAME="350282"><CODE>  {Text NAME(Rend) CLR(10,-1) FLG(IsVis) BND(RECT) (0.052,0.014) (0.948,0.333)}
</CODE><BR><A NAME="350283"><CODE>
</CODE><BR><A NAME="350284"><CODE>Container NAME(Axis) CLR(0,0) FLG( ) BND(RECT) (0.449,0.101) (0.651,0.201)
</CODE><BR><A NAME="350285"><CODE>  {Text NAME(Ax) CLR(10,-1) FLG(IsVis) BND(RECT) (0.052,0.014) (0.948,0.333)}
</CODE><BR><A NAME="350286"><CODE>
</CODE><BR><A NAME="350287"><CODE>Container CLR(0,0) BND(RECT) (0.101,0.100) (0.200,0.18)
</CODE><BR><A NAME="350288"><CODE>  {Variable NAME(Which-Panel) CLR(0,0) ACT(toggle) BND(RECT) (0.0,0.0) (1.0,1.0)
</CODE><BR><A NAME="350289"><CODE>     {Button CLR(3,2) DRW(draw-button) ACT(Rendering) BND(RECT) (0.0,0.5) (1.0,1.0)
</CODE><BR><A NAME="350290"><CODE>        {Text NAME(Render) CLR(10,-1) FLG(IsVis) DRW(draw-text)
</CODE><BR><A NAME="350291"><CODE>         BND(RECT) (0.05,0.3) (0.95,0.95)}
</CODE><BR><A NAME="350292"><CODE>      Button CLR(3,2) DRW(draw-button) ACT(Axis) BND(RECT) (0.0,0.0) (1.0,0.5)
</CODE><BR><A NAME="350293"><CODE>        {Text NAME(Axis) CLR(10,-1) FLG(IsVis) DRW(draw-text)
</CODE><BR><A NAME="350294"><CODE>         BND(RECT) (0.05,0.3) (0.95,0.95)}}}
</CODE><BR><a name="350295">
In this case a variable is defined with the toggle method. The value of the variable is a string which is the name of the container to be toggled. That is, if the &#147;Render&#148; button is pressed, the &#147;Rendering&#148; container becomes visible and selectable. If the &#147;Axis&#148; button is now pressed, the &#147;Rendering&#148; container becomes invisible and unselectable while the &#147;Axis&#148; container becomes visible and selectable. A key feature here is that the variable &#147;Which-Panel&#148; does not and should not be registered by the application. PGS implicitly defines and registers undefined variables like this as strings and uses them as described above.<p>
</a>
<a name="352126">
<h1>4.0   Rendering Model</h1>
</a>
<a name="352128">
This section describes the model used in PGS to do various high level renderings of data for the purposes of scientific visualization. High level renderings refer to the notion of carrying out a large number of graphical operations to generate a &#147;plot&#148; or &#147;rendering&#148; of a set of data. To make this as easy as possible, PGS supplies a set of routines which will give &#147;one picture for one call&#148;.  These routines have the flexibility to produce plots which fit the needs of the user who can set rendering attributes to control the output in detail. The attributes all have a reasonable default value so that it is possible to make reasonable plots with a single call.<p>
</a>
<a name="352287">
Visualization does not exist in a vacuum. It is strongly coupled to analysis and to data storage. </a>PACT, of which PGS is a part, has extensive facilities in all of these areas. To communicate among them a common representation of data sets is used and instances of these data sets are passed around. Data sets are organized into two mathematically motivated structures: </a>PM_set and </a>PM_mapping.  These are described in more detail in the </a>PML Users Manual. A third data structure called a PG_graph is used to contain and associate rendering information with the PM_mapping which only contains the data that a simulation or observation would yield or that an analysis program would need. A picture of how these parts fit together is:<p>
</a>
<a name="352288">
<p>
</a>
<a name="352289">
<p>
</a>
<a name="352290">
<p>
</a>
<a name="352291">
<p>
</a>
<a name="352292">
<p>
</a>
<a name="352293">
<p>
</a>
<a name="352294">
<p>
</a>
<a name="352295">
<p>
</a>
<a name="352296">
<p>
</a>
<a name="352297">
<p>
</a>
<a name="352298">
<p>
</a>
<A NAME="352299"><B>Relationship between PG_graphs, PM_mappings, and PM_sets
</B><HR><a name="352129">
<h2>4.1   Data Structures</h2>
</a>
<a name="352300">
The data structures employed in PGS for the purposes of visualization come from PGS itself and PML, the math library for PACT. The interested user should consult the </a>PML Users Manual for more complete information as well as descriptions of routines which manipulate these structures.<p>
</a>
<A NAME="352301"><CENTER><B></B></CENTER><a name="352306">
The PM_set or set represents a collection of objects (primarily but not exclusively numbers). It also describes the dimensionality of the set, the dimensionality of the elements, and the connectivity of the elements.<p>
</a>
<A NAME="352302"><CENTER><B></B></CENTER><a name="352307">
The PM_mapping or mapping represents the relationship between two sets of elements. In mathematics this is the generalization of a function. A mapping consists of two sets, a domain and range set, and a rule for associating elements of the two sets. Generally in numerical applications the rule is based on the order of the elements of the two sets with a specification of centering and strides through the elements.<p>
</a>
<A NAME="352308"><CENTER><B></B></CENTER><a name="352309">
The PM_mesh_topology defines the connectivity of elements in a set if the trivial logical array ordering is not to be used. The logical array ordering is referred to as </a>logical rectangular and is used in many simulations. However, many applications today cannot represent their data in this way and the means for a completely general specfication of neighbor relations is provided by the PM_mesh_topology structure. Such relationships are referred to as </a>arbitrarily connected.<p>
</a>
<A NAME="352303"><CENTER><B></B></CENTER><a name="352310">
To visualize data requires two ingredients: data; and rendering specifications. The mapping described above takes care of the first part and a list of rendering attributes does the rest.  The PG_graph contains these part in one convenient package.<p>
</a>
<A NAME="352304"><CENTER><B></B></CENTER><a name="352311">
A simple but extremely useful data representation is a raster image or cell array. PGS provides a structure to contain such information and visualize it.<p>
</a>
<A NAME="352305"><CENTER><B></B></CENTER><a name="352312">
The specification of color maps is handled with the PG_palette structure.  This information tells PGS how to match 3 dimensional RGB color space with n dimensional data sets. The most common situation is that of a single dimension data in a range set or image, but PGS supports multidimensional palettes for higher dimensional ranges.<p>
</a>
<a name="352130">
<h2>4.2   </a>Rendering Modes</h2>
</a>
<a name="352325">
PGS currently features several rendering modes. They are listed here along with a brief description.<p>
</a>
<A NAME="352327"><CENTER><B></B></CENTER><a name="352352">
Line plots is a generic term referring to graphs with 1 dimensional domains and ranges. When a graph has 1d domain and a 1d range </a>PG_draw_graph will render the data in any of the following ways depending on the value of the </a>PLOT-TYPE attribute.<p>
</a>
<A NAME="352350"></a>CARTESIAN			Canonical x vs y plot.
<P><A NAME="352333"></a>POLAR			Polar plot with r vs theta.
<P><A NAME="352334"></a>INSEL			Inselberg plot with parallel axes and (x, y) points represented as 
lines connecting the values on the axes.
<P><A NAME="352335"></a>HISTOGRAM			Cartesian histogram plot with the steps starting with the </a>LEFT 
value, the </a>RIGHT value, or the averaged or </a>CENTER value.
<P><A NAME="352336"></a>SCATTER			Scatter plot where points are a plotted with a </a>marker character 
but not connected by line segments (Cartesian)
<P><A NAME="352337"></a>LOGICAL			Plot y values versus their array index.  The x values are ignored.
<P><A NAME="352338"></a>ERROR_BAR			Like a scatter plot but instead of marker characters being used 
error bars are drawn. Requires 2 arrays for x error and y error or 4 arrays for 
positive and negative going x error and positive or negative going y error.
<P><A NAME="352339"><CENTER><B></B></CENTER><a name="352340">
Two dimensional plot is a generic term referring to graphs with 2 dimensional domains. The most common situation features a 1 dimensional range but higher dimensions may be used. When a graph has a 2d domain </a>PG_draw_graph will render the data in any of the following ways depending on the value of the </a>PLOT-TYPE attribute.<p>
</a>
<A NAME="352341"></a>PLOT_CONTOUR				A traditional iso contour plot. Can be done with either 
logical or </a>arbitrary connectivity.
<P><A NAME="352342"></a>PLOT_IMAGE				A rasterized image plot. Can only be done with logical 
connectivity.
<P><A NAME="352343"></a>PLOT_WIRE_MESH				The domain values are x and y and the range values are 
z in a 3 dimensional space. Line segments connect neighboring points. The 
data can be examined from any specified </a>view angle. The algorithm is a z buffered scan line technique. Can be done with either logical or arbitrary connectivity.
<P><A NAME="352345"></a>PLOT_SURFACE				The domain values are x and y and the range values are 
z in a 3 dimensional space. In addition to showing the connecting line segments, the faces bounded by the segments are shaded.  Two dimensional ranges 
are handled by taking the first component to be the z value and the second 
component as the color value. The data can be examined from any specified 
</a>view angle. The algorithm is a z buffered scan line technique. Can be done 
with either logical or arbitrary connectivity.
<P><A NAME="352344"></a>PLOT_FILL_POLY					The facets bounded by segments connecting 
neighbors are filled with a single color determined by the range value. Can be 
done with either logical or arbitrary connectivity.
<P><A NAME="352347"><CENTER><B></B></CENTER><a name="352353">
Vector plot refers to a plot in which the range has at least two dimensions. Currently PGS can only render 2 dimensional vectors but in the long term will render higher dimensional vectors as well.  Also currently vector plots may only be done with 2 dimensional domains. They are requesed by setting the </a>PLOT-TYPE attribute of the graph to </a>PLOT_VECTOR.<p>
</a>
<A NAME="352349"><CENTER><B></B></CENTER><a name="352348">
Mesh plots are graphical renderings of the connectivity of a domain set. In PGS lines are drawn connecting neighboring points. They can be either 2 dimensional or 3 dimensional. If 3 dimensional they may be viewed from any angle similarly to the </a>PLOT_WIRE_MESH plots discussed above. If a NULL range is specified only the mesh is drawn. If a range is supplied the range values are printed at their corresponding nodes. They are requesed by setting the </a>PLOT-TYPE attribute of the graph to </a>PLOT_MESH.<p>
</a>
<a name="350983">
<h2>4.3   </a>Rendering Attributes</h2>
</a>
<a name="352215">
By default PGS assumes a &#147;look and feel&#148; for the various renderings that it can do. This look can be reduced to a list of characteristic or attribute values. Realizing that applications need to control their own look and feel, they are given a mechanism to change these attributes.<p>
</a>
<a name="352240">
Generally speaking, attributes are managed as association lists, that is lists of key-value pairs. Attribute list are associated with graphs (PG_graph) and sets (PM_set). That is to say that some rendering attributes belong naturally with a set (for example, the plotting limits) and others with a graph (for example, the number of contour levels). The PGS rendering routines query the attribute lists for specific attribute values and use their defaults if they are not found.<p>
</a>
<a name="352241">
Modifying attribute lists is done with the following functions (summarized from the </a>SCORE User&#146;s Manual):<p>
</a>
<a name="352265">
<p>
</a>
<A NAME="352242"><BR><B>void *SC_assoc(pcons *alist, char *s)
</B><BR><A NAME="352266"><PRE>          Return the attribute value if present
</PRE><A NAME="352243"><BR><B>pcons *SC_add_alist(pcons *alist, char *name, char *type, void *val)
</B><BR><A NAME="352267"><PRE>          Add an attribute value to a list
</PRE><A NAME="352245"><BR><B>pcons *SC_rem_alist(pcons *alist, char *name)
</B><BR><A NAME="352268"><PRE>          Remove an attribute value from a list
</PRE><A NAME="352244"><BR><B>pcons *SC_change_alist(pcons *alist, char *name, char *type, void *val)
</B><BR><A NAME="352269"><PRE>          Change an attribute value and add it if it is not there
</PRE><A NAME="352246"><BR><B>void SC_free_alist(pcons *alist, int level)
</B><BR><A NAME="352270"><PRE>          Release an association list. Use level 2.
</PRE><a name="352131">
<h3>4.3.1   Attributes</h3>
</a>
<a name="352132">
This is the list of attributes currently understood by PGS.  In use these all appear as quoted strings.<p>
</a>
<a name="352247">
<p>
</a>
<A NAME="352133"></a>AXIS-TYPE
<P><A NAME="352205"><PRE>          Flag specifying an axis type of </a>CARTESIAN, </a>POLAR, or </a>INSEL (int).  The 
default is CARTESIAN.
</PRE><A NAME="352134"></a>CHI
<P><A NAME="352210"><PRE>          Value specifying the chi component of the three </a>Euler angles (double).  The 
default is 0.0.
</PRE><A NAME="352135"></a>CORNER
<P><A NAME="352214"><PRE>          Value indicating the node of a logical rectangle which is associated with the 
zone center (int). 1 associates lower right, 2 upper right, 3 upper left, 
and 4 lower left.  This applies to logical rectangular mappings only. The 
default is 2.
</PRE><A NAME="352261"></a>DRAW-AXIS
<P><A NAME="352396"><PRE>          If TRUE a high level rendering routine will draw a set of axes.
</PRE><A NAME="352156"></a>DRAW-LABEL
<P><A NAME="352258"><PRE>          If TRUE a high level rendering routine will draw the graph label.
</PRE><A NAME="352136"></a>DRAW-LEGEND
<P><A NAME="352395"><PRE>          If TRUE the contour plotting routine will draw the legend of contour values.
</PRE><A NAME="352394"></a>DX-MINUS
<P><A NAME="352218"><PRE>          For </a>PLOT_ERROR_BAR type renderings this is the array of negative going 
errors on the x values (double *).  This must have the same number of 
entries as the x values.
</PRE><A NAME="352137"></a>DX-PLUS
<P><A NAME="352233"><PRE>          For </a>PLOT_ERROR_BAR type renderings this is the array of positive going 
errors on the x values (double *).  This must have the same number of 
entries as the x values.
</PRE><A NAME="352138"></a>DY-MINUS
<P><A NAME="352229"><PRE>          For </a>PLOT_ERROR_BAR type renderings this is the array of negative going 
errors on the y values (double *).  This must have the same number of 
entries as the y values.
</PRE><A NAME="352139"></a>DY-PLUS
<P><A NAME="352231"><PRE>          For </a>PLOT_ERROR_BAR type renderings this is the array of positive going 
errors on the y values (double *).  This must have the same number of 
entries as the y values.
</PRE><A NAME="352140"> </a>EXISTENCE
<P><A NAME="352232"><PRE>          An existence map array specifiying missing zones in a logical rectangular 
mesh (char *). This prevents plotting of information which would be 
associated with non-existent zones in a domain mesh.
</PRE><A NAME="352141"></a>HIST-START
<P><A NAME="352234"><PRE>          Flag specifying whether a PLOT_HISTOGRAM rendering starts with the 
value on the LEFT, CENTER, or RIGHT side of the bar (int).
</PRE><A NAME="352393"><PRE>          
</PRE><A NAME="352391"></a>LEVELS
<P><A NAME="352392"><PRE>          The array of contour levels which must be N-LEVELS long (double *). This is 
only used when an application wants more control over contour levels 
than the contour plotting routines in PGS already provide.
</PRE><A NAME="352142"></a>LIMITS
<P><A NAME="352238"><PRE>          Array of minimum and maximum values (one pair per dimension) specifying 
the plotting limits of a domain or range set (double *). The length must 
be twice the number of dimensions of the set.
</PRE><A NAME="352143"></a>LINE-COLOR
<P><A NAME="352239"><PRE>          The line color index (int). The default is </a>BLUE.
</PRE><A NAME="352144"></a>LINE-STYLE
<P><A NAME="352248"><PRE>          The line style index </a>SOLID, </a>DOTTED, </a>DASHED, </a>DOTDASHED (int). The 
default is SOLID.
</PRE><A NAME="352145"></a>LINE-WIDTH
<P><A NAME="352249"><PRE>          The line width (double). The default is 0.0.
</PRE><A NAME="352146"></a>MARKER-INDEX
<P><A NAME="352250"><PRE>          The index into the marker array (int). This depends on how many markers have 
been defined with </a>PG_def_marker. The default is 0.
</PRE><A NAME="352147"></a>MARKER-SCALE
<P><A NAME="352251"><PRE>          The scale factor applied to a marker when drawn (double). The default is 0.01.
</PRE><A NAME="352148"></a>N-LEVELS
<P><A NAME="352252"><PRE>          The number of isocontour levels used in a contour plot (int). The default is 10.
</PRE><A NAME="352149"></a>NORMAL-DIRECTION
<P><A NAME="352253"><PRE>          A flag specifying the normal direction of surface elements in hidden surface 
plot (int). The default is 1.
</PRE><A NAME="352150"></a>PALETTE
<P><A NAME="352254"><PRE>          The name of the </a>palette to use in those plots which need color palettes (char *). 
The default is the current palette of the device.
</PRE><A NAME="352151"></a>PHI
<P><A NAME="352255"><PRE>          Value specifying the phi component of the </a>Euler angles defining the viewing 
angle (double). The default is 0.0.
</PRE><A NAME="352152"></a>PHI-LIGHT
<P><A NAME="352256"><PRE>          Value specifiying the phi angle of a light source illuminating a surface plot 
(double). The default is 45.0 degrees.
</PRE><A NAME="352153"></a>PLOT-TYPE
<P><A NAME="352257"><PRE>          Flag specifying the plot type </a>CARTESIAN, </a>POLAR, or </a>INSEL (int). The 
default is CARTESIAN.
</PRE><A NAME="352154"></a>RATIO
<P><A NAME="352260"><PRE>          Isocontour spacing ratio (double). The default is 1.0.
</PRE><A NAME="352157"></a>SCATTER
<P><A NAME="352262"><PRE>          Flag specifying that a rendering be done as a scatter plot if TRUE (int). The 
default is FALSE.
</PRE><A NAME="352155"></a>THETA
<P><A NAME="352259"><PRE>          Value specifying the theta component of the </a>Euler angles defining the viewing 
angle (double). The default is 0.0.
</PRE><A NAME="352397"></a>THETA-LIGHT
<P><A NAME="352398"><PRE>          Value specifiying the theta angle of a light source illuminating a surface plot 
(double). The default is 45.0 degrees.
</PRE><A NAME="352158"></a>VIEW-PORT
<P><A NAME="352263"><PRE>          An array of values in </a>normalized coordinates (xmin, xmax, ymin, and ymax) 
specifying a </a>viewport to be for a plot (double *). The default is defined 
by each rendering routine to maximize the area of the plot.
</PRE><a name="352264">
<p>
</a>
<a name="352161">
<h3>4.3.2   Plots and associated attributes</h3>
</a>
<a name="352162">
This section tells which rendering attributes are meaningful to which renderings.<p>
</a>
<a name="352163">
<h4>4.3.2.1   Contour Plot Attributes</h4>
</a>
<A NAME="352164"></a>DRAW-AXIS
<P><A NAME="352422"></a>DRAW-LABEL
<P><A NAME="352423"></a>DRAW-LEGEND
<P><A NAME="352421"></a>LEVELS
<P><A NAME="352420"></a>LIMITS
<P><A NAME="352165"></a>LINE-COLOR
<P><A NAME="352166"></a>LINE-WIDTH
<P><A NAME="352167"></a>LINE-STYLE
<P><A NAME="352168"></a>N-LEVELS
<P><A NAME="352390"></a>LEVELS
<P><A NAME="352169"></a>RATIO
<P><A NAME="352170"></a>VIEW-PORT
<P><a name="352171">
<h4>4.3.2.2   Domain Plot Attributes</h4>
</a>
<A NAME="352172"></a>CHI
<P><A NAME="352173"></a>CORNER
<P><A NAME="352424"></a>DRAW-AXIS
<P><A NAME="352425"></a>DRAW-LABEL
<P><A NAME="352174"></a>EXISTENCE
<P><A NAME="352175"></a>LIMITS
<P><A NAME="352176"></a>LINE-COLOR
<P><A NAME="352177"></a>LINE-STYLE
<P><A NAME="352178"></a>LINE-WIDTH
<P><A NAME="352179"></a>MARKER-INDEX
<P><A NAME="352180"></a>MARKER-SCALE
<P><A NAME="352181"></a>PALETTE
<P><A NAME="352182"></a>PHI
<P><A NAME="352183"></a>PHI-LIGHT
<P><A NAME="352184"></a>PLOT-TYPE
<P><A NAME="352185"></a>THETA
<P><A NAME="352186"></a>THETA-LIGHT
<P><A NAME="352187"></a>SCATTER
<P><a name="352189">
<h4>4.3.2.3   Line Plot Attributes</h4>
</a>
<A NAME="352190"></a>AXIS-TYPE
<P><A NAME="352191"></a>DX-MINUS
<P><A NAME="352192"></a>DX-PLUS
<P><A NAME="352193"></a>DY-MINUS
<P><A NAME="352194"></a>DY-PLUS
<P><A NAME="352195"></a>HIST-START
<P><A NAME="352196"></a>LINE-COLOR
<P><A NAME="352197"></a>LINE-STYLE
<P><A NAME="352198"></a>LINE-WIDTH
<P><A NAME="352199"></a>MARKER-INDEX
<P><A NAME="352200"></a>PLOT-TYPE
<P><A NAME="352201"></a>SCATTER
<P><a name="352203">
<h4>4.3.2.4   Hidden Surface Attributes</h4>
</a>
<A NAME="352204"></a>NORMAL-DIRECTION
<P><a name="352206">
<h4>4.3.2.5   Image Plot Attributes</h4>
</a>
<A NAME="352207"></a>CORNER
<P><A NAME="352426"></a>DRAW-AXIS
<P><A NAME="352427"></a>DRAW-LABEL
<P><A NAME="352208"></a>EXISTENCE
<P><A NAME="352209"></a>LIMITS
<P><a name="352211">
<h4>4.3.2.6   Fill Poly Plot Attributes</h4>
</a>
<A NAME="352212"></a>CORNER
<P><A NAME="352428"></a>DRAW-AXIS
<P><A NAME="352429"></a>DRAW-LABEL
<P><A NAME="352213"></a>EXISTENCE
<P><A NAME="352216"></a>LIMITS
<P><A NAME="352217"></a>VIEW-PORT
<P><a name="352219">
<h4>4.3.2.7   Surface Plot Attributes</h4>
</a>
<A NAME="352220"></a>CHI
<P><A NAME="352221"></a>CORNER
<P><A NAME="352430"></a>DRAW-AXIS
<P><A NAME="352431"></a>DRAW-LABEL
<P><A NAME="352222"></a>EXISTENCE
<P><A NAME="352223"></a>LIMITS
<P><A NAME="352224"></a>LINE-COLOR
<P><A NAME="352225"></a>LINE-STYLE
<P><A NAME="352226"></a>LINE-WIDTH
<P><A NAME="352227"></a>PHI
<P><A NAME="352228"></a>THETA
<P><a name="352230">
<h4>4.3.2.8   Vector Plot Attributes</h4>
</a>
<A NAME="352159"></a>CORNER
<P><A NAME="352432"></a>DRAW-AXIS
<P><A NAME="352433"></a>DRAW-LABEL
<P><A NAME="352160"></a>EXISTENCE
<P><A NAME="352188"></a>LIMITS
<P><A NAME="352202"></a>LINE-COLOR
<P><A NAME="352235"></a>LINE-STYLE
<P><A NAME="352236"></a>LINE-WIDTH
<P><A NAME="352237"></a>VIEW-PORT
<P><a name="350296">
<h1>5.0   The </a>PGS API</h1>
</a>
<a name="350297">
The </a>application program interface (API) for PGS is presented in this section. There are three language bindings for most functions in PGS: C; Fortran; and SX. SX is a part of PACT as is PGS. It is an extended dialect of the Scheme programming language. What you get using SX is like what you get using C and loading with the PGS library. Keep in mind however that SX is an interpreted language and lends itself to certain applications which are not suitable for C or Fortran. For more on SX see the SX User&#146;s Manual.<p>
</a>
<a name="350298">
Each language has its own particular features and consequently there are differences in how the PGS functions are used. We have tried to keep consistency between the bindings in order to help users who are familiar with one or more of the languages involved to be able to use any of them. Some discussion of the language differences is given below and the reader is STRONGLY urged to READ this material before proceeding.<p>
</a>
<a name="352314">
The following short hand makes for easier explanations:<p>
</a>
<A NAME="352315">ON and TRUE mean 1 in all languages
<P><A NAME="352316">OFF and FALSE mean 0 in all languages
<P><A NAME="350299"><CENTER><B></B></CENTER><a name="350300">
C is the language in which PGS is implemented. This means that the C bindings traffic in the data structures and pointers of the implementation. The other languages require various devices to obtain a functional equivalent to the C functionality. In this sense the C bindings are fundamental and the reader should keep this in mind at times when attempting to understand some of the more abstruse PGS calls.<p>
</a>
<a name="352313">
A note to C users: PGS is portable to a wide variety of platforms, operating systems, and compilers. Older C compilers do not support the </a>void type well. To smooth over that difference PACT supplies a #define&#146;d constant called </a>byte. On an ANSI system byte is defined to be void, but on an older system, byte is defined to be char.  This works extremely well and provides a relatively small bit of confusion.<p>
</a>
<A NAME="350301"><CENTER><B></B></CENTER><a name="350302">
For Fortran functions the type designator </a>REAL indicates arguments which must be </a>floating point numbers. Whether the actual </a>type declaration in the calling FORTRAN program should be </a>real or </a>double precision is </a>platform dependent. In all cases PGS expects a </a>64 bit quantity. <p>
</a>
<a name="350303">
Since there is no accepted standard for how C and Fortran communicate, it is necessary for PGS (and all of PACT) to observe one rule regarding string arguments: two variables are passed. The first is the number of meaningful characters in the string and the second is the string itself.<p>
</a>
<a name="350304">
All functions in the FORTRAN API return TRUE (1) if PGS detects no error (some host systems are better than others about reporting error conditions) and FALSE (0) otherwise unless otherwise noted.<p>
</a>
<A NAME="350305"><CENTER><B></B></CENTER><a name="350306">
In SX as in all LISP dialects two features must be noted and understood. First, values have types not variables. This means that the description of the SX bindings don&#146;t show types associated with the formal parameters. The types of the arguments must match those in the corresponding C calls with the exception of numeric values (they are coerced to the needed type). Second, there are no pointers in the C sense and the language uses pass by value procedure calls. What this means is that nothing is returned to the caller via the argument list. Instead a list of the return values is made and returned. The number and order of the values in the list matches those that are returned via the argument list in the C and Fortran calls.<p>
</a>
<a name="350307">
<h2>5.1   </a>Compiling and Loading</h2>
</a>
<a name="350308">
To compile your C programs you must use the following<p>
</a>
<A NAME="350309"><PRE> #include &lt;pgs.h&gt;
</PRE><a name="350310">
in the source files which deal with PGS graphics.<p>
</a>
<a name="350311">
FORTRAN programs have no special requirements of the sources. It is however important to remember that the PGS FORTRAN routines all begin with &#147;p&#148; and would be implicitly typed as real when in fact they all return integers. You should take care to declare the routines which you use.<p>
</a>
<a name="350312">
To link your application you must use the following libraries in the order specified.<p>
</a>
<A NAME="350313">-lpgs [-lX11] -lppc -lpdb -lpml -lscore [-lm ...]
<P><a name="350314">
Although this is expressed as if for a UNIX linker, the order would be the same for any system with a single pass linker. The items in [] are optional or system dependent.<p>
</a>
<a name="350315">
Each system has different naming conventions for its libraries and the reader is assumed to understand the appropriate naming conventions as well as knowing how to tell the linker to find the installed PACT libraries on each system that they use.<p>
</a>
<a name="350316">
<h2>5.2   </a>PGS </a>Functions</h2>
</a>
<a name="350317">
PGS has a wide variety of functionality. The functionality is broken down into related groups which are listed together in sections and alphabetically in each section.<p>
</a>
<a name="350318">
<h3>5.2.1   </a>Global State Setting Routines</h3>
</a>
<a name="350319">
These routines set state that is global in scope as opposed to device or graph level control.<p>
</a>
<a name="350320">
<p>
</a>
<A NAME="350321><I>C Binding: </I>int </a>PG_def_marker(int n_seg, REAL *x1, REAL *y1, REAL *x2, 
REAL *y2)
<BR><A NAME="350322"><I>F77 Binding: </I>integer </a>pgdmrk(integer n_seg, real x1, real y1, real x2, real y2)
<BR><A NAME="350323"><I>SX Binding: </I>(</a>pg-define-marker x1 y1 x2 y2 ...)
<P><a name="350324">
This routine defines a new marker in terms of a set of line segments. The arguments are the number of segments, n_seg, and arrays specifying the x and y values of the endpoints of each segment. Each array must be n_seg elements long. The values in the arrays must be between -1.0 and 1.0. The marker can be scaled to any size and rotated by using the macros PG_set_marker_scale</a> and </a>PG_set_marker_orientation. The index of the new marker is returned and should be used as values for the </a>MARKER-INDEX attribute where called for.<p>
</a>
<a name="350325">
<p>
</a>
<A NAME="352480><I>C Binding: </I>void </a>PG_set_clear_mode(int mode)
<BR><A NAME="352481"><I>F77 Binding: </I>integer </a>pgsclm(integer mode)
<BR><A NAME="352482"><I>SX Binding: </I>
<P><a name="352483">
Set a global mode which the high level rendering routines use to interpret what it means to </a>clear the current picture. There are three interpretations which PGS supports: 1) is to clear the entire PGS window (</a>CLEAR_SCREEN); 2) is to clear only the viewport (</a>CLEAR_VIEWPORT) this leaves axes and labels which have already been drawn intact; and 3) clear only the current frame (</a>CLEAR_FRAME) which leaves still more elements of a picture untouched. Any other value results in no action being taken by the high level renderers to clear anything.<p>
</a>
<a name="352484">
<p>
</a>
<A NAME="350326><I>C Binding: </I>
<BR><A NAME="350327"><I>F77 Binding: </I>
<BR><A NAME="350328"><I>SX Binding: </I>(</a>pg-set-view-angle! theta phi chi)
<P><a name="350329">
Set a global default </a>viewing angle for 3D plots. From the observer&#146;s point of view:  phi is a clockwise rotation about the positive z axis; theta is a clockwise rotation about the positive x axis; and chi is a counter-clockwise rotation about the line of sight which is the same as the z axis after the theta and phi rotations have been applied. The theta rotation is done so that a view looking down the z axis (x, y) is turned into a view looking down the y axis (x, z) in the most economical manner - that is with theta equal to 90 degrees.<p>
</a>
<a name="350330">
<h3>5.2.2   </a>Global State Query Routines</h3>
</a>
<a name="352490">
<p>
</a>
<A NAME="352486><I>C Binding: </I>void PG_get_clear_mode(int mode)
<BR><A NAME="352487"><I>F77 Binding: </I>integer pggclm(integer mode)
<BR><A NAME="352488"><I>SX Binding: </I>
<P><a name="352489">
Get the current value of the global mode which the high level rendering routines use to interpret what it means to </a>clear the current picture. See </a>PG_set_clear_mode for a fuller discussion.<p>
</a>
<a name="352485">
<p>
</a>
<a name="350331">
<h3>5.2.3   </a>Memory Management Routines</h3>
</a>
<a name="350332">
These routines allocate and initialize or release instances of PGS data structures.<p>
</a>
<a name="350333">
<p>
</a>
<A NAME="350334><I>C Binding: </I>PG_device *</a>PG_make_device(char *name, char *type, char *title)
<BR><A NAME="350335"><I>F77 Binding: </I>integer </a>pgmkdv(integer ncn, char *name, integer nct, char *type, 
integer ncl, char *title)
<BR><A NAME="350336"><I>SX Binding: </I>(</a>pg-make-device name type title)
<P><a name="350337">
Allocate and initialize a new PG_device structure. Name specifies the kind of device wanted (</a>WINDOW, </a>PS, </a>CGM, </a>RASTER). Type specifies whether the device is COLOR or MONOCHROME. Title is either the text of a title bar or the name of an output file as in the case of PS or CGM devices. In the case of PS or CGM devices the title is used as the base of the file name and &#147;.ps&#148; or &#147;.cgm&#148; is added as the suffix appropriately. In addition, with PS devices the EPS conformance level can be specified as follows:<p>
</a>
<A NAME="350342">base_name [PS-level [EPS-level]]
<P><a name="350338">
where PS-level and EPS-level specify the level of conformance.  PGS writes very highly conforming files but some applications which would import them cannot recognize standards which are higher or lower than the ones for which they are programmed. This method lets PGS based applications target their applications. Values of 2.0 or 3.0 are most common.<p>
</a>
<a name="352286">
<p>
</a>
<A NAME="350339><I>C Binding: </I>PG_graph *</a>PG_make_graph_from_mapping(PM_mapping *f, char 
*info_type, void *info, int id, PG_graph *next)
<BR><A NAME="350340"><I>F77 Binding: </I>
<BR><A NAME="350341"><I>SX Binding: </I>
<P><a name="350347">
Setup and return a PG_graph using a PM_mapping, f, and rendering information in the alist info. The id is a character which will be used as a starting data-id on a contour plot or as the data-id of a line plot. To chain graphs together so that they may be plotted together next is used to point to the next graph in a chain.<p>
</a>
<a name="350343">
<p>
</a>
<A NAME="350344><I>C Binding: </I>PG_graph *</a>PG_make_graph_from_sets(char *label, PM_set 
*domain, PM_set *range, int centering, char *info_type, 
void *info, int id, PG_graph *next)
<BR><A NAME="350345"><I>F77 Binding: </I>integer </a>pgmgfs(integer nl, char *label, integer domid, integer ranid, 
integer centering, integer id, integer next)
<BR><A NAME="350346"><I>SX Binding: </I>(</a>pg-make-graph domain range [centering color width style emap name])
<P><a name="352285">
Setup a new instance of a PG_graph and return it. The arguments are: the domain and range sets of the mapping part of the graph; the relative of the centering of the range and domain data; and rendering information in the form of an alist, info, or line color, width and style and an existence map, emap, for the mesh. The label is a string used to label the entire plot and may be plotted in some circumstances. The id is a character which will be used as a starting data-id on a contour plot or as the data-id of a line plot. To chain graphs together so that they may be plotted together next is used to point to the next graph in a chain.<p>
</a>
<a name="350348">
<p>
</a>
<A NAME="350349><I>C Binding: </I>PG_graph *</a>PG_make_graph_r2_r1(int id, char *label, int cp, int 
kmax, int lmax, int centering, REAL *x, REAL *y, 
REAL *r, char *dname, char *rname)
<BR><A NAME="350350"><I>F77 Binding: </I>integer </a>pgmg21(integer id, integer nl, char *label, integer cp, integer 
kmax, integer lmax, integer centering, real x, real y, real 
r, integer nd, char *dname, integer nr, char *rname)
<BR><A NAME="350351"><I>SX Binding: </I>
<P><a name="352284">
Setup and return a specific kind of graph containing a 2d rectangular domain from arrays x and y and a matching 1d range from array r. The size of the arrays is kmax by lmax. If cp is TRUE the x, y, and r arrays will be copied for the domain and range sets. It is sometimes necessary for the sets to have dynamically allocated spaces or to have spaces which they can safely free when they are released. The id is a character which will be used as a starting data-id on a contour plot. The dname and rname are strings used a labels for the domain and range sets respectively.  They are never printed on a plot but would be written out to a data file. The label is a string used to label the entire plot and may be plotted in some circumstances.<p>
</a>
<a name="350352">
<p>
</a>
<a name="350353">
<p>
</a>
<A NAME="350354><I>C Binding: </I>PG_graph *</a>PG_make_graph_1d(int id, char *label, int cp, int n, 
REAL *x, REAL *y, char *xname, char *yname)
<BR><A NAME="350355"><I>F77 Binding: </I>integer </a>pgmg11(integer id, integer nl, char *label, integer cp, integer n, 
real x, real y, integer nx, char *xname, integer ny, char 
*yname)
<BR><A NAME="350356"><I>SX Binding: </I>
<P><a name="350357">
Setup and return a specific kind of graph containing a 1d domain from array x and a matching 1d range from array y. The size of the arrays is n. If cp is TRUE the x, y, and r arrays will be copied for the domain and range sets. The reason for this is that it is sometimes necessary for the sets to have dynamically allocated spaces or to have spaces which they can safely free when they are released. The id is a character which will be used as a data-id on a plot. The xname and yname are strings used a labels for the domain and range sets respectively.  They are never printed on a plot but would be written out to a data file. The label is a string used to label the entire plot and may be plotted in some circumstances.<p>
</a>
<a name="350358">
<p>
</a>
<A NAME="350363><I>C Binding: </I>void </a>PG_rl_graph(PG_graph *g, int rld, int rlr)
<BR><A NAME="350364"><I>F77 Binding: </I>integer </a>pgrlgr(integer g, integer rld, integer rlr)
<BR><A NAME="350365"><I>SX Binding: </I>                 automatically garbage collected
<P><a name="350366">
This function releases an instance of a PG_graph. If rld is TRUE the data arrays in the domain set will be freed and if rlr is TRUE the data arrays in the range set will be freed.<p>
</a>
<a name="350367">
<p>
</a>
<A NAME="350359><I>C Binding: </I>PG_image *</a>PG_make_image(char *label, char *type, double xmn, 
double xmx, double ymn, double ymx, double zmn, 
double zmx, int k, int l, int bits_pix, PG_palette *palette)
<BR><A NAME="350360"><I>F77 Binding: </I>
<BR><A NAME="350361"><I>SX Binding: </I>(</a>pg-build-image dev data k l [name xmn xmx ymn ymx zmn zmx])
<P><a name="350362">
The arguments to this function are:<p>
</a>
<A NAME="350690">label		a label string for the image
<P><A NAME="350691">type		the data type used in the image
<P><A NAME="350692">(xmn, xmx)		the minimum and maximum extent in the x direction
<P><A NAME="350693">(ymn, ymx)		the minimum and maximum extent in the y direction
<P><A NAME="350694">(zmn, zmx)		the minimum and maximum extent in the image data
<P><A NAME="352281">(k, l)		the number of pixels in the x and y direction respectively
<P><A NAME="352282">bits_pix		the number of image bits per pixel (1 for MONOCHROME and typically 8 for COLOR)
<P><A NAME="352283">palette		the palette to be used in rendering the image
<P><A NAME="350368><I>C Binding: </I>void </a>PG_rl_image(PG_image *im)
<BR><A NAME="350369"><I>F77 Binding: </I>
<BR><A NAME="350370"><I>SX Binding: </I>                 automatically garbage collected
<P><a name="350371">
These two functions create and release PG_image instances. The images are k by l pixels. They have world coordinate extents from xmin to xmax and ymin to ymax. The data ranges from zmin to zmax and is of type type. A palette may be supplied along with a label for a plot.<p>
</a>
<a name="350372">
<p>
</a>
<a name="350373">
<h3>5.2.4   </a>Device Control Routines</h3>
</a>
<a name="350374">
These routines provide for high level control of PGS devices. They also permit applications to set various aspects of the state of devices.<p>
</a>
<a name="350375">
<p>
</a>
<A NAME="350376><I>C Binding: </I>void </a>PG_clear_page(PG_device *dev, int i)
<BR><A NAME="350377"><I>F77 Binding: </I> integer </a>pgclpg(integer devid, int i)
<BR><A NAME="350378"><I>SX Binding: </I>
<P><a name="350379">
Clear the page for a text window such as the console. Leave the current line at line i in the PGS window.<p>
</a>
<a name="350380">
<p>
</a>
<A NAME="350381><I>C Binding: </I>void </a>PG_clear_region_NDC(PG_device *dev, double xmn, double 
xmx, double ymn, double ymx, int pad)
<BR><A NAME="350382"><I>F77 Binding: </I>integer </a>pgclrg(integer devid, real xmn, real xmx, real ymn, real ymx, 
integer pad)
<BR><A NAME="350383"><I>SX Binding: </I>(</a>pg-clear-region dev xmn xmx ymn ymx pad)
<P><a name="350384">
Clear the rectangular region, specified in normalized coordinates, of the given device. The limits of the rectangle are xmn, xmx, ymn, and ymx. The pad is a number of pixels to inset the cleared region. This facilitates clearing a region without removing a border line around the region.<p>
</a>
<a name="350385">
<p>
</a>
<A NAME="350386><I>C Binding: </I>void </a>PG_clear_window(PG_device *dev)
<BR><A NAME="350387"><I>F77 Binding: </I>integer </a>pgclsc(integer devid)
<BR><A NAME="350388"><I>SX Binding: </I>(</a>pg-clear-window dev)
<P><a name="350389">
Clear the entire PGS window on the specified device.<p>
</a>
<a name="350390">
<p>
</a>
<A NAME="350391><I>C Binding: </I>void </a>PG_clear_viewport(PG_device *dev)
<BR><A NAME="350392"><I>F77 Binding: </I>integer </a>pgclvp(integer devid)
<BR><A NAME="350393"><I>SX Binding: </I>(</a>pg-clear-viewport dev)
<P><a name="350394">
Clear the current viewport region only on the specified device.<p>
</a>
<a name="350395">
<p>
</a>
<A NAME="350396><I>C Binding: </I>void </a>PG_close_console(void)
<BR><A NAME="350397"><I>F77 Binding: </I>
<BR><A NAME="350398"><I>SX Binding: </I>
<P><a name="350399">
Close the console device.<p>
</a>
<a name="350400">
<p>
</a>
<A NAME="350401><I>C Binding: </I>void </a>PG_close_device(PG_device *dev)
<BR><A NAME="350402"><I>F77 Binding: </I>integer </a></a>pgclos(integer dev)
<BR><A NAME="350403"><I>SX Binding: </I>(</a>pg-close-device dev)
<P><a name="350404">
Close the specified device, dev.<p>
</a>
<a name="350405">
<p>
</a>
<A NAME="350406><I>C Binding: </I>void </a>PG_finish_plot(PG_device *dev)
<BR><A NAME="350407"><I>F77 Binding: </I>integer </a>pgfnpl(integer devid)
<BR><A NAME="350408"><I>SX Binding: </I>(</a>pg-finish-plot dev)
<P><a name="350409">
Finish the picture on the specified device. Once a picture is finished, nothing more can be drawn to the device until a call to </a>PG_clear_window is done without serious consequences. This is especially necessary for devices such as PS and CGM devices.<p>
</a>
<a name="350410">
<p>
</a>
<A NAME="352475><I>C Binding: </I>void </a>PG_get_axis_log_scale(PG_device *dev, int *xls, int *yls)
<BR><A NAME="352476"><I>F77 Binding: </I>integer </a>pggaxl(integer devid, integer xls, integer yls)
<BR><A NAME="352477"><I>SX Binding: </I>
<P><a name="352478">
Get the x-axis or y-axis</a> log scale flags in the specified device. The argument xls contains the value of the x-axis log flag and yls contains the value of the y-axis log flag on return,<p>
</a>
<a name="352479">
<p>
</a>
<A NAME="350411><I>C Binding: </I>void </a>PG_make_device_current(PG_device *dev)
<BR><A NAME="350412"><I>F77 Binding: </I>integer </a>pgmdvc(integer devid)
<BR><A NAME="350413"><I>SX Binding: </I>(</a>pg-make-device-current dev)
<P><a name="350414">
Make the specified device the current device for drawing.<p>
</a>
<a name="350415">
<p>
</a>
<A NAME="350416><I>C Binding: </I>void </a>PG_open_console(char *title, char *type, int bckgr, double xf, 
double yf, double dxf, double dyf)
<BR><A NAME="350417"><I>F77 Binding: </I>
<BR><A NAME="350418"><I>SX Binding: </I>
<P><a name="350419">
Open a console device at the specified point (xf, yf) with the specified width, dxf, and height, dyf (these are all in normalized coordinates). The console window will have title in the title bar, type, type, and the indicated background color. Type, the window type is one of &#147;COLOR&#148; or &#147;MONOCHROME&#148;. Bckgr should be TRUE for white background and FALSE for black background.<p>
</a>
<a name="350420">
<p>
</a>
<A NAME="350421><I>C Binding: </I>PG_device *</a>PG_open_device(PG_device *dev, double xf, double yf, 
double dxf, double dyf)
<BR><A NAME="350422"><I>F77 Binding: </I>integer </a>pgopen(integer devid, REAL xf, REAL yf, REAL dxf, REAL 
dyf)
<BR><A NAME="350423"><I>SX Binding: </I>(</a>pg-open-device dev xf yf dxf dyf)
<P><a name="350424">
Open the specified device at the specified point (xf, yf) with the specified width, dxf, and height, dyf. These values are all normalized to the physical device dimensions. NOTE: to make it easy to create a square window, the actual pixel height of the PGS window is computed as dyf*display_pixel_width!<p>
</a>
<a name="350425">
<p>
</a>
<A NAME="350426><I>C Binding: </I>void </a>PG_release_current_device(PG_device *dev)
<BR><A NAME="350427"><I>F77 Binding: </I>integer </a>pgrdvc(integer devid)
<BR><A NAME="350428"><I>SX Binding: </I>(</a>pg-release-current-device dev)
<P><a name="350429">
Release the specified device as the current drawing device. (A few host graphics systems need this functionality).<p>
</a>
<a name="350430">
<p>
</a>
<A NAME="352470><I>C Binding: </I>void </a>PG_set_attributes(PG_device *dev, PG_dev_attributes *attr)
<BR><A NAME="352471"><I>F77 Binding: </I>
<BR><A NAME="352472"><I>SX Binding: </I>
<P><a name="352473">
Set the collection of attributes from the PG_dev_attributes structure attr in the specified device.<p>
</a>
<a name="352474">
<p>
</a>
<A NAME="350431><I>C Binding: </I>void </a>PG_set_axis_log_scale(PG_device *dev, int xls, int yls)
<BR><A NAME="350432"><I>F77 Binding: </I>integer </a>pgsaxl(integer devid, integer xls, integer yls)
<BR><A NAME="350433"><I>SX Binding: </I>
<P><a name="350434">
Set the x-axis or y-axis</a> log scale flags in the specified device. The argument xls causes the x-axis to be plotted with a log scale if TRUE and yls causes the y-axis to be plotted with a log scale if TRUE.<p>
</a>
<a name="350435">
<p>
</a>
<A NAME="350436><I>C Binding: </I>void </a>PG_set_border_width(PG_device *dev, int t)
<BR><A NAME="350437"><I>F77 Binding: </I>integer </a>pgsbwd(integer devid, integer t)
<BR><A NAME="350438"><I>SX Binding: </I>(</a>pg-set-border-width dev t)
<P><a name="350439">
Set the </a>width of the </a>window </a>border in pixels.<p>
</a>
<a name="350440">
<p>
</a>
<A NAME="350441><I>C Binding: </I>void </a>PG_set_clipping(PG_device *dev, int flag)
<BR><A NAME="350442"><I>F77 Binding: </I>integer </a>pgsclp(integer devid, integer c)
<BR><A NAME="350443"><I>SX Binding: </I>(</a>pg-set-clipping! dev flag)
<P><a name="350444">
Turn on clipping to the current viewport if flag is TRUE and turn off clipping to the current viewport if flag is FALSE on the specified device. NOTE: moving the viewport after turning on the clipping does NOT move the clipping rectangle. To do this turn clipping off and back on again.<p>
</a>
<a name="350445">
<p>
</a>
<A NAME="350446><I>C Binding: </I>void </a>PG_set_fill_color(PG_device *dev, int color)
<BR><A NAME="350447"><I>F77 Binding: </I>integer pgsfcl(integer devid, integer color)
<BR><A NAME="350448"><I>SX Binding: </I>(</a>pg-set-fill-color dev color)
<P><a name="350449">
Set the fill color for the device to color. The color index is mapped through the current palette.<p>
</a>
<a name="350450">
<p>
</a>
<A NAME="350451><I>C Binding: </I>void </a>PG_set_finish_state(PG_device *dev, int fin)
<BR><A NAME="350452"><I>F77 Binding: </I>integer </a>pgsfin(integer dev, integer fin)
<BR><A NAME="350453"><I>SX Binding: </I>(</a>pg-set-finish-state! dev fin)
<P><a name="350454">
Set the state of the flag that tells the high level rendering routines whether or not to assume a plot is finished and issue a call to </a>PG_finish_plot. This is crucial when doing multiple plots or adding to a plot after the high level renderer returns.<p>
</a>
<a name="350455">
<p>
</a>
<A NAME="352375><I>C Binding: </I>void </a>PG_set_marker_orientation(PG_device *dev, double theta)
<BR><A NAME="352376"><I>F77 Binding: </I>integer </a>pgsmko(integer devid, real theta)
<BR><A NAME="352377"><I>SX Binding: </I>(</a>pg-set-marker-orientation! dev theta)
<P><a name="352378">
Set the </a>orientation angle to be applied when drawing markers. Markers can be drawn at any angle. The angle, theta,  is a uniform rotation from the positive x axis in the counter-clockwise direction of all the segments comprising the </a>marker.<p>
</a>
<a name="352379">
<p>
</a>
<A NAME="351644><I>C Binding: </I>void </a>PG_set_marker_scale(PG_device *dev, double v)
<BR><A NAME="351647"><I>F77 Binding: </I>integer pgsms(integer devid, real v)
<BR><A NAME="351648"><I>SX Binding: </I>(</a>pg-set-marker-scale! dev v)
<P><a name="351650">
Set the </a>scale factor to be applied when drawing </a>markers. Markers can be drawn to any size since they are defined in normalized units (see </a>PG_def_marker). The scale factor sets the actual size. A reasonable value might be 0.01.<p>
</a>
<a name="352370">
<p>
</a>
<A NAME="350456><I>C Binding: </I>void </a>PG_set_max_intensity(PG_device *dev, double osc)
<BR><A NAME="350457"><I>F77 Binding: </I>
<BR><A NAME="350458"><I>SX Binding: </I>(</a>pg-set-maximum-intensity! dev osc rsc gsc bsc)
<P><a name="350459">
To better match the characteristics of varying output devices (especially conventional video) this function scales the overall intensity as well as the intensity of the RGB values down from their maximum of unity. The overall, red, green, and blue values are controlled by osc, rsc, gsc, and bsc respectively.<p>
</a>
<a name="350460">
<p>
</a>
<A NAME="350461><I>C Binding: </I>PG_palette *</a>PG_set_palette(PG_device *dev, char *name)
<BR><A NAME="350462"><I>F77 Binding: </I>integer </a>pgspal(integer devid, integer nc, char *name)
<BR><A NAME="350463"><I>SX Binding: </I>(</a>pg-set-palette! dev name)
<P><a name="350464">
Set the </a>current palette to be the named one. The built-in palettes are named: standard, </a>spectrum, </a>rainbow, </a>bw, </a>wb, </a>rgb, </a>cym, </a>hc, </a>bgy, </a>tri, </a>iron, </a>thresh, </a>rand, </a>reds, </a>yellows, </a>greens, </a>cyans, </a>blues, and </a>magentas. Additional palettes may be read in with </a>PG_rd_palette or created with </a>PG_make_palette. The available palettes may be viewed with </a>PG_show_palettes.<p>
</a>
<a name="350465">
<p>
</a>
<A NAME="350471><I>C Binding: </I>void </a>PG_set_res_scale_factor(PG_device *dev, double f)
<BR><A NAME="350472"><I>F77 Binding: </I>
<BR><A NAME="350473"><I>SX Binding: </I>(</a>pg-set-resolution-scale-factor! dev sf)
<P><a name="350474">
Set the value of the hardcopy resolution scale factor. Hardcopy devices can be very high resolution devices which can lead to enormous image files. This control lets the application scale down the resolution of the device to keep image files a reasonable size. The default value is 8, that is by default the resolution is a factor of 8 less than could be obtained for the device. This means a factor of 64 in size for raster images.<p>
</a>
<a name="350475">
<p>
</a>
<A NAME="350476><I>C Binding: </I>void </a>PG_set_viewport_pos(PG_device *dev, REAL x, REAL y)
<BR><A NAME="350477"><I>F77 Binding: </I>integer </a>pgsvps(integer devid, real x, real y)
<BR><A NAME="350478"><I>SX Binding: </I>
<P><a name="350479">
Set the position of the </a>viewport in the window. The specifications are normalized.<p>
</a>
<a name="350480">
<p>
</a>
<A NAME="350481><I>C Binding: </I>void </a>PG_set_viewport_shape(PG_device *dev, REAL width, REAL 
height, REAL aspect)
<BR><A NAME="350482"><I>F77 Binding: </I>integer </a>pgsvsh(integer devid, real width, real height, real aspect)
<BR><A NAME="350483"><I>SX Binding: </I>
<P><a name="350484">
Set the shape of the </a>viewport in the window. The specifications are normalized. The aspect ratio is used iff the height is given as 0.0.<p>
</a>
<a name="350485">
<p>
</a>
<A NAME="350486><I>C Binding: </I>void </a>PG_turn_</a>autodomain(PG_device *dev, int n)
<BR><A NAME="350487"><I>F77 Binding: </I>integer </a>pgsadm(integer dev, integer dm)
<BR><A NAME="350488"><I>SX Binding: </I>(</a>pg-set-autodomain! dev n)
<P><a name="350489">
Determine the </a>domain interval from the data iff n or dm is ON.<p>
</a>
<a name="350490">
<p>
</a>
<A NAME="350491><I>C Binding: </I>void </a>PG_turn_</a>autoplot(PG_device *dev, int n)
<BR><A NAME="350492"><I>F77 Binding: </I>
<BR><A NAME="350493"><I>SX Binding: </I>(</a>pg-set-autoplot! dev n)
<P><a name="350494">
Set flag to applications to automatically </a>replot iff n is ON. This is simply a global variable provided by PGS which applications may use to control plotting.<p>
</a>
<a name="350495">
<p>
</a>
<A NAME="350496><I>C Binding: </I>void </a>PG_turn_</a>autorange(PG_device *dev, int n)
<BR><A NAME="350497"><I>F77 Binding: </I>integer </a>pgsarn(integer dev, integer rn)
<BR><A NAME="350498"><I>SX Binding: </I>(</a>pg-set-autorange! dev n)
<P><a name="350499">
Determine the </a>range interval from the data iff n or rn is ON.<p>
</a>
<a name="350500">
<p>
</a>
<A NAME="350501><I>C Binding: </I>void </a>PG_turn_data_id(PG_device *dev, int n)
<BR><A NAME="350502"><I>F77 Binding: </I>
<BR><A NAME="350503"><I>SX Binding: </I>(</a>pg-set-data-id-flag! dev n)
<P><a name="350504">
Draw </a>data identifiers on plots iff n is ON.<p>
</a>
<a name="350505">
<p>
</a>
<A NAME="350506><I>C Binding: </I>void </a>PG_turn_grid(PG_device *dev, int n)
<BR><A NAME="350507"><I>F77 Binding: </I>
<BR><A NAME="350508"><I>SX Binding: </I>(</a>pg-set-grid-flag! dev n)
<P><a name="350509">
Turn the full </a>axis </a>grid ON or OFF.<p>
</a>
<a name="350510">
<p>
</a>
<A NAME="350511><I>C Binding: </I>void </a>PG_turn_scatter(PG_device *dev, int n)
<BR><A NAME="350512"><I>F77 Binding: </I>
<BR><A NAME="350513"><I>SX Binding: </I>(</a>pg-set-scatter-flag! dev n)
<P><a name="350514">
Draw 1D data sets as </a>scatter plots iff n is ON.<p>
</a>
<a name="350515">
<p>
</a>
<A NAME="350516><I>C Binding: </I>void </a>PG_update_vs(PG_device *dev)
<BR><A NAME="350517"><I>F77 Binding: </I>integer </a>pgupvs(integer devid)
<BR><A NAME="350518"><I>SX Binding: </I>(</a>pg-update-view-surface dev)
<P><a name="350519">
Update the view surface of the specified device. This flushes any buffered graphics to the output medium of the device.<p>
</a>
<a name="350520">
<p>
</a>
<A NAME="350521><I>C Binding: </I>void </a>PG_white_background(PG_device *dev, int n)
<BR><A NAME="350522"><I>F77 Binding: </I>
<BR><A NAME="350523"><I>SX Binding: </I>(</a>pg-set-white-background! dev n)
<P><a name="350524">
If n is TRUE use a white </a>background otherwise use a black background.<p>
</a>
<a name="350525">
<h3>5.2.5   Device Query Routines</h3>
</a>
<a name="350526">
<p>
</a>
<A NAME="350527><I>C Binding: </I>int </a>COLOR_POSTSCRIPT_DEVICE(PG_device *dev)
<BR><A NAME="350528"><I>F77 Binding: </I>
<BR><A NAME="350529"><I>SX Binding: </I>
<P><a name="350530">
TRUE iff dev is a color PostScript device.<p>
</a>
<a name="350531">
<p>
</a>
<A NAME="350532><I>C Binding: </I>
<BR><A NAME="350533"><I>F77 Binding: </I>
<BR><A NAME="350534"><I>SX Binding: </I>(</a>pg-device-properties dev)
<P><a name="350535">
Return the name, type, and title of the device as given in the </a>PG_make_device call which created the device.<p>
</a>
<a name="350536">
<p>
</a>
<A NAME="350537><I>C Binding: </I>PG_dev_attributes *</a>PG_get_attributes(PG_device *dev)
<BR><A NAME="350538"><I>F77 Binding: </I>
<BR><A NAME="350539"><I>SX Binding: </I>
<P><a name="350540">
Collect and return the selection of attributes from the specified device in a newly allocated PG_dev_attributes structure.<p>
</a>
<a name="350541">
<p>
</a>
<A NAME="350542><I>C Binding: </I>void </a>PG_get_clipping(PG_device *dev, int *flag)
<BR><A NAME="350543"><I>F77 Binding: </I>integer </a>pggclp(integer devid, integer flag)
<BR><A NAME="350544"><I>SX Binding: </I>(</a>pg-clipping? dev)
<P><a name="350545">
Get the current </a>clipping state for the specified device in flag.<p>
</a>
<a name="350546">
<p>
</a>
<A NAME="350547><I>C Binding: </I>
<BR><A NAME="350548"><I>F77 Binding: </I>integer </a>pggfin(integer dev, integer fin)
<BR><A NAME="350549"><I>SX Binding: </I>(</a>pg-finish-state dev)
<P><a name="350550">
Return the state of the flag that tells the high level rendering routines whether or not to assume a plot is finished and issue a call to </a>PG_finish_plot.<p>
</a>
<a name="350551">
<p>
</a>
<A NAME="352380><I>C Binding: </I>void </a>PG_get_marker_orientation(PG_device *dev, REAL *v)
<BR><A NAME="352381"><I>F77 Binding: </I>integer </a>pggmko(integer dev, real v)
<BR><A NAME="352382"><I>SX Binding: </I>(</a>pg-marker-orientation dev)
<P><a name="352383">
Get the current </a>marker orientation angle of the device. Markers can be drawn at any angle. The angle returned in v is a uniform rotation from the positive x axis in the counter-clockwise direction of all the segments comprising the marker.<p>
</a>
<a name="352384">
<p>
</a>
<A NAME="352385><I>C Binding: </I>void </a>PG_get_marker_scale(PG_device *dev, REAL *s)
<BR><A NAME="352386"><I>F77 Binding: </I>integer </a>pggmks(integer devid, real s)
<BR><A NAME="352387"><I>SX Binding: </I>(</a>pg-marker-scale dev)
<P><a name="352388">
Get the current </a>marker scale factor of the device. Markers can be drawn to any size since they are defined in normalized units (see </a>PG_def_marker). The scale factor returned in s controls the actual size.<p>
</a>
<a name="352389">
<p>
</a>
<A NAME="350552><I>C Binding: </I>
<BR><A NAME="350553"><I>F77 Binding: </I>
<BR><A NAME="350554"><I>SX Binding: </I>(</a>pg-maximum-intensity dev)
<P><a name="350555">
Return the maximum intensity aggregate value and the individual values for red, green, and blue colors in the specified device. The values are normalized (0.0 to 1.0).<p>
</a>
<a name="350556">
<p>
</a>
<A NAME="350557><I>C Binding: </I>PG_palette *</a>PG_get_palette(PG_device *dev, char *name)
<BR><A NAME="350558"><I>F77 Binding: </I>                         not applicable
<BR><A NAME="350559"><I>SX Binding: </I>(</a>pg-palette-&gt;list dev name)
<P><a name="350560">
Returns a pointer to the palette specified by name.<p>
</a>
<a name="350561">
<p>
</a>
<A NAME="350562><I>C Binding: </I>
<BR><A NAME="350563"><I>F77 Binding: </I>
<BR><A NAME="350564"><I>SX Binding: </I>(</a>pg-palettes dev)
<P><a name="350565">
Return a list of palettes available for the specified device.<p>
</a>
<a name="350566">
<p>
</a>
<A NAME="350567><I>C Binding: </I>int </a>POSTSCRIPT_DEVICE(PG_device *dev)
<BR><A NAME="350568"><I>F77 Binding: </I>
<BR><A NAME="350569"><I>SX Binding: </I>
<P><a name="350570">
TRUE iff dev is a PostScript device.<p>
</a>
<a name="350571">
<p>
</a>
<A NAME="352968><I>C Binding: </I>void </a>PG_query_screen(PG_device *dev, int *pdx, int *pdy, int *pnc)
<BR><A NAME="352970"><I>F77 Binding: </I>integer </a>pgqdev(integer devid, integer dx, integer dy, integer nc)
<BR><A NAME="352972"><I>SX Binding: </I>(</a>pg-query-device dev)
<P><a name="352973">
Query the device for size in pixels and color planes. The number of colors which a device supports is 2nplanes.<p>
</a>
<a name="352974">
<p>
</a>
<A NAME="350572><I>C Binding: </I>void </a>PG_query_window(PG_device *dev, int *pdx, int *pdy)
<BR><A NAME="350573"><I>F77 Binding: </I>integer </a>pgqwin(integer devid, integer dx, integer dy)
<BR><A NAME="350574"><I>SX Binding: </I>(</a>pg-query-window dev)
<P><a name="350575">
Query the shape of the window on the device.<p>
</a>
<a name="350576">
<p>
</a>
<A NAME="350577><I>C Binding: </I>
<BR><A NAME="350578"><I>F77 Binding: </I>
<BR><A NAME="350579"><I>SX Binding: </I>(</a>pg-show-markers)
<P><a name="350580">
Temporarily spawn a window to display the available marker characters on the specified device.<p>
</a>
<a name="350581">
<h3>5.2.6   Coordinate Transformation Routines</h3>
</a>
<a name="350582">
These routines transform points from one coordinate system to another. The three coordinate systems are: pixel coordinates referring to the integer coordinates of pixels in a device; normalized coordinates whose values range from 0.0 to 1.0 and are device independent; and world coordinates which are user defined coordinates (see </a>PG_set_window) tailored to the particular application at hand.<p>
</a>
<a name="350583">
<p>
</a>
<A NAME="350584><I>C Binding: </I>void </a>PtoS(PG_device *dev, int ix, int iy, REAL x, REAL y)
<BR><A NAME="350585"><I>F77 Binding: </I>integer </a>pgptos(integer devid, integer ix, integer iy, REAL x, REAL y)
<BR><A NAME="350586"><I>SX Binding: </I>(</a>pg-pixel-&gt;normalized dev ix iy)
<P><a name="350587">
Converts (ix, iy) from </a>pixel coordinates to </a>NDC/</a>Screen coordinates (x, y).<p>
</a>
<a name="350588">
<p>
</a>
<A NAME="350589><I>C Binding: </I>void </a>StoP(PG_device *dev, REAL x, REAL y, int ix, int iy)
<BR><A NAME="350590"><I>F77 Binding: </I>integer </a>pgstop(integer devid, REAL x, REAL y, integer ix, integer iy)
<BR><A NAME="350591"><I>SX Binding: </I>(</a>pg-normalized-&gt;pixel dev x y)
<P><a name="350592">
Converts (x, y) from </a>NDC/</a>Screen coordinates to </a>pixel coordinates (ix, iy).<p>
</a>
<a name="350593">
<p>
</a>
<A NAME="350594><I>C Binding: </I>void </a>StoW(PG_device *dev, REAL x, REAL y)
<BR><A NAME="350595"><I>F77 Binding: </I>integer </a>pgstow(integer devid, REAL x, REAL y)
<BR><A NAME="350596"><I>SX Binding: </I>(</a>pg-normalized-&gt;world dev x y)
<P><a name="350597">
Converts (x, y) from </a>screen coordinates to </a>world coordinates.<p>
</a>
<a name="350598">
<p>
</a>
<A NAME="350599><I>C Binding: </I>void </a>WtoS(PG_device *dev, REAL x, REAL y)
<BR><A NAME="350600"><I>F77 Binding: </I>integer </a>pgwtos(integer devid, REAL x, REAL y)
<BR><A NAME="350601"><I>SX Binding: </I>(</a>pg-world-&gt;normalized dev x y)
<P><a name="350602">
Converts (x, y) from </a>world coordinates to </a>screen coordinates.<p>
</a>
<a name="350603">
<p>
</a>
<a name="350604">
<h3>5.2.7   </a>Coordinate System and </a>Viewport Control Routines</h3>
</a>
<a name="350605">
These routines provide access to the coordinate system and viewport of a PGS window.<p>
</a>
<a name="350606">
<p>
</a>
<A NAME="350607><I>C Binding: </I>void </a>PG_get_frame(PG_device *dev, REAL *x1, REAL *x2, REAL 
*y1, REAL *y2)
<BR><A NAME="350608"><I>F77 Binding: </I>
<BR><A NAME="350609"><I>SX Binding: </I>(</a>pg-frame dev)
<P><a name="350610">
Get the frame of the specified device. The x and y intervals are specified in NDC by (x1, x2) and (y1, y2) respectively.<p>
</a>
<a name="350611">
<p>
</a>
<A NAME="350612><I>C Binding: </I>void </a>PG_get_viewport(PG_device *dev, REAL *x1, REAL *x2, REAL 
*y1, REAL *y2)
<BR><A NAME="350613"><I>F77 Binding: </I>integer </a>pggvwp(integer devid, REAL x1, REAL x2, REAL y1, REAL 
y2)
<BR><A NAME="350614"><I>SX Binding: </I>(</a>pg-viewport dev)
<P><a name="350615">
Get the viewport of the specified device. The x and y intervals are specified in NDC by (x1, x2) and (y1, y2) respectively.<p>
</a>
<a name="350616">
<p>
</a>
<A NAME="350617><I>C Binding: </I>void </a>PG_get_window(PG_device *dev, REAL *xmn, REAL *xmx, 
REAL *ymn, REAL *ymx)
<BR><A NAME="350618"><I>F77 Binding: </I>integer </a>pggwcs(integer devid, REAL x1, REAL x2, REAL y1, REAL 
y2)
<BR><A NAME="350619"><I>SX Binding: </I>(</a>pg-world-coordinate-system dev)
<P><a name="350620">
Get the world coordinate system defined relative to the viewport for the specified device. The x and y intervals are specified in WC by (x1, x2) and (y1, y2) respectively.<p>
</a>
<a name="350621">
<p>
</a>
<A NAME="350622><I>C Binding: </I>
<BR><A NAME="350623"><I>F77 Binding: </I>integer </a>pgrvpa(integer devid, integer n)
<BR><A NAME="350624"><I>SX Binding: </I>
<P><a name="350625">
Restore the current viewport, coordinate transformations, and related graphical state. A previously saved state (see pgsvpa) is referenced by the index n.<p>
</a>
<a name="350626">
<p>
</a>
<A NAME="350627><I>C Binding: </I>
<BR><A NAME="350628"><I>F77 Binding: </I>integer </a>pgsvpa(integer devid, integer n)
<BR><A NAME="350629"><I>SX Binding: </I>
<P><a name="350630">
Save the current viewport, coordinate transformations, and related graphical state. If n &lt; 0, a new space is internally allocated. Otherwise n is interpreted as an existing state whose space will be reused. Returns an index in n which is to be used with a corresponding call to pgrvpa.<p>
</a>
<a name="350631">
<p>
</a>
<A NAME="350632><I>C Binding: </I>void </a>PG_set_frame(PG_device, double x1, double x2, double y1, 
double y2)
<BR><A NAME="350633"><I>F77 Binding: </I>
<BR><A NAME="350634"><I>SX Binding: </I>(</a>pg-set-frame! dev x1 x2 y1 y2)
<P><a name="350635">
Set the frame of the specified device. The x and y intervals are specified in NDC by (x1, x2) and (y1, y2) respectively.<p>
</a>
<a name="350636">
<p>
</a>
<A NAME="350637><I>C Binding: </I>void </a>PG_set_limits(PG_device *dev, REAL *x, REAL *y, int n, int 
type)
<BR><A NAME="350638"><I>F77 Binding: </I>
<BR><A NAME="350639"><I>SX Binding: </I>
<P><a name="350640">
Set the world coordinate system (defined relative to the viewport) for the specified device finding the limits of the n points in the supplied data arrays. The x and y arrays are specified in WC. Type is the plot type (INSEL, HISTOGRAM, POLAR, CARTESIAN).<p>
</a>
<a name="350641">
<p>
</a>
<A NAME="350642><I>C Binding: </I>void </a>PG_set_viewport(PG_device *dev, double x1, double x2, double 
y1, double y2)
<BR><A NAME="350643"><I>F77 Binding: </I>integer </a>pgsvwp(integer devid, REAL x1, REAL x2, REAL y1, REAL 
y2)
<BR><A NAME="350644"><I>SX Binding: </I>(</a>pg-set-viewport! dev x1 x2 y1 y2)
<P><a name="350645">
Set the viewport of the specified device. The x and y intervals are specified in NDC by (x1, x2) and (y1, y2) respectively.<p>
</a>
<a name="350646">
<p>
</a>
<A NAME="350647><I>C Binding: </I>void </a>PG_set_window(PG_device *dev, double x1, double x2, double y1, 
double y2)
<BR><A NAME="350648"><I>F77 Binding: </I>integer </a>pgswcs(integer devid, REAL x1, REAL x2, REAL y1, REAL 
y2)
<BR><A NAME="350649"><I>SX Binding: </I>(</a>pg-set-world-coordinate-system! dev x1 x2 y1 y2)
<P><a name="350650">
Set the world coordinate system defined relative to the viewport for the specified device. The x and y intervals are specified in WC by (x1, x2) and (y1, y2) respectively.<p>
</a>
<a name="350651">
<p>
</a>
<a name="350652">
<h3>5.2.8   </a>Line </a>Attribute Control Routines</h3>
</a>
<a name="350653">
These routines provide control over how lines appear when drawn.<p>
</a>
<a name="350654">
<p>
</a>
<A NAME="350655><I>C Binding: </I>void </a>PG_get_line_color(PG_device *dev, int *plc)
<BR><A NAME="350656"><I>F77 Binding: </I>integer </a>pgglnc(integer devid, integer lc)
<BR><A NAME="350657"><I>SX Binding: </I>(</a>pg-line-color dev)
<P><a name="350658">
<p>
</a>
<A NAME="352096><I>C Binding: </I>void </a>PG_get_line_style(PG_device *dev, int *pls)
<BR><A NAME="350659"><I>F77 Binding: </I>integer </a>pgglns(integer devid, integer ls)
<BR><A NAME="350660"><I>SX Binding: </I>(</a>pg-line-style dev)
<P><a name="352097">
<p>
</a>
<A NAME="350661><I>C Binding: </I>void </a>PG_get_line_width(PG_device *dev, REAL *plw)
<BR><A NAME="350662"><I>F77 Binding: </I>integer </a>pgglnw(integer devid, REAL lw)
<BR><A NAME="350663"><I>SX Binding: </I>(</a>pg-line-width dev)
<P><a name="352098">
<p>
</a>
<A NAME="350664><I>C Binding: </I>void </a>PG_set_line_color(PG_device *dev, int lc)
<BR><A NAME="350665"><I>F77 Binding: </I>integer </a>pgslnc(integer devid, integer lc)
<BR><A NAME="350666"><I>SX Binding: </I>(</a>pg-set-line-color! dev lc)
<P><a name="352099">
<p>
</a>
<A NAME="350667><I>C Binding: </I>void </a>PG_set_line_style(PG_device *dev, int ls)
<BR><A NAME="350668"><I>F77 Binding: </I>integer </a>pgslns(integer devid, integer ls)
<BR><A NAME="350669"><I>SX Binding: </I>(</a>pg-set-line-style! dev ls)
<P><a name="352100">
<p>
</a>
<A NAME="350670><I>C Binding: </I>void </a>PG_set_line_width(PG_device *dev, double lw)
<BR><A NAME="350671"><I>F77 Binding: </I>integer </a>pgslnw(integer devid, REAL lw)
<BR><A NAME="350672"><I>SX Binding: </I>(</a>pg-set-line-width! dev lw)
<P><a name="350674">
These routines access the state contained in a PG_device pertaining to lines. Specifically color, width, or style. The set routines take the device and the new value, while the get routines take a device and the address where the current line attribute value is to be put. Line widths go from 0.0 (thinnest) on up with 3.0 being a very thick line. Line styles are: </a>SOLID, </a>DOTTED, </a>DASHED, </a>DOTDASHED.<p>
</a>
<a name="350675">
<h3>5.2.9   </a>Text </a>Attribute Control Routines</h3>
</a>
<a name="350676">
The following provide control over text properties. A good deal of this is either unsupported by many host graphics systems or is superceded by the font based approach common in more modern host graphics systems. Users should preferentially use routines addressing themselves to font and type faces.<p>
</a>
<a name="350677">
<p>
</a>
<A NAME="350678"><CENTER><B></B></CENTER><A NAME="350679"><CENTER><B></B></CENTER><A NAME="350680><I>C Binding: </I>
<BR><A NAME="350681"><I>F77 Binding: </I>integer </a>pgscpw(integer devid, REAL x, REAL y)
<BR><A NAME="350682"><I>SX Binding: </I>(</a>pg-set-char-path! dev x y)
<P><a name="350683">
This routine sets the direction along which text will be written.<p>
</a>
<a name="350684">
<p>
</a>
<A NAME="350685><I>C Binding: </I>void </a>PG_set_char_size_NDC(PG_device *dev, double w, double h)
<BR><A NAME="350686"><I>F77 Binding: </I>
<BR><A NAME="350687"><I>SX Binding: </I>
<P><a name="350688">
Set the current character size in normalized coordinates.<p>
</a>
<a name="350689">
<p>
</a>
<A NAME="350695><I>C Binding: </I>void </a>PG_set_char_space(PG_device *dev, double s)
<BR><A NAME="350696"><I>F77 Binding: </I>
<BR><A NAME="350697"><I>SX Binding: </I>
<P><a name="350698">
This routine sets the spacing between characters in world coordinates.<p>
</a>
<a name="350699">
<p>
</a>
<A NAME="350700><I>C Binding: </I>void </a>PG_set_char_up(PG_device *dev, double x, double y)
<BR><A NAME="350701"><I>F77 Binding: </I>integer </a>pgscuw(integer devid, REAL x, REAL y)
<BR><A NAME="350702"><I>SX Binding: </I>(</a>pg-set-char-up! dev x y)
<P><a name="350703">
This routine sets the direction along which characters will be oriented. This is usually orthogonal to the direction along which characters are written.<p>
</a>
<a name="350704">
<p>
</a>
<A NAME="350705><I>C Binding: </I>void </a>PG_set_font(PG_device *dev, char *face, char *style, int size)
<BR><A NAME="350706"><I>F77 Binding: </I>integer </a>pgstxf(integer devid, integer ncf, char *face, integer ncs, char 
*style, integer size)
<BR><A NAME="350707"><I>SX Binding: </I>(</a>pg-set-text-font! dev face style size)
<P><a name="350708">
This routine sets the font in the specified device. Face refers generically to the type face. PGS always supports helvetica, courier, and times. Style refers to the type style and the options are: medium, bold, italic, and bold-italic. Size refers to type size in points.<p>
</a>
<a name="350709">
<p>
</a>
<A NAME="350710><I>C Binding: </I>void </a>PG_set_text_color(PG_device *dev, int tc)
<BR><A NAME="350711"><I>F77 Binding: </I>integer </a>pgstxc(integer devid, integer tc)
<BR><A NAME="350712"><I>SX Binding: </I>(</a>pg-set-text-color! dev tc)
<P><a name="350713">
Set the text color for the specified device.<p>
</a>
<a name="350714">
<p>
</a>
<A NAME="350715"><CENTER><B></B></CENTER><A NAME="350716"><CENTER><B></B></CENTER><A NAME="350717><I>C Binding: </I>
<BR><A NAME="350718"><I>F77 Binding: </I>integer </a>pggcpw(integer devid, REAL x, REAL y)
<BR><A NAME="350719"><I>SX Binding: </I>(</a>pg-character-path dev)
<P><a name="350720">
This routine returns the direction along which text will be written.<p>
</a>
<a name="350721">
<p>
</a>
<A NAME="350722><I>C Binding: </I>
<BR><A NAME="350723"><I>F77 Binding: </I>integer </a>pggcss(integer devid, REAL w, REAL h)
<BR><A NAME="350724"><I>SX Binding: </I>(</a>pg-character-size-ndc dev)
<P><a name="350725">
Return the current character size in normalized coordinates.<p>
</a>
<a name="350726">
<p>
</a>
<A NAME="350727><I>C Binding: </I>
<BR><A NAME="350728"><I>F77 Binding: </I>integer </a>pggcsw(integer devid, REAL w, REAL h)
<BR><A NAME="350729"><I>SX Binding: </I>
<P><a name="350730">
Get the current character size in world coordinates.<p>
</a>
<a name="350731">
<p>
</a>
<A NAME="350732><I>C Binding: </I>void </a>PG_get_char_space(PG_device *dev, REAL *pcsp)
<BR><A NAME="350733"><I>F77 Binding: </I>
<BR><A NAME="350734"><I>SX Binding: </I>
<P><a name="350735">
This routine returns the spacing between characters in world coordinates.<p>
</a>
<a name="350736">
<p>
</a>
<A NAME="350737><I>C Binding: </I>void </a>PG_get_char_up(PG_device *dev, REAL *px, REAL *py)
<BR><A NAME="350738"><I>F77 Binding: </I>integer </a>pggcuw(integer devid, REAL x, REAL y)
<BR><A NAME="350739"><I>SX Binding: </I>(</a>pg-character-up dev)
<P><a name="350740">
This routine returns the direction along which characters will be oriented. This is usually orthogonal to the direction along which characters are written.<p>
</a>
<a name="350741">
<p>
</a>
<A NAME="350742><I>C Binding: </I>void </a>PG_get_font(PG_device *dev, char **face, char **style, int *size)
<BR><A NAME="350743"><I>F77 Binding: </I>integer </a>pggtxf(integer devid, integer ncf, char *face, integer ncs, char 
*style, integer size)
<BR><A NAME="350744"><I>SX Binding: </I>(</a>pg-text-font dev)
<P><a name="350745">
This routine queries the font in the specified device. Face refers generically to the type face. PGS always supports helvetica, courier, and times. Style refers to the type style and the options are: medium, bold, italic, and bold-italic. Size refers to type size in points. The FORTRAN binding has some extra behavior. The string lengths here are both input and output variables.  On input they contain the lengths of the string buffers, face and style. On output they contain the number of actual characters in their respective strings.  If the buffers are not long enough pggtxf returns FALSE and does nothing but return the lengths of the strings. The application can then make a second call with larger buffers.<p>
</a>
<a name="350746">
<p>
</a>
<A NAME="350747><I>C Binding: </I>void </a>PG_get_text_color(PG_device *dev, int *ptc)
<BR><A NAME="350748"><I>F77 Binding: </I>integer </a>pggtxc(integer devid, integer tc)
<BR><A NAME="350749"><I>SX Binding: </I>(</a>pg-text-color dev)
<P><a name="350750">
Query the text color for the specified device.<p>
</a>
<a name="350751">
<p>
</a>
<A NAME="350752><I>C Binding: </I>void </a>PG_get_text_ext(PG_device *dev, char *s, REAL *px, REAL 
*py)
<BR><A NAME="350753"><I>F77 Binding: </I>integer </a>pggtew(integer devid, integer nc, char *s, REAL dx, REAL dy)
<BR><A NAME="350754"><I>SX Binding: </I>(</a>pg-text-extent dev s)
<P><a name="350755">
This routine returns the world coordinate extent of the character string s as a width in px and height in py.<p>
</a>
<a name="350756">
<p>
</a>
<A NAME="350757><I>C Binding: </I>
<BR><A NAME="350758"><I>F77 Binding: </I>integer </a>pggtes(integer devid, integer nc, char *s, REAL dx, REAL dy)
<BR><A NAME="350759"><I>SX Binding: </I>
<P><a name="350760">
This routine returns the normalized coordinate extent of the character string s as a width in px and height in py.<p>
</a>
<a name="350761">
<p>
</a>
<a name="350762">
<h3>5.2.10   </a>Graphical </a>Text </a>I/O Routines</h3>
</a>
<a name="350763">
These routines provide the control over terminal or file I/O in graphical applications. The first two are directed at the special device, PG_console_device, which is opened with </a>PG_open_console.<p>
</a>
<a name="350764">
<p>
</a>
<A NAME="350765><I>C Binding: </I>void </a>PG_center_label(PG_device *dev, double sy, char *label)
<BR><A NAME="350766"><I>F77 Binding: </I>integer </a>pgwrcl(integer dev, real sy, integer nc, char *label)
<BR><A NAME="350767"><I>SX Binding: </I>(</a>pg-center-label dev sy label)
<P><a name="350768">
This routine prints a text string, label, on the specified device and centered horizontally with a normalized vertical position specified by sy.<p>
</a>
<a name="350769">
<p>
</a>
<A NAME="350770><I>C Binding: </I>char *</a>PG_fgets(char *buffer, int maxlen, FILE *stream)
<BR><A NAME="350771"><I>F77 Binding: </I> integer </a>pggtln(integer maxlen, char *buffer, integer stream)
<BR><A NAME="350772"><I>SX Binding: </I>
<P><a name="350773">
This function is call compatible with the standard C library </a>fgets call. It gets input from the console device, PG_console_device, window if stream is stdin and from a file otherwise. In the FORTRAN binding using 0 for stream results in the use of stdin.<p>
</a>
<a name="350774">
<p>
</a>
<A NAME="350775><I>C Binding: </I>int </a>PG_fprintf(FILE *fp, char *fmt, ...)
<BR><A NAME="350776"><I>F77 Binding: </I>                             not applicable
<BR><A NAME="350777"><I>SX Binding: </I>
<P><a name="350778">
This function is call compatible with the standard C library </a>fprintf call. It prints to the console device, PG_console_device, window if fp is stdout and to a file otherwise.<p>
</a>
<a name="350779">
<p>
</a>
<A NAME="350780><I>C Binding: </I>int </a>PG_write_abs(PG_device *dev, double x, double y, char *fmt, ...)
<BR><A NAME="350781"><I>F77 Binding: </I>integer </a>pgwrta(integer devid, REAL x, REAL y, integer nc, char *txt)
<BR><A NAME="350782"><I>SX Binding: </I>(</a>pg-draw-text-abs dev x y txt)
<P><a name="350783">
This routine does an </a>sprintf style print to the specified device, dev, and at the world coordinate point specified by (x, y).<p>
</a>
<a name="350784">
<p>
</a>
<a name="350785">
<h3>5.2.11   </a>Point </a>Move Routines</h3>
</a>
<a name="350786">
PGS maintains two &#147;points&#148;, a text point and a drawing point, at which the next text and line drawing operations will start.<p>
</a>
<a name="350787">
<p>
</a>
<A NAME="350788><I>C Binding: </I>void </a>PG_move_gr_abs(PG_device *dev, double x, double y)
<BR><A NAME="350789"><I>F77 Binding: </I>
<BR><A NAME="350790"><I>SX Binding: </I>
<P><a name="352101">
<p>
</a>
<A NAME="350791><I>C Binding: </I>void </a>PG_move_tx_abs(PG_device *dev, double x, double y)
<BR><A NAME="350792"><I>F77 Binding: </I>
<BR><A NAME="350793"><I>SX Binding: </I>
<P><a name="352102">
<p>
</a>
<A NAME="350794><I>C Binding: </I>void </a>PG_move_tx_rel(PG_device *dev, double x, double y)
<BR><A NAME="350795"><I>F77 Binding: </I>
<BR><A NAME="350796"><I>SX Binding: </I>
<P><a name="350797">
These move the line drawing point (gr) or the text drawing point (tx) to an absolute world coordinate point or relative to the current world coordinate point.<p>
</a>
<a name="350798">
<p>
</a>
<a name="350799">
<h3>5.2.12   </a>Primitive </a>Drawing Routines</h3>
</a>
<a name="350800">
These routines are fundamental drawing routines. Some of these are primitive in the sense that the host graphics systems all seem to supply them. The others are trivial applications of the primitive ones. However, these are termed fundamental in that most other PGS drawing routines are expressed directly in terms of them.<p>
</a>
<a name="350801">
<p>
</a>
<A NAME="350802><I>C Binding: </I>void </a>PG_draw_line(PG_device *dev, double x1, double y1, double x2, 
double y2)
<BR><A NAME="350803"><I>F77 Binding: </I>integer </a>pgdrln(integer devid, REAL x1, REAL y1, REAL x2, REAL 
y2)
<BR><A NAME="350804"><I>SX Binding: </I>(</a>pg-draw-line dev x1 y1 x2 y2)
<P><a name="350805">
This routine draws a line between two world coordinate points specified by (x1, y1) and (x2, y2).<p>
</a>
<a name="350806">
<p>
</a>
<A NAME="350807><I>C Binding: </I>void </a>PG_draw_to_abs(PG_device *dev, double x, double y)
<BR><A NAME="350808"><I>F77 Binding: </I>
<BR><A NAME="350809"><I>SX Binding: </I>
<P><a name="352103">
<p>
</a>
<A NAME="350810><I>C Binding: </I>void </a>PG_draw_to_rel(PG_device *dev, double x, double y)
<BR><A NAME="350811"><I>F77 Binding: </I>
<BR><A NAME="350812"><I>SX Binding: </I>
<P><a name="350813">
These draw a line segment on the specified device to the absolute world coordinate point specified or relative to the current world coordinate point. These both reset the current drawing point to the destination endpoint.<p>
</a>
<a name="350814">
<p>
</a>
<A NAME="350815><I>C Binding: </I>void </a>PG_draw_polyline(PG_device *dev, REAL *x, REAL *y, int n, 
int clp)
<BR><A NAME="350816"><I>F77 Binding: </I>integer </a>pgdpl2(integer devid, REAL x, REAL y, integer n, integer clp)
<BR><A NAME="350817"><I>SX Binding: </I>(</a>pg-draw-polyline-2d dev clp x1 y1 x2 y2 ...)
<P><a name="350818">
This routine draws a connected line on the device, dev, starting with the first point and ending with the last point. The n points are specified in world coordinates and are contained in the x and y arrays. Clp causes the polyline to be clipped to the current viewport if TRUE.<p>
</a>
<a name="350819">
<p>
</a>
<A NAME="350820><I>C Binding: </I>void </a>PG_draw_disjoint_polyline_2(PG_device *dev, REAL *x, REAL 
*y, long n, int flag, int coord)
<BR><A NAME="350821"><I>F77 Binding: </I>integer </a>pgsddp2(integer devid, REAL *x, REAL *y, integer n, integer 
flag, integer coord)
<BR><A NAME="350822"><I>SX Binding: </I>(</a>pg-draw-disjoint-polyline-2d dev flag coord x1 y1 x2 y2 x3 y3 x4 y4 ...)
<P><a name="350823">
This routine draws n unconnected line segments whose 2n endpoints are specified in the x and y arrays (NOTE: x and y are 2n long!). If flag is TRUE and the device has either range or domain autoranging on, the limits of the points in x and y will be used to reset the world coordinate system. If coord is TRUE the points are taken to be in world coordinates and otherwise in normalized coordinates.<p>
</a>
<a name="350824">
<p>
</a>
<A NAME="350825><I>C Binding: </I>void </a>PG_shade_poly(PG_device *dev, REAL *x, REAL *y, int n)
<BR><A NAME="350826"><I>F77 Binding: </I>integer </a>pgfply(integer devid, REAL *px, REAL *py, integer n, integer 
c)
<BR><A NAME="350827"><I>SX Binding: </I>(</a>pg-fill-polygon dev c x1 y1 x2 y2 ...)
<P><a name="350828">
This routine draws a polygon specified by the n world coordinate points in the x and y arrays and fills it with the current fill color (see </a>PG_set_fill_color).<p>
</a>
<a name="350829">
<p>
</a>
<a name="350830">
<h3>5.2.13   </a>Basic </a>Line Drawing Routines</h3>
</a>
<a name="350831">
These routines add some creature comforts to PGS line drawing. They are still low level routines, but they handle some fairly common situations.<p>
</a>
<a name="350832">
<p>
</a>
<A NAME="350833><I>C Binding: </I>void </a>PG_draw_arc(PG_device *dev, double r, double a1, double a2, 
double x, double y, int unit)
<BR><A NAME="350834"><I>F77 Binding: </I>
<BR><A NAME="350835"><I>SX Binding: </I>(</a>pg-draw-arc dev r a1 a2 x y unit)
<P><a name="350836">
This routine draws an arc with radius, r, in world coordinates from angles a1 to a2 centered about the point (x, y) in world coordinates. Unit controls whether the angle is specified in degrees or radians. See the description for </a>PG_draw_rad below for additional details.<p>
</a>
<a name="350837">
<p>
</a>
<A NAME="350838><I>C Binding: </I>void </a>PG_draw_box(PG_device *dev, double xmin, double xmax, 
double ymin, double ymax)
<BR><A NAME="350839"><I>F77 Binding: </I>integer </a>pgdrbx(integer devid, REAL x1, REAL x2, REAL y1, REAL 
y2)
<BR><A NAME="350840"><I>SX Binding: </I>(</a>pg-draw-box dev xmin xmax ymin ymax)
<P><a name="350841">
This routine draws a rectangle from xmin to xmax and from ymin to ymax which are specified in world coordinates.<p>
</a>
<a name="350842">
<p>
</a>
<A NAME="350843><I>C Binding: </I>void </a>PG_draw_disjoint_polyline_3(PG_device *dev, REAL *x, REAL 
*y, REAL *z, double theta, double phi, double chi, long 
n, int flag, int norm)
<BR><A NAME="350844"><I>F77 Binding: </I>integer </a>pgddp3(integer devid, REAL *x, REAL *y, REAL *z, REAL 
theta, REAL phi, REAL chi, integer n, integer flag, 
integer norm)
<BR><A NAME="350845"><I>SX Binding: </I>(</a>pg-draw-disjoint-polyline-3d dev theta phi chi flag norm x1 y1 z1 x2 y2 
z2 x3 y3 z3 x4 y4 z4 ...)
<P><a name="350846">
This routine draws disjoint three dimensional line segments specified in world coordinates. The number of segments, n, is half the number of points. The arrays x, y, and z define the endpoint vectors X. X[2*i] is one endpoint of the ith segment, and X[2*i+1] is the other endpoint. The </a>viewing angle is specified by theta, phi, and chi. The flag norm determines whether the segment will be converted to normalized coordinates, and flag specifies whether the line segments are clipped to the viewport limits.<p>
</a>
<A NAME="350847><I>C Binding: </I>void </a>PG_draw_markers(PG_device *dev, int n, REAL *x, REAL *y, 
int marker)
<BR><A NAME="350848"><I>F77 Binding: </I>integer </a>pgdrmk(integer dev, integer n, real x, real y, integer marker)
<BR><A NAME="350849"><I>SX Binding: </I>(</a>pg-draw-markers dev marker x y)
<P><a name="350850">
This routine draws the marker character specified by marker at each of the n world coordinate points defined by the x and y arrays on the specified device.<p>
</a>
<a name="350851">
<p>
</a>
<A NAME="350852><I>C Binding: </I>void </a>PG_draw_rad(PG_device *dev, double rmin, double rmax, 
double a, double x, double y, int unit)
<BR><A NAME="350853"><I>F77 Binding: </I>
<BR><A NAME="350854"><I>SX Binding: </I>(</a>pg-draw-radius dev rmin rmax a x y unit)
<P><a name="350855">
This routine draws a radial line from the central point (x, y) from rmin to rmax along the direction specified by the angle a (with respect to positive x axis increasing counter-clockwise). If unit has the value DEGREE then the angle a is in degrees and otherwise it is in radians (there is a RADIAN constant for symmetry).<p>
</a>
<a name="350856">
<p>
</a>
<a name="350857">
<h3>5.2.14   </a>Axis </a>Drawing Routines</h3>
</a>
<a name="350858">
These routines handle various aspects of drawing axes. The most basic routine here draws a single axis with very general and controllable characteristics.<p>
</a>
<a name="350859">
<p>
</a>
<A NAME="350860><I>C Binding: </I>void </a>PG_axis(PG_device *dev, int axis_type)
<BR><A NAME="350861"><I>F77 Binding: </I>integer </a>pgaxis(integer devid, integer axt)
<BR><A NAME="350862"><I>SX Binding: </I>(</a>pg-axis device type)
<P><a name="350863">
This routine draws a set of axes which are tied to the viewport and world coordinate system. The valid values for axis_type are: </a>CARTESIAN, </a>POLAR, and </a>INSEL. The axes are drawn on the view boundary. See the drawing model section above for the definition of the view boundary.<p>
</a>
<a name="350864">
<p>
</a>
<A NAME="350865><I>C Binding: </I>void </a>PG_axis_3d(PG_device *dev, REAL *px, REAL *py, REAL *pz, 
int n_pts, double theta, double phi, double chi, double 
xmn, double xmx, double ymn, double ymx, double zmn, 
double zmx, int norm)
<BR><A NAME="350866"><I>F77 Binding: </I>integer </a>pgdax3(integer devid, REAL *x, REAL *y, REAL *z, integer 
n, REAL theta, REAL phi, REAL chi, integer norm)
<BR><A NAME="350867"><I>SX Binding: </I>
<P><a name="350868">
This routine draws a simple set of 3D axes oriented at the specified angle. The extent of the axes is determined by the n_pts points in (px, py, pz). The </a>view angle for the axes is specified by theta, phi, and chi. The unrotated limits of the data are specified by xmn, xmx, ymn, ymx, zmn, and zmx. If the axes should be drawn to normalized coordinates the norm flag should be TRUE.<p>
</a>
<a name="350869">
<p>
</a>
<A NAME="350870><I>C Binding: </I>PG_axis_def *</a>PG_draw_axis(PG_device *dev, double xl, double yl, 
double xr, double yr, double t1, double t2, double v1, 
double v2, double sc, char *format, int tick_type, int 
label_type, int flag, ...)
<BR><A NAME="350871"><I>F77 Binding: </I>integer </a></a>pgdrax(integer devid, REAL xl, REAL yl, REAL xr, REAL yr, 
REAL t1, REAL t2, REAL v1, REAL v2, REAL sc, 
integer nc, char *format, integer tickdef, integer 
tick_type, integer label_type)
<BR><A NAME="350872"><I>SX Binding: </I>(</a>pg-draw-axis dev xl yl xr yr t1 t2 v1 v2 sc format tick_type label_type 
tickdef)
<P><a name="350873">
This routine will draw a single axis and produce labels and/or ticks depending on the arguments. The arguments are:<p>
</a>
<A NAME="350874">(xl, yl)		coordinate of beginning end
<P><A NAME="350875">(xr, yr)		coordinate of terminating end
<P><A NAME="350876">(t1, t2)		fractional position of v1 and v2
<P><A NAME="350877">(v1, v2)		first and last tick or label value
<P><A NAME="350878">sc		an additional scale factor which is used, for example, when doing an 
Inselberg axis in which the range may correspond to one appropriate for the 
perpendicular dimension (set to 1.0 in most cases)
<P><A NAME="350879">format		specifies the label format in the standard C way
<P><A NAME="350880">tick_type		types of ticks
<P><A NAME="350881"><PRE>          </a>RIGHT_OF_AXIS    ticks on right
</PRE><A NAME="350882"><PRE>          </a>LEFT_OF_AXIS       ticks on left
</PRE><A NAME="350883"><PRE>          </a>STRADDLE_AXIS   ticks straddle (both)
</PRE><A NAME="350884">label_type		types of labels
<P><A NAME="350885"><PRE>          </a>RIGHT_OF_AXIS          labels on right
</PRE><A NAME="350886"><PRE>          </a>LEFT_OF_AXIS            labels on left
</PRE><A NAME="350887"><PRE>          </a>NOTHING_ON_AXIS   no labels
</PRE><A NAME="350888"><PRE>          </a>ENDS                              labels at ends of axis
</PRE><A NAME="350889">tickdef		specifies the labels and ticks - one or more may be given and the list is 
terminated with a value of 0.
<P><A NAME="350890"><PRE>          </a>MAJOR   major ticks
</PRE><A NAME="350891"><PRE>          </a>MINOR   minor ticks
</PRE><A NAME="350892"><PRE>          </a>LABEL    labels
</PRE><A NAME="352280">flag		if TRUE return a pointer to a PG_axis def structure (this is mainly for 
internal use) otherwise return NULL.
<P><a name="350893">
An axis is a directed line segment (from Xl to Xr) with ticks. The label values as defined by v1, v2, t1, and t2; the ticks associate with the line segment as follows:<p>
</a>
<a name="350894">
  (xl, yl)                                 (xr, yr)<p>
</a>
<a name="350895">
   ------------------------------------------&gt;        Axis<p>
</a>
<a name="350896">
       |                                          |                                               Ticks<p>
</a>
<a name="350897">
   v1 = v(t1)                      v2 = v(t2)                                       Tick Labels (v)<p>
</a>
<a name="350898">
<p>
</a>
<A NAME="350899><I>C Binding: </I>int </a>PG_set_axis_attributes(PG_device *dev, ...)
<BR><A NAME="350900"><I>F77 Binding: </I>integer </a>pgsaxa(integer devid, integer n, REAL attr, char *attrs)
<BR><A NAME="350901"><I>SX Binding: </I>
<P><a name="350902">
This routine sets the parameters which control the look of the axes being drawn. An arbitrary number of specifications can be made in key/value pairs. The list is terminated with a zero key. In the F77 binding the key/value pairs are placed as floating point numbers in the array attr. The value n is the number of pairs. If the attribute is a character string, the value is put in the character array attrs, and the number of characters is put in attr as the attribute value following the attribute key. The character strings are packed together with no space between the attribute values. This also means that the order of the attributes in the array attr must match those in attrs since only the number of characters is used to associate the attribute with its position in the string attrs.<p>
</a>
<a name="352460">
 The control keys are:<p>
</a>
<A NAME="350903">Name				Type	Value		Description
<P><A NAME="352461"></a>AXIS_LINESTYLE				integer		1	style of the lines
<P><A NAME="350904"></a>AXIS_LINETHICK				real		2	thickness of the lines
<P><A NAME="350905"></a>AXIS_LINECOLOR				integer		3	color of the lines
<P><A NAME="350906"></a>AXIS_LABELCOLOR				integer		4	color of the labels
<P><A NAME="350907"></a>AXIS_LABELFONT				char *		6	label font type face
<P><A NAME="350908"></a>AXIS_LABELPREC				integer		7	character precision
<P><A NAME="350909"></a>AXIS_X_FORMAT				char *		8	format of the x labels
<P><A NAME="350910"></a>AXIS_Y_FORMAT				char *		9	format of the y labels
<P><A NAME="350911"></a>AXIS_TICKSIZE				real		10	tick size in fraction of axis length
<P><A NAME="350912"></a>AXIS_GRID_ON				integer		11	turn on grid iff TRUE
<P><A NAME="350913"></a>AXIS_SIGNIF_DIGIT				integer		12	number of digits in labels
<P><A NAME="350914"></a>AXIS_CHAR_ANGLE				real		13	orientation angle for label
<P><A NAME="352462">							characters (not supported on
<P><A NAME="352463">							all devices)
<P><A NAME="352496><I>C Binding: </I>void </a>PG_get_axis_decades(REAL *d)
<BR><A NAME="352501"><I>F77 Binding: </I>integer </a>pggaxd(real d)
<BR><A NAME="352502"><I>SX Binding: </I>
<P><a name="352503">
This routine returns the current </a>maximum number of decades that log axes will span in the argument d. This facility is primarily aimed at making the use of logarithmic axes more flexible by defining a user controlled limit to the number of decades plotted. In this way, potentially ill-defined logarithmic values (such as very small positive numbers) don&#146;t interfere with the display of otherwise fine values.<p>
</a>
<A NAME="352498><I>C Binding: </I>void </a>PG_set_axis_decades(REAL *d)
<BR><A NAME="352499"><I>F77 Binding: </I>integer </a>pgsaxd(real d)
<BR><A NAME="352500"><I>SX Binding: </I>
<P><a name="352497">
This routine sets the current </a>maximum number of decades that log axes will span to the value of the argument d. This facility is primarily aimed at making the use of logarithmic axes more flexible by defining a user controlled limit to the number of decades plotted. In this way, potentially ill-defined logarithmic values (such as very small positive numbers) don&#146;t interfere with the display of otherwise fine values.<p>
</a>
<a name="350915">
<h3>5.2.15   </a>Colormap Related Routines</h3>
</a>
<a name="350916">
<p>
</a>
<A NAME="350917><I>C Binding: </I>void </a>PG_show_colormap(PG_device *dev, int all)
<BR><A NAME="350918"><I>F77 Binding: </I>
<BR><A NAME="350919"><I>SX Binding: </I>
<P><a name="350920">
Display the </a>colormap for the current </a>palette if all is FALSE and for the entire device colormap if all is TRUE.<p>
</a>
<a name="350921">
<p>
</a>
<A NAME="350922><I>C Binding: </I>void </a>PG_show_palettes(PG_device *dev, char *type, int wbck)
<BR><A NAME="350923"><I>F77 Binding: </I>
<BR><A NAME="350924"><I>SX Binding: </I>(</a>pg-show-palettes dev wbck)
<P><a name="350925">
This routine pops up a temporary new window to display the palettes available for the specified device. The user may browse through the palettes and select one to be the new current palette. When the selection is made the palette window goes away. The type argument specifies the type of device to be spawned (WINDOW, PS, or CGM), this is useful for making hardcopies of the palette set. The wbck argument is TRUE if a white background is wanted and FALSE for a black one.<p>
</a>
<a name="350926">
<p>
</a>
<A NAME="350927><I>C Binding: </I>PG_palette *</a>PG_make_palette(PG_device *dev, char *name, int nc, 
int wbck)
<BR><A NAME="350928"><I>F77 Binding: </I>
<BR><A NAME="350929"><I>SX Binding: </I>(</a>pg-make-palette dev name nc wbck)
<P><a name="350930">
This routine pops up a temporary new window with the available colors of the device and lets the user select from those colors to build up a new palette. When finished the window is dismissed and the new palette becomes the current palette of the device. Colors are selected by clicking on them with the left mouse button. Any number of colors may be selected in this fashion, however, colors selected after the ncth replace previously selected colors. When the new palette is completed, clicking the right button signals acceptance and the window goes away. The new palette is written into a file whose name is the same as the palette name and with a &#147;.pal&#148; extension. The number of colors requested is nc and if wbck is TRUE the temporary window has a white background (otherwise a black one). The palette file can be read in again with the </a>PG_rd_palette function.<p>
</a>
<a name="350931">
<p>
</a>
<A NAME="350932><I>C Binding: </I>PG_palette *</a>PG_rd_palette(PG_device *dev, char *fname)
<BR><A NAME="350933"><I>F77 Binding: </I>
<BR><A NAME="350934"><I>SX Binding: </I>(</a>pg-read-palette dev fname)
<P><a name="350935">
This function reads a palette file and makes the resulting palette the current palette of the specified device. The </a>format of a palette file is simple. It is an ASCII file whose first line contains the name of the palette and the number of colors, nc. The next nc lines contain normalized red, green, and blue values.<p>
</a>
<a name="350936">
<p>
</a>
<A NAME="350937><I>C Binding: </I>int </a>PG_wr_palette(PG_device *dev, PG_palette *pal, char *fname)
<BR><A NAME="350938"><I>F77 Binding: </I>
<BR><A NAME="350939"><I>SX Binding: </I>(</a>pg-write-palette dev pal fname)
<P><a name="350940">
This function writes a specified palette, pal, to a palette file. The </a>format of a palette file is simple. It is an ASCII file whose first line contains the name of the palette and the number of colors, nc. The next nc lines contain normalized red, green, and blue values.<p>
</a>
<a name="350941">
<h3>5.2.16   </a>Graph Control Routines</h3>
</a>
<a name="350942">
These routines control the state of graphs or act on them.<p>
</a>
<a name="350944">
These routines are at the other end of the scale from the previous low level routines. They perform complex drawing operations which are driven by user oriented specifications.<p>
</a>
<a name="350945">
<p>
</a>
<A NAME="350946><I>C Binding: </I>void </a>PG_draw_graph(PG_device *dev, PG_graph *data)
<BR><A NAME="350947"><I>F77 Binding: </I>integer </a>pgplot(integer devid, integer dataid)
<BR><A NAME="350948"><I>SX Binding: </I>(</a>pg-draw-graph dev [data]* rendering)
<P><a name="350949">
This routine draws the graph specified by data on the device specified by dev. The PG_graph structure contains both data and rendering specifications.<p>
</a>
<a name="350950">
<p>
</a>
<A NAME="350951><I>C Binding: </I>void </a>PG_domain_plot(PG_device *dev, PM_set *dom, PM_set *ran)
<BR><A NAME="350952"><I>F77 Binding: </I>integer </a>pgdplt(integer devid, integer domid)
<BR><A NAME="350953"><I>SX Binding: </I>(</a>pg-draw-domain dev [dom]* [type extrema])
<P><a name="350954">
This routine draws the domain set specified by dom on the device specified by dev. The PM_set structure contains the data. This is the generalization of a </a>mesh plot. A range set, ran, may optionally be provided if labels or other information associated with the mesh points are desired. The FORTRAN and SX bindings do not allow a range to be given at this time. The SX binding does allow for plotting limits to be set on the domain. They are specified by n (min, max) pairs where n is the dimensionality of the domain. The plot type may also be directly specified as PLOT_SURFACE, PLOT_MESH, or PLOT_WIRE_MESH instead of in the attribute list of the PM_set. The default is PLOT_WIRE_MESH<p>
</a>
<a name="350955">
<p>
</a>
<A NAME="352409><I>C Binding: </I>void </a>PG_get_identifier(PG_graph *g, int id)
<BR><A NAME="352410"><I>F77 Binding: </I>integer </a>pgggid(integer gid, integer id)
<BR><A NAME="352411"><I>SX Binding: </I>
<P><a name="352412">
Return the identifier character, id, of the specified graph. In the C binding this is a macro.<p>
</a>
<a name="352413">
<p>
</a>
<A NAME="352399><I>C Binding: </I>void </a>PG_get_render_info(PG_graph *g, pcons *alst)
<BR><A NAME="352400"><I>F77 Binding: </I>integer </a>pgginf(integer gid, integer alst)
<BR><A NAME="352401"><I>SX Binding: </I>
<P><a name="352402">
Return the </a>attribute list, alst, of the specified graph. In the C binding this is a macro.<p>
</a>
<a name="352408">
<p>
</a>
<A NAME="352404><I>C Binding: </I>
<BR><A NAME="352405"><I>F77 Binding: </I>integer </a>pgsdlm(integer grid, integer n, REAL v)
<BR><A NAME="352406"><I>SX Binding: </I>(</a>pg-set-domain-limits! gr v1mn v1mx ...)
<P><a name="352407">
Restrict the domain of the mapping contained in the graph to the values in the array v. There are 2n values in (min, max) pairs where n is the dimensionality of the domain.<p>
</a>
<a name="352414">
<p>
</a>
<A NAME="350956><I>C Binding: </I>void </a>PG_set_identifier(PG_graph *g, int id)
<BR><A NAME="350957"><I>F77 Binding: </I>integer </a>pgsgid(integer gid, integer id)
<BR><A NAME="350958"><I>SX Binding: </I>
<P><a name="350959">
Set the </a>identifier character, id, of the specified graph. In the C binding this is a macro.<p>
</a>
<a name="350960">
<p>
</a>
<A NAME="352415><I>C Binding: </I>void  </a>PG_set_render_info(PG_graph *g, pcons *alst)
<BR><A NAME="352416"><I>F77 Binding: </I>integer </a>pgsinf(integer gid, integer alst)
<BR><A NAME="352417"><I>SX Binding: </I>
<P><a name="352418">
Set the </a>attribute list, alst, of the specified graph. In the C binding this is a macro.<p>
</a>
<a name="352419">
<p>
</a>
<A NAME="350961><I>C Binding: </I>
<BR><A NAME="350962"><I>F77 Binding: </I>integer </a>pgsrat(integer grid, integer n, char *name, integer t, char 
*type, char *val)
<BR><A NAME="350963"><I>SX Binding: </I>(</a>pg-set-graph-attribute! gr name type val)
<P><a name="350964">
Set a single rendering attribute in the specified graph. The name of the attribute is in name, its type in type and its value in val. See the section on attributes for more information on attributes and their values.<p>
</a>
<a name="352403">
<p>
</a>
<A NAME="349948><I>C Binding: </I>void </a>PG_set_plot_type(pcons *inf, int plt, int axs)
<BR><A NAME="350466"><I>F77 Binding: </I>
<BR><A NAME="350467"><I>SX Binding: </I>
<P><a name="350468">
Set the plot type, plt, and axis type, axs, for the specified association list, inf. This list is usually the info part of a PG_graph.<p>
</a>
<a name="350469">
<p>
</a>
<A NAME="350965><I>C Binding: </I>
<BR><A NAME="350966"><I>F77 Binding: </I>integer </a>pgsrlm(integer grid, integer n, REAL v)
<BR><A NAME="350967"><I>SX Binding: </I>(</a>pg-set-range-limits! gr v1mn v1mx ...)
<P><a name="350968">
Restrict the range of the mapping contained in the graph to the values in the array v. There are 2n values in (min, max) pairs where n is the dimensionality of the range.<p>
</a>
<a name="350969">
<p>
</a>
<A NAME="350970><I>C Binding: </I>
<BR><A NAME="350971"><I>F77 Binding: </I>integer </a>pgsvlm(integer grid, REAL v)
<BR><A NAME="350972"><I>SX Binding: </I>
<P><a name="350973">
A PG_graph may have its own viewport limits which supercede the device viewport limits. This function takes an array, v, containing the limits and attaches them to the info list of the specified graph, grid. The limits are arranged as xmin, xmax, ymin, ymax.<p>
</a>
<a name="350974">
<p>
</a>
<a name="350975">
<h3>5.2.17   </a>Line </a>Plot Routines</h3>
</a>
<a name="350976">
These routines plot curves in various renderings.<p>
</a>
<a name="350977">
<p>
</a>
<A NAME="350978><I>C Binding: </I>void </a>PG_plot_curve(PG_device *dev, REAL *x, REAL *y, int n, pcons 
*info, int l)
<BR><A NAME="350979"><I>F77 Binding: </I>integer </a>pgplln(integer devid, REAL *px, REAL *py, integer n, integer 
mod, integer axt, integer col, REAL wid, integer sty, 
integer sca, integer mrk, integer sta, integer l)
<BR><A NAME="350980"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="350981">
This routine is a moderately high level routine in that it will call the other routines depending on the values in the association list info and plot the n points in the x and y arrays. In the FORTRAN binding the following attributes may be passed directly:<p>
</a>
<A NAME="352271">mod	</a>plot type (</a>CARTESIAN, </a>POLAR, </a>INSEL)
<P><A NAME="352272">axt	</a>axis type (CARTESIAN, POLAR, INSEL)
<P><A NAME="352273">col	</a>line color
<P><A NAME="352274">wid	</a>line width
<P><A NAME="352275">sty	</a>line style
<P><A NAME="352276">sca	</a>scatter plot flag
<P><A NAME="352277">mrk	</a>marker index
<P><A NAME="352278">sta	</a>histogram starting point (</a>LEFT, </a>CENTER, </a>RIGHT)
<P><A NAME="352279">l	if FALSE the world coordinates are recomputed from the data and the axes are 
drawn
<P><A NAME="350982><I>C Binding: </I>void </a>PG_histogram_plot(PG_device *dev, REAL *x, REAL *y, int n, 
int lncol, double lnwid, int lnsty, int scatter, int marker, 
int start, int l)
<BR><A NAME="350986"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="350984"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="350985">
<p>
</a>
<A NAME="350943><I>C Binding: </I>void </a>PG_insel_plot(PG_device *dev, REAL *x, REAL *y, int n, int 
lncol, double lnwid, int lnsty, int l)
<BR><A NAME="350989"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="350987"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="350988">
<p>
</a>
<A NAME="352104><I>C Binding: </I>void </a>PG_polar_plot(PG_device *dev, REAL *x, REAL *y, int n, int 
lncol, double lnwid, int lnsty, int scatter, int marker, int 
l)
<BR><A NAME="350992"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="350990"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="350991">
<p>
</a>
<A NAME="352105><I>C Binding: </I>void </a>PG_rect_plot(PG_device *dev, REAL *x, REAL *y, int n, int 
lncol, double lnwid, int lnsty, int scatter, int marker, int 
l)
<BR><A NAME="351100"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="350993"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="350994">
These routines plot the n points in the x and y arrays as a: rectangular cartesian plot; histogram plot; Inselberg plot; or polar plot. The qualifying arguments are:<p>
</a>
<A NAME="350995">lncol		line color
<P><A NAME="350996">lnwid		line width
<P><A NAME="350997">lnsty		line style
<P><A NAME="350998">scatter		TRUE for scatter plot
<P><A NAME="350999">marker		index of marker character for scatter plots
<P><A NAME="351000">start		</a>LEFT, </a>RIGHT, or </a>CENTER start for histogram plots
<P><A NAME="351001">l		if TRUE the world coordinate system is redefined by x and y data
<P><a name="351002">
<h3>5.2.18   </a>Contour </a>Plotting Routines</h3>
</a>
<a name="351003">
<p>
</a>
<A NAME="351004><I>C Binding: </I>void </a>PG_contour_plot(PG_device *dev, PG_graph *data)
<BR><A NAME="351005"><I>F77 Binding: </I>                                  use pgplot
<BR><A NAME="351006"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351007">
This routine renders the specified graph as a contour plot. </a>PG_draw_graph dispatches to this routine when the rendering specified in data is a contour plot.<p>
</a>
<a name="351008">
<p>
</a>
<A NAME="351009><I>C Binding: </I>
<BR><A NAME="351010"><I>F77 Binding: </I>integer </a>pgplcn(integer devid, REAL x, REAL y, REAL z, REAL lev, 
integer k, integer l, integer nlev, integer labl, integer 
alst)
<BR><A NAME="351011"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351012">
Make a </a>contour plot of the given </a>data set on the specified </a>device. The arguments are:<p>
</a>
<A NAME="351037">(x, y)	coordinate point arrays
<P><A NAME="352113">z	data array
<P><A NAME="352122">lev	contour level value array
<P><A NAME="352117">(k, l)	array dimensions
<P><A NAME="352119">nlev	number of contour levels
<P><A NAME="352121">labl	starting label character if non-zero
<P><A NAME="352464">alst	an integer attribute list identifier (use 0 if none)
<P><a name="351013">
<p>
</a>
<A NAME="351014><I>C Binding: </I>int </a>PG_contour_levels(REAL *lev, int nlev, double fmn, double fmx, 
double ratio)
<BR><A NAME="351015"><I>F77 Binding: </I>integer </a>pgclev(REAL lev, integer nlev, REAL fmn, REAL fmx, REAL 
ratio)
<BR><A NAME="351016"><I>SX Binding: </I>                             set LEVEL attribute
<P><a name="351017">
Compute an array of nlev iso contour levels between fmn and fmx using the spacing ratio. Put them in the space provided, lev. The arguments are:<p>
</a>
<A NAME="352123">lev		the array of contour levels
<P><A NAME="352124">nlev		the number of contour levels
<P><A NAME="352125">(fmn, fmx	)	the minimum and maximum values for contour levels
<P><A NAME="352127">ratio		the spacing ratio between contour levels
<P><a name="351019">
<h3>5.2.19   </a>Filled Polygon Plot Routines</h3>
</a>
<a name="351020">
<p>
</a>
<A NAME="351021><I>C Binding: </I>void </a>PG_poly_fill_plot(PG_device *dev, PG_graph *data)
<BR><A NAME="351022"><I>F77 Binding: </I>                                    use pgplot
<BR><A NAME="351023"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351024">
This routine renders the specified graph as a filled polygon plot. </a>PG_draw_graph dispatches to this routine when the rendering specified in data is a a filled polygon plot.<p>
</a>
<a name="351025">
<p>
</a>
<a name="351026">
<h3>5.2.20   </a>Image </a>Plot Routines</h3>
</a>
<a name="351027">
<p>
</a>
<A NAME="351028><I>C Binding: </I>void </a>PG_image_plot(PG_device *dev, PG_graph *data)
<BR><A NAME="351029"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="351030"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351031">
This routine renders the specified graph as a raster image plot. </a>PG_draw_graph dispatches to this routine when the rendering specified in data is an image plot.<p>
</a>
<a name="351032">
<p>
</a>
<A NAME="352106><I>C Binding: </I>void </a>PG_draw_image(PG_device *dev, PG_image *im, char *label, 
pcons *alist)
<BR><A NAME="352107"><I>F77 Binding: </I>
<BR><A NAME="352108"><I>SX Binding: </I>(</a>pg-draw-image dev im)
<P><a name="352109">
This routine makes an image plot from a PG_image structure. A pointer to the image is in im and a label for the plot is in label.<p>
</a>
<a name="352110">
<p>
</a>
<A NAME="351033><I>C Binding: </I>
<BR><A NAME="351034"><I>F77 Binding: </I>integer </a>pgplim(integer devid, integer nc, char *name, integer nct, char 
*type, REAL *pz, integer k, integer l, REAL xmn, 
REAL xmx, REAL ymn, REAL ymx, REAL zmn, 
REAL zmx, integer alst)
<BR><A NAME="351035"><I>SX Binding: </I>
<P><a name="351036">
This routine makes an image plot from &#147;raw&#148; data. The arguments are:<p>
</a>
<A NAME="352111">name		the name of the image (used as a label for the plot)
<P><A NAME="352112">type		the type of the data (&#147;char&#148;, &#147;short&#148;, &#147;int&#148;, &#147;long&#148;, &#147;float&#148;, &#147;double&#148;)
<P><A NAME="352114">z		the array of pixel values (will be scaled to the current palette of the 
device)
<P><A NAME="352115">(k, l)		the dimensions of the image
<P><A NAME="352116">(xmn, xmx)		the minimum and maximum x values (for axis labels)
<P><A NAME="352118">(ymn, ymx)		the minimum and maximum y values (for axis labels)
<P><A NAME="352120">(zmn, zmx)		the nminimum and maximum data values (for palette labels)
<P><A NAME="352465">alst		an integer attribute list identifier (use 0 if none)
<P><A NAME="351038><I>C Binding: </I>void </a>PG_draw_palette(PG_device *dev, double xmn, double ymn, 
double xmx, double ymx, double zmn, double zmx, 
double wid)
<BR><A NAME="351039"><I>F77 Binding: </I>integer </a>pgdrpa(integer devid, REAL xmn, REAL ymn, REAL xmx, 
REAL ymx, REAL zmn, REAL zmx, REAL wid)
<BR><A NAME="351040"><I>SX Binding: </I>(</a>pg-draw-palette dev xmn ymn xmx ymx zmn zmx wid)
<P><a name="351041">
This routine draws the specified device palette as a raster image. The palette is drawn next to the viewport in a rectangle along an axis specified by the points (xmn, ymn) and (xmx, ymx). The axis is labeled by values ranging from zmn to zmx. The width of the palette in the rectangle is specified in normalized form by wid.<p>
</a>
<a name="351042">
<h3>5.2.21   </a>Surface </a>Plot Routines</h3>
</a>
<a name="351043">
<p>
</a>
<A NAME="351044><I>C Binding: </I>void </a>PG_surface_plot(PG_device *dev, PG_graph *data)
<BR><A NAME="350673"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="351046"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351047">
This routine renders the specified graph as a surface plot. </a>PG_draw_graph dispatches to this routine when the rendering specified in data is a surface plot.<p>
</a>
<a name="351048">
<p>
</a>
<A NAME="351049><I>C Binding: </I>void </a>PG_draw_surface(PG_device *dev, REAL *a1, REAL *a2, 
REAL *aext, REAL *x, REAL *y, int nn, double xmn, 
double xmx, double ymn, double ymx, double theta, 
double phi, double chi, double width, int color, int style, 
int type, char *label, char *mesh_type, void *cnnct, 
pcons *alist)
<BR><A NAME="351050"><I>F77 Binding: </I>integer </a>pgplsf(integer devid, REAL *px, REAL *py, REAL *pz, 
integer n, REAL xn, REAL xx, REAL yn, REAL yx, 
REAL zn, REAL zx, integer kx, integer lx, REAL th, 
REAL ph, REAL ch, integer typ, integer col, REAL wid, 
integer sty, integer nc, char *label)
<BR><A NAME="351051"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351052">
This routine is a medium level routine which can be called directly from applications. The data can be rendered as a wire frame mesh or as a true shaded surface. Both forms do hidden line and hidden surface removal. The algorithm uses a raster scan line approach with a single Z buffer line. This choice minimizes the memory requirements of the routine at some expense of speed.<p>
</a>
<a name="351171">
The arguments are:<p>
</a>
<A NAME="351053">dev			the device to which the plot is drawn
<P><A NAME="351054">a1, a2			the arrays specifying height of the surface and color shading. If 
the color array is NULL the a1 array will do both height and color in a shaded 
plot
<P><A NAME="351055">aext			the minimum and maximum values for a1 and a2
<P><A NAME="351056">x, y			the x and y components of the positions of the nodes
<P><A NAME="351057">nn			the number of points
<P><A NAME="351058">xmn, xmx			the minimum and maximum values for x
<P><A NAME="351059">ymn, ymx			the minimum and maximum values for y
<P><A NAME="351060">theta, phi, chi			the Euler view angles
<P><A NAME="351061">width			the line width to use
<P><A NAME="351062">color			the line color to use
<P><A NAME="351063">style			the line style to use
<P><A NAME="351064">type			</a>PLOT_SURFACE or </a>PLOT_WIRE_MESH
<P><A NAME="351065">name			a label for the plot
<P><A NAME="351066">mesh_type			&#147;</a>Logical-Rectangular&#148; (LR) or &#147;</a>Arbitrarily-Connected&#148; (AC)
<P><A NAME="351067">cnnct			connectivity specifications: array of dimensions for LR meshes 
or a pointer to a </a>PM_mesh_topology struct for AC meshes
<P><A NAME="351068">alist			association list of plotting attributes
<P><a name="351069">
<p>
</a>
<a name="351070">
<h3>5.2.22   </a>Vector </a>Plot Routines</h3>
</a>
<a name="351071">
<p>
</a>
<A NAME="351072><I>C Binding: </I>void </a>PG_vector_plot(PG_device *dev, PG_graph *data)
<BR><A NAME="351045"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="351074"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351075">
This routine renders the specified graph as a vector plot. </a>PG_draw_graph dispatches to this routine when the rendering specified in data is a vector plot.<p>
</a>
<a name="351076">
<p>
</a>
<A NAME="351077><I>C Binding: </I>
<BR><A NAME="351078"><I>F77 Binding: </I>integer </a>pgplvc(integer devid, REAL *px, REAL *py, REAL *pu, 
REAL *pv, integer n, integer alst)
<BR><A NAME="351079"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351080">
Make a </a>vector plot of the given </a>data set on the specified </a>device.<p>
</a>
<A NAME="352466">devid	an integer attribute list identifier (use 0 if none)
<P><A NAME="351018">(px, py)	farrays containing the x and y positions
<P><A NAME="352469">(pu, pv)	farrays containing the u and v vector components
<P><A NAME="352467">n	an integer number of vectors
<P><A NAME="352468">alst	an integer attribute list identifier (use 0 if none)
<P><a name="351081">
<p>
</a>
<A NAME="351082><I>C Binding: </I>void </a>PG_set_vec_attr(PG_device *dev, ...)
<BR><A NAME="351083"><I>F77 Binding: </I>integer </a>pgsvat(integer devid, ...)
<BR><A NAME="351084"><I>SX Binding: </I>(</a>pg-set-vector-attributes! dev ...)
<P><a name="351085">
This routine sets the properties of the vectors for the next vector plot. The parameters are paired, optional, and can be in any order. For each pair, the first value describes the option, the second, the value. The options are ints. The values can be ints, REALs, or chars. What type the values are is determined by the option. Most values are normalized to unity with the angle being the exception. The list must be ended with a zero. The attributes are:<p>
</a>
<A NAME="351086"><PRE>   C Id		FORTRAN Id		Description				Default
</PRE><A NAME="351087"><PRE>   </a>VEC_SCALE			1	</a>scale factor on lengths				1.0
</PRE><A NAME="351088"><PRE>   </a>VEC_ANGLE			2	</a>angle between </a>wings				22.5
</PRE><A NAME="351089"><PRE>   </a>VEC_HEADSIZE			3	</a>length of the wings				0.05
</PRE><A NAME="351090"><PRE>   </a>VEC_FIXSIZE			4	a </a>fixed </a>vector length				0.0
</PRE><A NAME="351091"><PRE>   </a>VEC_MAXSIZE			5	a </a>maximum vector length				0.0
</PRE><A NAME="351092"><PRE>   </a>VEC_LINESTYLE			6	</a>line style of vectors				1
</PRE><A NAME="351093"><PRE>   </a>VEC_LINETHICK			7	</a>line width of vectors				0.0
</PRE><A NAME="351094"><PRE>   </a>VEC_COLOR			8	</a>line color of vectors				WHITE
</PRE><A NAME="351095"><PRE>   </a>VEC_FIXHEAD			9	a </a>fixed </a>head size				FALSE
</PRE><a name="351096">
<h3>5.2.23   </a>Level Diagram </a>Plot Routine</h3>
</a>
<a name="351097">
This routine draws a level diagram or grotrian plot.<p>
</a>
<a name="351098">
<p>
</a>
<A NAME="351099><I>C Binding: </I>void </a>PG_</a>grotrian_plot(PG_device *dev, PG_graph *data)
<BR><A NAME="351073"><I>F77 Binding: </I>                                   use pgplot
<BR><A NAME="351101"><I>SX Binding: </I>                             use pg-draw-graph
<P><a name="351102">
This routine renders the specified graph as a level diagram plot. </a>PG_draw_graph dispatches to this routine when the rendering specified in data is a level diagram plot. These graphs have an unusual data layout and would not produce a very meaningful plot rendered any other way.<p>
</a>
<a name="351103">
<h3>5.2.24   Graphical Interface Routines</h3>
</a>
<a name="351104">
These routines supply a capability for applications to develop portable, user and runtime configurable graphical user interfaces.<p>
</a>
<a name="351105">
<p>
</a>
<A NAME="351106><I>C Binding: </I>void </a>PG_draw_interface_objects(PG_device *dev)
<BR><A NAME="351107"><I>F77 Binding: </I>integer </a>pgdrif(integer devid)
<BR><A NAME="351108"><I>SX Binding: </I>
<P><a name="351109">
This routine draws the entire </a>graphical interface of the specified device.<p>
</a>
<a name="351110">
<p>
</a>
<A NAME="351111><I>C Binding: </I>void </a>PG_query_pointer(PG_device *dev, int *px, int *py, int *pbtn, int 
*mod)
<BR><A NAME="351112"><I>F77 Binding: </I>integer </a>pgqptr(integer devid, integer x, integer y, integer btn, integer 
mod)
<BR><A NAME="351113"><I>SX Binding: </I>
<P><a name="351114">
This routine allows the application to query the state of the locator or mouse. The mouse state is: the (x, y) position on the screen in pixel coordinates; btn, the indicator of mouse buttons which are pressed (</a>MOUSE_LEFT, </a>MOUSE_CENTER, </a>MOUSE_RIGHT); and mod the indicator of which keyboard modifiers are pressed (</a>KEY_SHIFT, </a>KEY_CNTL, </a>KEY_ALT). These flags can be and&#146;d to ascertain which combinations are pressed.<p>
</a>
<a name="351115">
<p>
</a>
<A NAME="351116><I>C Binding: </I>int </a>PG_read_interface(PG_device *dev, char *fname)
<BR><A NAME="351117"><I>F77 Binding: </I>integer </a>pgrdif(integer devid, integer n, char *fname)
<BR><A NAME="351118"><I>SX Binding: </I>
<P><a name="351119">
This routine reads the entire </a>graphical interface from the named file into the specified device.<p>
</a>
<a name="351120">
<p>
</a>
<A NAME="351121><I>C Binding: </I>void </a>PG_register_callback(char *name, PFVoid fnc)
<BR><A NAME="351122"><I>F77 Binding: </I>integer </a>pgrgfn(integer nc, char *name, function fnc)
<BR><A NAME="351123"><I>SX Binding: </I>
<P><a name="351124">
This routine </a>registers a function with PGS so that it may be called by an </a>interface event such as the click of a button or selection of some item of an interface. The name is used to refer to the function (via a lookup) in such applications<p>
</a>
<A NAME="351125><I>C Binding: </I>void </a>PG_register_variable(char *name, char *type, void *var, void 
*vmin, void *vmax)
<BR><A NAME="351126"><I>F77 Binding: </I>integer </a>pgrgvr(integer nc, char *name, integer nt, char *type, var, 
vmin, vmax)
<BR><A NAME="351127"><I>SX Binding: </I>
<P><a name="351128">
This routine </a>registers a variable with PGS so that its value may be changed by an </a>interface event such as the selection of some item of from a menu. The required information is the variables name, type, and address (var). Optionally pointers to the minimum and maximum values, vmin and vmax, may be supplied (NULL if not wanted).<p>
</a>
<a name="351129">
<p>
</a>
<A NAME="351130><I>C Binding: </I>int </a>PG_write_interface(PG_device *dev, char *fname)
<BR><A NAME="351131"><I>F77 Binding: </I>integer </a>pgwrif(integer devid, integer n, char *fname)
<BR><A NAME="351132"><I>SX Binding: </I>
<P><a name="351133">
This routine writes the entire </a>graphical interface of the specified device to the named file.<p>
</a>
<a name="351134">
<p>
</a>
<a name="351135">
<h2>5.3   </a>Structures</h2>
</a>
<a name="351136">
</a>PGS employs several structures to </a>encapsulate information pertaining to specific groups of functionality. C based applications can have access to these structures (not a good idea in general because the structures may change) and some readers may find the structures revealing of details in the design and implementation of PGS. Some of these are also discussed in the context of rendering. See those sections for additional details.<p>
</a>
<a name="351137">
<p>
</a>
<A NAME="351138"><BR><B></a>PG_graph
</B><BR><a name="351139">
The </a>PG_graph structure contains information specifying how data is to be rendered. That includes specification of the </a>rendering technique, </a>line attributes, and other information. A PG_graph always contains a </a>PM_mapping (a structure defined by the PACT library </a>PML) pointer for the </a>data set to be rendered.<p>
</a>
<a name="351140">
PG_graph&#146;s can be linked together in a list and the PGS rendering functions will render all graphs in the list.<p>
</a>
<a name="351141">
An associated type of the PG_graph is:<p>
</a>
<A NAME="351142"><PRE> typedef PG_graph *(*</a>PFPPG_graph)();
</PRE><a name="351143">
The last type is a Pointer to a Function returning a Pointer to a PG_GRAPH. This convention is used throughout PACT. See the related documentation for further information.<p>
</a>
<A NAME="351144"><BR><B></a>PG_palette
</B><BR><a name="351145">
The </a>PG_palette structure contains the specification of a </a>palette of </a>RGB colors. The number of </a>colors in the palette is determined by the application. If the number of colors specified exceeds the number of colors which the host platform can display, PGS attempts to simulate the colors with </a>dithering of colors which the host graphics system can display.<p>
</a>
<A NAME="351146"><BR><B></a>PG_device
</B><BR><a name="351147">
The </a>PG_device structure contains the information which the host graphics system requires applications to provide and maintain and it keeps a set of </a>state variables describing such quantities as </a>coordinate systems, </a>palettes, and </a>drawing attributes.<p>
</a>
<a name="351148">
<p>
</a>
<A NAME="351149"><BR><B></a>PG_image
</B><BR><a name="351150">
The </a>PG_image structure contains the specification for </a>cell array or </a>image plots. It contains </a>data, the </a>data type, the </a>array dimensions, </a>bounding values for use in defining </a>scales, </a>palette information, and other appropriate data.<p>
</a>
<a name="351151">
<p>
</a>
<A NAME="351152"><BR><B></a>PG_dev_attributes
</B><BR><a name="351153">
The </a>PG_dev_attributes structure contains a large number of the commonly queried and set </a>attributes found in the </a>PG_device. The intent of this structure is to allow applications to access and change many </a>device attributes quickly and efficiently. The attributes include line, text, and fill colors, line style and width, palette, and clipping state. It is convenient to save these all at once in a PG_dev_attributes, change the device state, perform drawing operation, and restore the original device state from the PG_dev_attributes.<p>
</a>
<a name="351154">
<h2>5.4   </a>PGS </a>Constants</h2>
</a>
<a name="351155">
PGS defines and uses several </a>#</a>define&#146;d constants. These can be used by applications and are listed here by category.<p>
</a>
<a name="351156">
<p>
</a>
<A NAME="351157"><BR><B></a>General Purpose Constants
</B><BR><A NAME="351158"></a>PG_IMAGE_VERSION				0
<P><A NAME="351159"></a>N_COLORS				16
<P><A NAME="351160"></a>QUAD_ONE				1
<P><A NAME="351161"></a>QUAD_FOUR				4
<P><A NAME="351162"></a>N_ANGLES				180
<P><A NAME="351163"></a>DEGREE				1
<P><A NAME="351164"></a>RADIAN				2
<P><a name="351165">
<p>
</a>
<A NAME="351166"><BR><B></a>Device Characterization Constants
</B><BR><A NAME="351167"></a>TEXT_WINDOW_DEVICE					128
<P><A NAME="351168"></a>GRAPHIC_WINDOW_DEVICE					129
<P><A NAME="351169"></a>PS_DEVICE					130
<P><A NAME="351170"></a>CGMF_DEVICE					131
<P><A NAME="351172"></a>HARD_COPY_DEVICE					133
<P><A NAME="351173"></a>SCREEN_DEVICE					134
<P><a name="351174">
<p>
</a>
<A NAME="352491"><BR><B></a>Rendering Clear Mode Constants
</B><BR><A NAME="352492"></a>CLEAR_SCREEN					-5
<P><A NAME="352493"></a>CLEAR_VIEWPORT					-6
<P><A NAME="352494"></a>CLEAR_FRAME					-7
<P><a name="352495">
<p>
</a>
<A NAME="351175"><BR><B></a>Axis Description Constants
</B><BR><A NAME="351176"></a>AXIS_LINESTYLE					1
<P><A NAME="351177"></a>AXIS_LINETHICK					2
<P><A NAME="351178"></a>AXIS_LINECOLOR					3
<P><A NAME="351179"></a>AXIS_LABELCOLOR					4
<P><A NAME="351180"></a>AXIS_LABELSIZE					5
<P><A NAME="351181"></a>AXIS_LABELFONT					6
<P><A NAME="351182"></a>AXIS_LABELPREC					7
<P><A NAME="351183"></a>AXIS_X_FORMAT					8
<P><A NAME="351184"></a>AXIS_Y_FORMAT					9
<P><A NAME="351185"></a>AXIS_TICKSIZE					10
<P><A NAME="351186"></a>AXIS_GRID_ON					11
<P><A NAME="351187"></a>AXIS_SIGNIF_DIGIT					12
<P><A NAME="351188"></a>AXIS_CHAR_ANGLE					13
<P><A NAME="351189"></a>MAJOR					1
<P><A NAME="351190"></a>MINOR					2
<P><A NAME="351191"></a>LABEL					3
<P><A NAME="351192"></a>MAJOR_MINOR					4
<P><A NAME="351193"></a>MAJOR_LABEL					5
<P><A NAME="351194"></a>MINOR_LABEL					6
<P><A NAME="351195"></a>MAJOR_MINOR_LABEL					7
<P><A NAME="351196"></a>NO_TICKS					8
<P><A NAME="351197"></a>RIGHT_OF_AXIS						9
<P><A NAME="351198"></a>LEFT_OF_AXIS					10
<P><A NAME="351199"></a>STRADDLE_AXIS					11
<P><A NAME="351200"></a>ENDS					12
<P><A NAME="351201"></a>NOTHING_ON_AXIS					13
<P><A NAME="351202"></a>NOTICKS					0
<P><A NAME="351203"></a>INSIDE					1
<P><A NAME="351204"></a>OUTSIDE					2
<P><A NAME="351205"></a>INOUT					3
<P><A NAME="351206"></a>TICKTICK					1
<P><A NAME="351207"></a>LINELINE					2
<P><A NAME="351208"></a>TICKLINE					3
<P><A NAME="351209"></a>LINETICK					4
<P><a name="351210">
<p>
</a>
<A NAME="351211"><BR><B></a>Grid Description </a>Constants
</B><BR><A NAME="351212"></a>GRID_LINESTYLE				1
<P><A NAME="351213"></a>GRID_LINETHICK				2
<P><A NAME="351214"></a>GRID_LINECOLOR				3
<P><A NAME="351215"></a>GRID_LABELCOLOR				4
<P><A NAME="351216"></a>GRID_LABELSIZE				5
<P><A NAME="351217"></a>GRID_LABELFONT				6
<P><A NAME="351218"></a>GRID_LABELPREC				7
<P><A NAME="351219"></a>GRID_XFORMAT				8
<P><A NAME="351220"></a>GRID_YFORMAT				9
<P><A NAME="351221"></a>GRID_TICKPOSITION				10
<P><A NAME="351222"></a>GRID_TICKSIZE				11
<P><A NAME="351223"></a>GRID_TICKTYPE				12
<P><A NAME="351224"></a>GRID_SIGNIF_DIGIT				13
<P><a name="351225">
<p>
</a>
<A NAME="351226"><BR><B></a>Vector Description </a>Constants
</B><BR><A NAME="351227"></a>VEC_SCALE				1
<P><A NAME="351228"></a>VEC_ANGLE				2
<P><A NAME="351229"></a>VEC_HEADSIZE				3
<P><A NAME="351230"></a>VEC_FIXSIZE				4
<P><A NAME="351231"></a>VEC_MAXSIZE				5
<P><A NAME="351232"></a>VEC_LINESTYLE				6
<P><A NAME="351233"></a>VEC_LINETHICK				7
<P><A NAME="351234"></a>VEC_COLOR				8
<P><A NAME="351235"></a>VEC_FIXHEAD				9
<P><a name="351236">
<p>
</a>
<A NAME="351237"><BR><B></a>Line </a>Plot Types
</B><BR><A NAME="351238"></a>CARTESIAN			-1
<P><A NAME="351239"></a>POLAR			-2
<P><A NAME="351240"></a>INSEL			-3
<P><A NAME="351241"></a>HISTOGRAM			-4
<P><A NAME="351242"></a>SCATTER			-5
<P><A NAME="351243"></a>LOGICAL			-6
<P><A NAME="351244"></a>ERROR_BAR			-7
<P><a name="351245">
<p>
</a>
<A NAME="351246"><BR><B></a>Rendering Mode </a>Constants
</B><BR><A NAME="351247"></a>PLOT_CURVE				10
<P><A NAME="351248"></a>PLOT_CONTOUR				11
<P><A NAME="351249"></a>PLOT_IMAGE				12
<P><A NAME="351250"></a>PLOT_WIRE_MESH				13
<P><A NAME="351251"></a>PLOT_SURFACE				14
<P><A NAME="351252"></a>PLOT_VECTOR				15
<P><A NAME="351253"></a>PLOT_FILL_POLY				16
<P><A NAME="351254"></a>PLOT_MESH				17
<P><A NAME="351255"></a>PLOT_ERROR_BAR				18
<P><A NAME="351256"></a>PLOT_DEFAULT				19
<P><a name="351257">
<h1>6.0   </a>Glossary</h1>
</a>
<a name="352318">
Here is a list of terms which are used in this manual.<p>
</a>
<A NAME="352319"></a>device		A generic name for a graphical output device such as a display window, 
a PostScript file. PGS supports WINDOW (display screen), PS (PostScript), 
and CGM devices.
<P><A NAME="352320"></a>console		A special device which mimics a UNIX shell window on platforms 
which lack that functionality (e.g. Macintosh)
<P><A NAME="352321"></a>NDC		Normalized device coordinates or screen coordinates. Values range 
between 0.0 and 1.0.
<P><A NAME="352322"></a>image		An array of pixel values also called a raster image or cell array
<P><A NAME="352323"></a>graph		Generically the collection of information needed to visualize a collection of data. More specifically a </a>PG_graph structure.
<P><A NAME="352324"></a>set		Generically a collection of related data. More specifically a </a>PM_set 
structure.
<P><A NAME="352332"></a>mapping		Generically a rule of association between elements of two sets. More 
specifically a </a>PM_mapping structure.
<P><A NAME="352326"></a>palette		An application oriented representation of a color scheme to be associated with data in a plot.
<P><A NAME="352328"></a>colormap		A host oriented representation of a color scheme to be associated with 
colors in hardware.
<P><A NAME="352329"></a>marker		A user definable &#147;character&#148;. A collection of line segments which can 
be rotated and scaled collectively.
<P><A NAME="352330"></a>connectivity		The collection of neighbor relationships between points of a computational mesh.
<P><a name="352331">
<p>
</a>
<a name="352317">
<h1>7.0   </a>PGS By Example</h1>
</a>
<a name="351258">
Perhaps the best way to learn to use PGS is by example. Certainly it is the easiest way to explain certain aspects of it. In this section there are examples of some of the </a>low level </a>graphics primitives and the </a>high level </a>rendering functions. The actual tests are:<p>
</a>
<a name="351259">
<p>
</a>
<A NAME="351260"><PRE>     </PRE>Text Placement and Drawing
<BR><A NAME="351261"><PRE>     </PRE>Line Drawing
<BR><A NAME="351262"><PRE>     </PRE>Making Line Plots
<BR><A NAME="351263"><PRE>     </PRE>Making Contour Plots
<BR><A NAME="351264"><PRE>     </PRE>Making Image Plots
<BR><A NAME="351265"><PRE>     </PRE>Making Wire Frame Mesh Plots
<BR><A NAME="351266"><PRE>     </PRE>Making Vector Plots
<BR><a name="352351">
Before showing the examples we discuss some sequences of PGS calls that are common to most PGS applications. The hope is that this will make clear why some of PGS functions exist and how they relate to one another.<p>
</a>
<a name="351267">
<h2>7.1   </a>Common Call Sequences</h2>
</a>
<a name="352346">
The PGS functions are generally not very meaningful taken one at a time.  What is important is the way they are used together to accomplish various graphical objectives. We are not focusing on the details of the calls here so many details are omitted.  Concentrate on which calls are being made and when they are performed.<p>
</a>
<a name="352354">
<h3>7.1.1   </a>Initializing a Device</h3>
</a>
<a name="352355">
The first basic job in a graphics application is to setup the devices to be used. Most common is setting up screen windows. Also important is initializing hardcopy devices such as a PostScript device. The sequence is all the same, some of the parameters differ. <p>
</a>
<A NAME="352356"><PRE>    dev = </a>PG_make_device(...);
</PRE><A NAME="351448"><PRE> 
</PRE><A NAME="351446"><PRE>     </a>PG_set_viewport_pos(dev, ...);
</PRE><A NAME="351447"><PRE>     </a>PG_set_viewport_shape(dev, ...);
</PRE><A NAME="351449"><PRE>     </a>PG_white_background(dev, ...);
</PRE><A NAME="352357"><PRE> 
</PRE><A NAME="352359"><PRE>     </a>PG_open_device(dev, ...)
</PRE><a name="351450">
The </a>PG_make_device call only allocates a PG_device structure and sets default values for the state it contains. The </a>PG_open_device call actually consults the state of the PG_device and opens the device.  The calls in between change the state of the PG_device from the defaults. <p>
</a>
<a name="352358">
<h3>7.1.2   </a>Making a Picture</h3>
</a>
<a name="352360">
The next basic idea is to put together a picture.  This may be done with low level drawing operations or high level rendering calls or both. What is common to all is that the picture must be set up, drawn, and finished.<p>
</a>
<A NAME="352362"><PRE>     </a>PG_clear_window(dev);
</PRE><A NAME="352363"><PRE>           ...
</PRE><A NAME="352367"><PRE>          draw
</PRE><A NAME="352368"><PRE>           ...
</PRE><A NAME="352364"><PRE>     </a>PG_update_vs(dev);
</PRE><A NAME="352365"><PRE>           ...
</PRE><A NAME="352369"><PRE>     </a>PG_finish_plot(dev);
</PRE><a name="352366">
The call to </a>PG_clear_window must be done for hardcopy devices! It is a pretty good idea for screen window devices too.  Sometimes in the process of drawing a picture you want to see the results so far with the idea that more will be drawn later. </a>PG_update_vs makes sure that everything the has been requested is visible. When the picture is complete and there is nothing more to be drawn to it, </a>PG_finish_plot is called.  This is crucial for hardcopy devices! It is also crucial that </a>PG_clear_window and </a>PG_finish_plot be called once per picture.<p>
</a>
<a name="352434">
<h3>7.1.3   </a>Setting Attributes</h3>
</a>
<a name="352435">
To gain control of the appearance of high level plots, applications must set rendering attributes.  See the discussion of rendering attributes before going any further here. The sequence is to use </a>PG_get_render_info to obtain the attribute list from the graph, use </a>SC_change_alist to change or add values to the list, and use </a>PG_set_render_info to update the graph&#146;s attribute list.<p>
</a>
<a name="352447">
Here are C and FORTRAN examples of setting some attributes in a graph. In this example some attributes are set for contour plotting.<p>
</a>
<A NAME="352436"><CENTER><B></B></CENTER><A NAME="352448"><PRE>    PG_graph *g;
</PRE><A NAME="352446"><PRE>    pcons *alst;
</PRE><A NAME="352449"><PRE>    double *clev;
</PRE><A NAME="352441"><PRE>    int *nlev;
</PRE><A NAME="352453"><PRE> 
</PRE><A NAME="352450"><PRE>    nlev = MAKE(int);
</PRE><A NAME="352457"><PRE>    *nlev = 6;
</PRE><A NAME="352458"><PRE>    clev = MAKE_N(double, *nlev);
</PRE><A NAME="352456"><PRE> 
</PRE><A NAME="352455"><PRE>    </a>PG_get_render_info(g, alst);
</PRE><A NAME="352437"><PRE>    alst = SC_change_alist(alst, &#147;LEVELS&#148;, &#147;double *&#148;, clev);
</PRE><A NAME="352454"><PRE>    alst = SC_change_alist(alst, &#147;N-LEVELS&#148;, &#147;int *&#148;, nlev);
</PRE><A NAME="352451"><PRE>    </a>PG_set_render_info(g, alst);
</PRE><A NAME="352459"><PRE> 
</PRE><A NAME="352452"><CENTER><B></B></CENTER><A NAME="352438"><PRE>        integer gid, ial, nlev
</PRE><A NAME="352444"><PRE>        real clev(10)
</PRE><A NAME="352445"><PRE> 
</PRE><A NAME="352443"><PRE>        call </a>pgginf (gid, ial)
</PRE><A NAME="352439"><PRE>        call scchal (ial, 6, &#146;LEVELS&#146;, 6, &#146;double&#146;, nlev, clev)
</PRE><A NAME="352440"><PRE>        call scchal (ial, 8, &#146;N-LEVELS&#146;, 7, &#146;integer&#146;, 1, nlev)
</PRE><A NAME="352442"><PRE>        call </a>pgsinf (gid, ial)
</PRE><a name="351268">
<h2>7.2   </a>Text Placement and </a>Drawing</h2>
</a>
<a name="351269">
The following program demonstrates some of the PGS functionality for placement and drawing of text.<p>
</a>
<A NAME="351270"><PRE> 
</PRE><A NAME="351271"><PRE> #include &#147;</a>pgs.h&#148;
</PRE><A NAME="351272"><PRE> 
</PRE><A NAME="351273"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351274"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351275"><PRE> 
</PRE><A NAME="351276"><PRE> void main(argc, argv)
</PRE><A NAME="351277"><PRE>    int argc;
</PRE><A NAME="351278"><PRE>    char *argv[];
</PRE><A NAME="351279"><PRE>    {char s[MAXLINE], *token;
</PRE><A NAME="351280"><PRE>     PG_device *SCR_dev, *PS_dev, *CGM_dev;
</PRE><A NAME="351281"><PRE>     REAL x1, y1, x2, y2, dx, dy;
</PRE><A NAME="351282"><PRE>     char *face, *style;
</PRE><A NAME="351283"><PRE>     int size;
</PRE><A NAME="351284"><PRE> 
</PRE><A NAME="351285"><PRE> /* connect the I/O functions */
</PRE><A NAME="351286"><PRE>     PG_open_console(&#147;PGS Test&#148;, &#147;COLOR&#148;, TRUE, 0.1, 0.7, 0.5, 0.3);
</PRE><A NAME="351287"><PRE> 
</PRE><A NAME="351288"><PRE>     SCR_dev = PG_make_device(&#147;WINDOW&#148;, &#147;COLOR&#148;, &#147;PGS Test&#148;);
</PRE><A NAME="351289"><PRE>     PG_open_device(SCR_dev, 0.1, 0.1, 0.5, 0.6);
</PRE><A NAME="351290"><PRE>     PG_set_viewport(SCR_dev, 0.1, 0.9, 0.2, 0.8);
</PRE><A NAME="351291"><PRE>     PG_set_window(SCR_dev, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351292"><PRE>     PG_draw_box(SCR_dev, -0.02, 1.02, -0.02, 1.02);
</PRE><A NAME="351293"><PRE> 
</PRE><A NAME="351294"><PRE>     CGM_dev = PG_make_device(&#147;CGM&#148;, &#147;MONOCHROME&#148;, &#147;gstxts&#148;);
</PRE><A NAME="351295"><PRE>     PG_open_device(CGM_dev, 0.1, 0.1, 0.8, 0.8);
</PRE><A NAME="351296"><PRE> 
</PRE><A NAME="351297"><PRE>     PS_dev = PG_make_device(&#147;PS&#148;, &#147;MONOCHROME&#148;, &#147;gstxts&#148;);
</PRE><A NAME="351298"><PRE>     PG_open_device(PS_dev, 0.1, 0.1, 0.8, 1.1);
</PRE><A NAME="351299"><PRE> 
</PRE><A NAME="351300"><PRE>     PG_expose_device(PG_console_device);
</PRE><A NAME="351301"><PRE> 
</PRE><A NAME="351302"><PRE>     PG_clear_window(SCR_dev);
</PRE><A NAME="351303"><PRE>     PG_clear_window(CGM_dev);
</PRE><A NAME="351304"><PRE>     PG_clear_window(PS_dev);
</PRE><A NAME="351305"><PRE> 
</PRE><A NAME="351306"><PRE>     test_dev(SCR_dev);
</PRE><A NAME="351307"><PRE>     test_dev(CGM_dev);
</PRE><A NAME="351308"><PRE>     test_dev(PS_dev);
</PRE><A NAME="351309"><PRE> 
</PRE><A NAME="351310"><PRE>     PG_finish_plot(SCR_dev);
</PRE><A NAME="351311"><PRE>     PG_finish_plot(CGM_dev);
</PRE><A NAME="351312"><PRE>     PG_finish_plot(PS_dev);
</PRE><A NAME="351313"><PRE> 
</PRE><A NAME="351314"><PRE>     SC_pause();
</PRE><A NAME="351315"><PRE> 
</PRE><A NAME="351316"><PRE>     PG_close_device(SCR_dev);
</PRE><A NAME="351317"><PRE>     PG_close_device(CGM_dev);
</PRE><A NAME="351318"><PRE>     PG_close_device(PS_dev);
</PRE><A NAME="351319"><PRE> 
</PRE><A NAME="351320"><PRE>     exit(0);}
</PRE><A NAME="351321"><PRE> 
</PRE><A NAME="351322"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351323"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351324"><PRE> 
</PRE><A NAME="351325"><PRE> /* SF_DT - set the font and draw the text */
</PRE><A NAME="351326"><PRE> 
</PRE><A NAME="351327"><PRE> static void sf_dt(dev, x1, y1, face, style, size)
</PRE><A NAME="351328"><PRE>    PG_device *dev;
</PRE><A NAME="351329"><PRE>    double x1, y1;
</PRE><A NAME="351330"><PRE>    char *face, *style;
</PRE><A NAME="351331"><PRE>    int size;
</PRE><A NAME="351332"><PRE>    {double x2, y2, dx, dy;
</PRE><A NAME="351333"><PRE> 
</PRE><A NAME="351334"><PRE>     PG_set_font(dev, face, style, size);
</PRE><A NAME="351335"><PRE> 
</PRE><A NAME="351336"><PRE>     PG_get_text_ext(dev, &#147;foo&#148;, &amp;dx, &amp;dy);
</PRE><A NAME="351337"><PRE> 
</PRE><A NAME="351338"><PRE> /* write some text and draw a box around it */
</PRE><A NAME="351339"><PRE>     PG_write_abs(dev, x1, y1, &#147;%s&#148;, &#147;foo&#148;);
</PRE><A NAME="351340"><PRE> 
</PRE><A NAME="351341"><PRE>     x2 = x1 + dx;
</PRE><A NAME="351342"><PRE>     y2 = y1 + dy;
</PRE><A NAME="351343"><PRE>     PG_draw_box(dev, x1, x2, y1, y2);
</PRE><A NAME="351344"><PRE> 
</PRE><A NAME="351345"><PRE>     return;}
</PRE><A NAME="351346"><PRE> 
</PRE><A NAME="351347"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351348"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351349"><PRE> 
</PRE><A NAME="351350"><PRE> /* TEST_DEV - test the entire device */
</PRE><A NAME="351351"><PRE> 
</PRE><A NAME="351352"><PRE> static void test_dev(dev)
</PRE><A NAME="351353"><PRE>    PG_device *dev;
</PRE><A NAME="351354"><PRE>    {PG_set_line_color(dev, dev-&gt;BLACK);
</PRE><A NAME="351355"><PRE>     PG_set_text_color(dev, dev-&gt;BLACK);
</PRE><A NAME="351356"><PRE> 
</PRE><A NAME="351357"><PRE>     sf_dt(dev, .1, .9, &#147;helvetica&#148;, &#147;medium&#148;, 12);
</PRE><A NAME="351358"><PRE>     sf_dt(dev, .1, .8, &#147;helvetica&#148;, &#147;italic&#148;, 12);
</PRE><A NAME="351359"><PRE>     sf_dt(dev, .1, .7, &#147;helvetica&#148;, &#147;bold&#148;, 12);
</PRE><A NAME="351360"><PRE>     sf_dt(dev, .1, .6, &#147;helvetica&#148;, &#147;bold-italic&#148;, 12);
</PRE><A NAME="351361"><PRE> 
</PRE><A NAME="351362"><PRE>     sf_dt(dev, .1, .50, &#147;helvetica&#148;, &#147;medium&#148;, 10);
</PRE><A NAME="351363"><PRE>     sf_dt(dev, .1, .45, &#147;helvetica&#148;, &#147;italic&#148;, 10);
</PRE><A NAME="351364"><PRE>     sf_dt(dev, .1, .40, &#147;helvetica&#148;, &#147;bold&#148;, 10);
</PRE><A NAME="351365"><PRE>     sf_dt(dev, .1, .35, &#147;helvetica&#148;, &#147;bold-italic&#148;, 10);
</PRE><A NAME="351366"><PRE> 
</PRE><A NAME="351367"><PRE>     sf_dt(dev, .1, .30, &#147;helvetica&#148;, &#147;medium&#148;, 8);
</PRE><A NAME="351368"><PRE>     sf_dt(dev, .1, .25, &#147;helvetica&#148;, &#147;italic&#148;, 8);
</PRE><A NAME="351369"><PRE>     sf_dt(dev, .1, .20, &#147;helvetica&#148;, &#147;bold&#148;, 8);
</PRE><A NAME="351370"><PRE>     sf_dt(dev, .1, .15, &#147;helvetica&#148;, &#147;bold-italic&#148;, 8);
</PRE><A NAME="351371"><PRE> 
</PRE><A NAME="351372"><PRE>     sf_dt(dev, .3, .9, &#147;times&#148;, &#147;medium&#148;, 12);
</PRE><A NAME="351373"><PRE>     sf_dt(dev, .3, .8, &#147;times&#148;, &#147;italic&#148;, 12);
</PRE><A NAME="351374"><PRE>     sf_dt(dev, .3, .7, &#147;times&#148;, &#147;bold&#148;, 12);
</PRE><A NAME="351375"><PRE>     sf_dt(dev, .3, .6, &#147;times&#148;, &#147;bold-italic&#148;, 12);
</PRE><A NAME="351376"><PRE> 
</PRE><A NAME="351377"><PRE>     sf_dt(dev, .3, .50, &#147;times&#148;, &#147;medium&#148;, 10);
</PRE><A NAME="351378"><PRE>     sf_dt(dev, .3, .45, &#147;times&#148;, &#147;italic&#148;, 10);
</PRE><A NAME="351379"><PRE>     sf_dt(dev, .3, .40, &#147;times&#148;, &#147;bold&#148;, 10);
</PRE><A NAME="351380"><PRE>     sf_dt(dev, .3, .35, &#147;times&#148;, &#147;bold-italic&#148;, 10);
</PRE><A NAME="351381"><PRE> 
</PRE><A NAME="351382"><PRE>     sf_dt(dev, .3, .30, &#147;times&#148;, &#147;medium&#148;, 8);
</PRE><A NAME="351383"><PRE>     sf_dt(dev, .3, .25, &#147;times&#148;, &#147;italic&#148;, 8);
</PRE><A NAME="351384"><PRE>     sf_dt(dev, .3, .20, &#147;times&#148;, &#147;bold&#148;, 8);
</PRE><A NAME="351385"><PRE>     sf_dt(dev, .3, .15, &#147;times&#148;, &#147;bold-italic&#148;, 8);
</PRE><A NAME="351386"><PRE> 
</PRE><A NAME="351387"><PRE>     sf_dt(dev, .5, .9, &#147;courier&#148;, &#147;medium&#148;, 12);
</PRE><A NAME="351388"><PRE>     sf_dt(dev, .5, .8, &#147;courier&#148;, &#147;italic&#148;, 12);
</PRE><A NAME="351389"><PRE>     sf_dt(dev, .5, .7, &#147;courier&#148;, &#147;bold&#148;, 12);
</PRE><A NAME="351390"><PRE>     sf_dt(dev, .5, .6, &#147;courier&#148;, &#147;bold-italic&#148;, 12);
</PRE><A NAME="351391"><PRE> 
</PRE><A NAME="351392"><PRE>     sf_dt(dev, .5, .50, &#147;courier&#148;, &#147;medium&#148;, 10);
</PRE><A NAME="351393"><PRE>     sf_dt(dev, .5, .45, &#147;courier&#148;, &#147;italic&#148;, 10);
</PRE><A NAME="351394"><PRE>     sf_dt(dev, .5, .40, &#147;courier&#148;, &#147;bold&#148;, 10);
</PRE><A NAME="351395"><PRE>     sf_dt(dev, .5, .35, &#147;courier&#148;, &#147;bold-italic&#148;, 10);
</PRE><A NAME="351396"><PRE> 
</PRE><A NAME="351397"><PRE>     sf_dt(dev, .5, .30, &#147;courier&#148;, &#147;medium&#148;, 8);
</PRE><A NAME="351398"><PRE>     sf_dt(dev, .5, .25, &#147;courier&#148;, &#147;italic&#148;, 8);
</PRE><A NAME="351399"><PRE>     sf_dt(dev, .5, .20, &#147;courier&#148;, &#147;bold&#148;, 8);
</PRE><A NAME="351400"><PRE>     sf_dt(dev, .5, .15, &#147;courier&#148;, &#147;bold-italic&#148;, 8);
</PRE><A NAME="351401"><PRE> 
</PRE><A NAME="351402"><PRE>     PG_update_vs(dev);
</PRE><A NAME="351403"><PRE> 
</PRE><A NAME="351404"><PRE>     return;}
</PRE><A NAME="351405"><PRE> 
</PRE><A NAME="351406"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351407"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351408"><PRE> 
</PRE><a name="351409">
<h2>7.3   </a>Line </a>Drawing</h2>
</a>
<a name="351410">
This program illustrates some of the PGS calls for handling drawing attributes and for drawing lines.<p>
</a>
<A NAME="351411"><PRE> 
</PRE><A NAME="351412"><PRE> #include &#147;</a>pgs.h&#148;
</PRE><A NAME="351413"><PRE> 
</PRE><A NAME="351414"><PRE> char
</PRE><A NAME="351415"><PRE>  *color[] = {&#147;BLACK&#148;,
</PRE><A NAME="351416"><PRE>              &#147;WHITE&#148;,
</PRE><A NAME="351417"><PRE>              &#147;LGHT_WHITE&#148;
</PRE><A NAME="351418"><PRE>              &#147;GRAY&#148;,
</PRE><A NAME="351419"><PRE>              &#147;BLUE&#148;,
</PRE><A NAME="351420"><PRE>              &#147;GREEN&#148;,
</PRE><A NAME="351421"><PRE>              &#147;CYAN&#148;,
</PRE><A NAME="351422"><PRE>              &#147;RED&#148;,
</PRE><A NAME="351423"><PRE>              &#147;MAGENTA&#148;,
</PRE><A NAME="351424"><PRE>              &#147;BROWN&#148;,
</PRE><A NAME="351425"><PRE>              &#147;LGHT_BLUE&#148;,
</PRE><A NAME="351426"><PRE>              &#147;LGHT_GREEN&#148;,
</PRE><A NAME="351427"><PRE>              &#147;LGHT_CYAN&#148;,
</PRE><A NAME="351428"><PRE>              &#147;LGHT_RED&#148;,
</PRE><A NAME="351429"><PRE>              &#147;YELLOW&#148;,
</PRE><A NAME="351430"><PRE>              &#147;LGHT_MAGENTA&#148;};
</PRE><A NAME="351431"><PRE> 
</PRE><A NAME="351432"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351433"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351434"><PRE> 
</PRE><A NAME="351435"><PRE> main(argc, argv)
</PRE><A NAME="351436"><PRE>    int argc;
</PRE><A NAME="351437"><PRE>    char *argv[];
</PRE><A NAME="351438"><PRE>    {</a>PG_device *SCR_dev;
</PRE><A NAME="351439"><PRE>     PG_device *SCR_dew;
</PRE><A NAME="351440"><PRE>     REAL y, dy;
</PRE><A NAME="351441"><PRE>     int i, n;
</PRE><A NAME="351442"><PRE> 
</PRE><A NAME="351443"><PRE>     SCR_dev = </a>PG_make_device(&#147;WINDOW&#148;, &#147;COLOR&#148;, &#147;PGS Test A&#148;);
</PRE><A NAME="351444"><PRE>     SCR_dew = </a>PG_make_device(&#147;WINDOW&#148;, &#147;COLOR&#148;, &#147;PGS Test B&#148;);
</PRE><A NAME="351445"><PRE> 
</PRE><A NAME="351451"><PRE>     </a>PG_set_viewport_pos(SCR_dev, 0.0001, 0.0001);
</PRE><A NAME="351453"><PRE>     </a>PG_set_viewport_shape(SCR_dev, 0.9999, 0.0, 1.0);
</PRE><A NAME="351454"><PRE> 
</PRE><A NAME="351452"><PRE>     </a>PG_set_viewport_pos(SCR_dew, 0.0001, 0.0001);
</PRE><A NAME="352361"><PRE>     </a>PG_set_viewport_shape(SCR_dew, 0.9999, 0.0, 1.0);
</PRE><A NAME="351455"><PRE> 
</PRE><A NAME="351456"><PRE>     </a>PG_white_background(SCR_dev, TRUE);
</PRE><A NAME="351457"><PRE>     </a>PG_white_background(SCR_dew, FALSE);
</PRE><A NAME="351458"><PRE> 
</PRE><A NAME="351459"><PRE>     </a>PG_open_device(SCR_dev, 0.1, 0.1, 0.4, 0.4);
</PRE><A NAME="351460"><PRE>     </a>PG_open_device(SCR_dew, 0.5, 0.1, 0.4, 0.4);
</PRE><A NAME="351461"><PRE> 
</PRE><A NAME="351462"><PRE> /* connect the I/O functions */
</PRE><A NAME="351463"><PRE>     </a>PG_open_console(&#147;PGS Test&#148;, &#147;MONOCHROME&#148;, 0.1, 0.7, 0.5, 0.3);
</PRE><A NAME="351464"><PRE> 
</PRE><A NAME="351465"><PRE>     </a>PG_set_viewport(SCR_dev, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351466"><PRE>     </a>PG_set_window(SCR_dev, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351467"><PRE>     </a>PG_set_viewport(SCR_dew, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351468"><PRE>     </a>PG_set_window(SCR_dew, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351469"><PRE> 
</PRE><A NAME="351470"><PRE>     n  = 16;
</PRE><A NAME="351471"><PRE>     dy = 1.0/(n + 1.0);
</PRE><A NAME="351472"><PRE>     y  = 0.5*dy;
</PRE><A NAME="351473"><PRE>     for (i = 0; i &lt; n; i++)
</PRE><A NAME="351474"><PRE>       {</a>PG_set_line_color(SCR_dev, i);
</PRE><A NAME="351475"><PRE>        </a>PG_draw_line(SCR_dev, 0.0, y, 0.5, y);
</PRE><A NAME="351476"><PRE>        </a>PG_set_text_color(SCR_dev, i);
</PRE><A NAME="351477"><PRE>        </a>PG_write_abs(SCR_dev, 0.6, y, &#147;%d %s&#148;, i, color[i]);
</PRE><A NAME="351478"><PRE> 
</PRE><A NAME="351479"><PRE>        </a>PG_set_line_color(SCR_dew, i);
</PRE><A NAME="351480"><PRE>        </a>PG_draw_line(SCR_dew, 0.0, y, 0.5, y);
</PRE><A NAME="351481"><PRE>        </a>PG_set_text_color(SCR_dew, i);
</PRE><A NAME="351482"><PRE>        </a>PG_write_abs(SCR_dew, 0.6, y, &#147;%d %s&#148;, i, color[i]);
</PRE><A NAME="351483"><PRE> 
</PRE><A NAME="351484"><PRE>        y += dy;};
</PRE><A NAME="351485"><PRE> 
</PRE><A NAME="351486"><PRE>     </a>PG_update_vs(SCR_dew);
</PRE><A NAME="351487"><PRE>     </a>PG_update_vs(SCR_dev);
</PRE><A NAME="351488"><PRE> 
</PRE><A NAME="351489"><PRE>     SC_pause();
</PRE><A NAME="351490"><PRE> 
</PRE><A NAME="351491"><PRE>     </a>PG_close_device(SCR_dew);
</PRE><A NAME="351492"><PRE>     </a>PG_close_device(SCR_dev);
</PRE><A NAME="351493"><PRE> 
</PRE><A NAME="351494"><PRE>     exit(0);}
</PRE><A NAME="351495"><PRE> 
</PRE><A NAME="351496"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351497"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351498"><PRE> 
</PRE><a name="351499">
<h2>7.4   </a>Line </a>Plots</h2>
</a>
<a name="351500">
This program demonstrates some of the line plot capabilities of PGS.<p>
</a>
<A NAME="351501"><PRE> 
</PRE><A NAME="351502"><PRE> #include &#147;</a>pgs.h&#148;
</PRE><A NAME="351503"><PRE> 
</PRE><A NAME="351504"><PRE> #define N 50
</PRE><A NAME="351505"><PRE> 
</PRE><A NAME="351506"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351507"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351508"><PRE> 
</PRE><A NAME="351509"><PRE> main(argc, argv)
</PRE><A NAME="351510"><PRE>    int argc;
</PRE><A NAME="351511"><PRE>    char **argv;
</PRE><A NAME="351512"><PRE>    {int i;
</PRE><A NAME="351513"><PRE>     REAL *x, *y;
</PRE><A NAME="351514"><PRE>     char *s;
</PRE><A NAME="351515"><PRE>     </a>PG_graph *data;
</PRE><A NAME="351516"><PRE>     </a>PG_device *SCR_dev, *SCR_dew, *PS_dev;
</PRE><A NAME="351517"><PRE> 
</PRE><A NAME="351518"><PRE>     s = SC_strsave(&#147;WINDOW&#148;);
</PRE><A NAME="351519"><PRE>     for (i = 1; i &lt; argc; i++)
</PRE><A NAME="351520"><PRE>         if (argv[i][0] == &#145;-&#146;)
</PRE><A NAME="351521"><PRE>            {switch (argv[i][1])
</PRE><A NAME="351522"><PRE>                {case &#145;h&#146; : i++;
</PRE><A NAME="351523"><PRE>                            s = argv[i];
</PRE><A NAME="351524"><PRE>                            break;};};
</PRE><A NAME="351525"><PRE> 
</PRE><A NAME="351526"><PRE>     x = MAKE_N(REAL, N);
</PRE><A NAME="351527"><PRE>     y = MAKE_N(REAL, N);
</PRE><A NAME="351528"><PRE> 
</PRE><A NAME="351529"><PRE>     for (i = 0; i &lt; N; i++)
</PRE><A NAME="351530"><PRE>         {x[i] = -(i+1)/8.0;
</PRE><A NAME="351531"><PRE>          y[i] = 6.022e23/x[i];};
</PRE><A NAME="351532"><PRE> 
</PRE><A NAME="351533"><PRE>     data = </a>PG_make_graph_1d(&#145;A&#146;, &#147;Test Data #1&#148;, FALSE, N,
</PRE><A NAME="351534"><PRE>                             x, y, &#147;X Values&#148;, &#147;Y Values&#148;, 1, 0.0, 1);
</PRE><A NAME="351535"><PRE> 
</PRE><A NAME="351536"><PRE>     </a>PG_open_console(&#147;GSTEST&#148;, &#147;MONOCHROME&#148;, 1,
</PRE><A NAME="351537"><PRE>                     0.05, 0.7, 0.9, 0.20);
</PRE><A NAME="351538"><PRE> 
</PRE><A NAME="351539"><PRE> /* set up the left window */
</PRE><A NAME="351540"><PRE>     SCR_dev = </a>PG_make_device(s, &#147;COLOR&#148;, &#147;PGS Test A&#148;);
</PRE><A NAME="351541"><PRE>     </a>PG_white_background(SCR_dev, TRUE);
</PRE><A NAME="351542"><PRE>     </a>PG_turn_data_id(SCR_dev, </a>ON);
</PRE><A NAME="351543"><PRE>     </a>PG_open_device(SCR_dev, 0.05, 0.2, 0.45, 0.45);
</PRE><A NAME="351544"><PRE> 
</PRE><A NAME="351545"><PRE> /* set up the right window */
</PRE><A NAME="351546"><PRE>     SCR_dew = </a>PG_make_device(s, &#147;COLOR&#148;, &#147;PGS Test B&#148;);
</PRE><A NAME="351547"><PRE>     </a>PG_white_background(SCR_dew, FALSE);
</PRE><A NAME="351548"><PRE>     </a>PG_turn_data_id(SCR_dew, </a>ON);
</PRE><A NAME="351549"><PRE>     </a>PG_open_device(SCR_dew, 0.5, 0.2, 0.45, 0.45);
</PRE><A NAME="351550"><PRE> 
</PRE><A NAME="351551"><PRE> /* set up the hard copy device */
</PRE><A NAME="351552"><PRE>     PS_dev = </a>PG_make_device(&#147;PS&#148;, &#147;MONOCHROME&#148;, &#147;PGS Test&#148;);
</PRE><A NAME="351553"><PRE>     </a>PG_turn_data_id(PS_dev, </a>ON);
</PRE><A NAME="351554"><PRE>     </a>PG_open_device(PS_dev, 0.0, 0.0, 0.0, 0.0);
</PRE><A NAME="351555"><PRE> 
</PRE><A NAME="351556"><PRE>     </a>PG_set_plot_type(SCR_dev, </a>CARTESIAN);
</PRE><A NAME="351557"><PRE>     </a>PG_draw_graph(SCR_dev, data);
</PRE><A NAME="351558"><PRE>     </a>PG_set_plot_type(PS_dev, </a>CARTESIAN);
</PRE><A NAME="351559"><PRE>     </a>PG_draw_graph(PS_dev, data);
</PRE><A NAME="351560"><PRE>     SC_pause();
</PRE><A NAME="351561"><PRE> 
</PRE><A NAME="351562"><PRE>     </a>PG_set_plot_type(SCR_dew, </a>POLAR);
</PRE><A NAME="351563"><PRE>     </a>PG_draw_graph(SCR_dew, data);
</PRE><A NAME="351564"><PRE>     </a>PG_set_plot_type(PS_dev, </a>POLAR);
</PRE><A NAME="351565"><PRE>     </a>PG_draw_graph(PS_dev, data);
</PRE><A NAME="351566"><PRE>     SC_pause();
</PRE><A NAME="351567"><PRE> 
</PRE><A NAME="351568"><PRE>     </a>PG_set_plot_type(SCR_dev, </a>INSEL);
</PRE><A NAME="351569"><PRE>     </a>PG_draw_graph(SCR_dev, data);
</PRE><A NAME="351570"><PRE>     </a>PG_set_plot_type(PS_dev, </a>INSEL);
</PRE><A NAME="351571"><PRE>     </a>PG_draw_graph(PS_dev, data);
</PRE><A NAME="351572"><PRE>     SC_pause();
</PRE><A NAME="351573"><PRE> 
</PRE><A NAME="351574"><PRE>     for (i = 0; i &lt; N; i++)
</PRE><A NAME="351575"><PRE>         {x[i] = i/8.0;
</PRE><A NAME="351576"><PRE>          y[i] = cos(x[i]);};
</PRE><A NAME="351577"><PRE> 
</PRE><A NAME="351578"><PRE>     data = </a>PG_make_graph_1d(&#145;B&#146;, &#147;Test Data #2&#148;, FALSE, N,
</PRE><A NAME="351579"><PRE>                             x, y, &#147;X Values&#148;, &#147;Y Values&#148;, 2, 0.0, 1);
</PRE><A NAME="351580"><PRE> 
</PRE><A NAME="351581"><PRE>     </a>PG_turn_grid(SCR_dev, </a>ON);
</PRE><A NAME="351582"><PRE>     </a>PG_turn_grid(SCR_dew, </a>ON);
</PRE><A NAME="351583"><PRE>     </a>PG_turn_grid(PS_dev, </a>ON);
</PRE><A NAME="351584"><PRE> 
</PRE><A NAME="351585"><PRE>     </a>PG_set_plot_type(SCR_dew, </a>POLAR);
</PRE><A NAME="351586"><PRE>     </a>PG_draw_graph(SCR_dew, data);
</PRE><A NAME="351587"><PRE>     </a>PG_set_plot_type(PS_dev, </a>POLAR);
</PRE><A NAME="351588"><PRE>     </a>PG_draw_graph(PS_dev, data);
</PRE><A NAME="351589"><PRE>     SC_pause();
</PRE><A NAME="351590"><PRE> 
</PRE><A NAME="351591"><PRE>     </a>PG_set_plot_type(SCR_dev, </a>INSEL);
</PRE><A NAME="351592"><PRE>     </a>PG_draw_graph(SCR_dev, data);
</PRE><A NAME="351593"><PRE>     </a>PG_set_plot_type(PS_dev, </a>INSEL);
</PRE><A NAME="351594"><PRE>     </a>PG_draw_graph(PS_dev, data);
</PRE><A NAME="351595"><PRE>     SC_pause();
</PRE><A NAME="351596"><PRE> 
</PRE><A NAME="351597"><PRE>     </a>PG_set_plot_type(SCR_dew, </a>CARTESIAN);
</PRE><A NAME="351598"><PRE>     </a>PG_draw_graph(SCR_dew, data);
</PRE><A NAME="351599"><PRE>     </a>PG_set_plot_type(PS_dev, </a>CARTESIAN);
</PRE><A NAME="351600"><PRE>     </a>PG_draw_graph(PS_dev, data);
</PRE><A NAME="351601"><PRE>     SC_pause();
</PRE><A NAME="351602"><PRE> 
</PRE><A NAME="351603"><PRE>     </a>PG_close_device(SCR_dev);
</PRE><A NAME="351604"><PRE>     </a>PG_close_device(SCR_dew);
</PRE><A NAME="351605"><PRE>     </a>PG_close_device(PS_dev);
</PRE><A NAME="351606"><PRE> 
</PRE><A NAME="351607"><PRE>     exit(0);}
</PRE><A NAME="351608"><PRE> 
</PRE><A NAME="351609"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351610"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351611"><PRE> 
</PRE><a name="351612">
<h2>7.5   </a>Contour </a>Plots</h2>
</a>
<a name="351613">
This program illustrates the PGS contour plotting functionality.<p>
</a>
<A NAME="351614"><PRE> 
</PRE><A NAME="351615"><PRE> #include &#147;</a>pgs.h&#148;
</PRE><A NAME="351616"><PRE> 
</PRE><A NAME="351617"><PRE> #define NPLOTS 1
</PRE><A NAME="351618"><PRE> 
</PRE><A NAME="351619"><PRE> </a>PG_graph
</PRE><A NAME="351620"><PRE>  *dataset;
</PRE><A NAME="351621"><PRE> 
</PRE><A NAME="351622"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351623"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351624"><PRE> 
</PRE><A NAME="351625"><PRE> /* MAIN - start it off here */
</PRE><A NAME="351626"><PRE> 
</PRE><A NAME="351627"><PRE> main()
</PRE><A NAME="351628"><PRE>    {int i, k, l, kmax, lmax, kxl;
</PRE><A NAME="351629"><PRE>     int id, lncolor, lnstyle, centering;
</PRE><A NAME="351630"><PRE>     REAL *x, *y, *f, r, t, lnwidth;
</PRE><A NAME="351631"><PRE>     REAL xmin, xmax, ymin, ymax, fmin, fmax;
</PRE><A NAME="351632"><PRE>     </a>PG_device *SCR_dev, *PS_dev;
</PRE><A NAME="351633"><PRE> 
</PRE><A NAME="351634"><PRE>     dataset  = MAKE_N(</a>PG_graph, NPLOTS);
</PRE><A NAME="351635"><PRE>     mark     = MAKE_N(int, NPLOTS);
</PRE><A NAME="351636"><PRE> 
</PRE><A NAME="351637"><PRE> /* set up the graphics window */
</PRE><A NAME="351638"><PRE>     SCR_dev = </a>PG_make_device(&#147;WINDOW&#148;, &#147;COLOR&#148;, &#147;PGS Contour Test&#148;);
</PRE><A NAME="351639"><PRE>     </a>PG_open_device(SCR_dev, 0.05, 0.2, 0.45, 0.45);
</PRE><A NAME="351640"><PRE> 
</PRE><A NAME="351641"><PRE>     PS_dev  = </a>PG_make_device(&#147;PS&#148;, &#147;MONOCHROME&#148;, &#147;PGS Contour Test&#148;);
</PRE><A NAME="351642"><PRE>     </a>PG_open_device(PS_dev, 0.0, 0.0, 0.0, 0.0);
</PRE><A NAME="351643"><PRE> 
</PRE><A NAME="352371"><PRE>     </a>PG_set_viewport_pos(SCR_dev, 0.25, 0.15);
</PRE><A NAME="352372"><PRE>     </a>PG_set_viewport_shape(SCR_dev, 0.5, 0.0, 0.5/0.3333);
</PRE><A NAME="352373"><PRE> 
</PRE><A NAME="352374"><PRE>     </a>PG_white_background(SCR_dev, TRUE);
</PRE><A NAME="351649"><PRE>     </a>PG_set_border_width(SCR_dev, 5);
</PRE><A NAME="351651"><PRE> 
</PRE><A NAME="351652"><PRE> /* set up data */
</PRE><A NAME="351653"><PRE>     kmax      = 20;
</PRE><A NAME="351654"><PRE>     lmax      = 20;
</PRE><A NAME="351655"><PRE>     xmin      = -5.0;
</PRE><A NAME="351656"><PRE>     xmax      = 5.0;
</PRE><A NAME="351657"><PRE>     ymin      = -5.0;
</PRE><A NAME="351658"><PRE>     ymax      = 5.0;
</PRE><A NAME="351659"><PRE>     kxl       = kmax*lmax;
</PRE><A NAME="351660"><PRE>     x         = MAKE_N(REAL, kxl);
</PRE><A NAME="351661"><PRE>     y         = MAKE_N(REAL, kxl);
</PRE><A NAME="351662"><PRE>     f         = MAKE_N(REAL, kxl);
</PRE><A NAME="351663"><PRE>     id        = &#145;A&#146;;
</PRE><A NAME="351664"><PRE>     lncolor   = SCR_dev-&gt;BLUE;
</PRE><A NAME="351665"><PRE>     lnwidth   = 0.0;
</PRE><A NAME="351666"><PRE>     lnstyle   = SOLID;
</PRE><A NAME="351667"><PRE>     centering = FALSE;
</PRE><A NAME="351668"><PRE> 
</PRE><A NAME="351669"><PRE>     for (k = 0; k &lt; kmax; k++)
</PRE><A NAME="351670"><PRE>         for (l = 0; l &lt; lmax; l++)
</PRE><A NAME="351671"><PRE>             {i = l*kmax + k;
</PRE><A NAME="351672"><PRE>              x[i] = k/10.0 - 5.0;
</PRE><A NAME="351673"><PRE>              y[i] = l/10.0 - 5.0;
</PRE><A NAME="351674"><PRE>              r = x[i]*x[i] + y[i]*y[i];
</PRE><A NAME="351675"><PRE>              t = 5.0*atan(y[i]/(x[i] + SMALL));
</PRE><A NAME="351676"><PRE>              r = pow(r, 0.125);
</PRE><A NAME="351677"><PRE>              f[i] = exp(-r)*(1.0 + 0.1*cos(t));};
</PRE><A NAME="351678"><PRE> 
</PRE><A NAME="351679"><PRE>     </a>PG_iso_limit(f, kxl, &amp;fmin, &amp;fmax);
</PRE><A NAME="351680"><PRE> 
</PRE><A NAME="351681"><PRE>     dataset = </a>PG_make_graph_r2_r1(id, &#147;contour&#148;, FALSE,
</PRE><A NAME="351682"><PRE>                                   kmax, lmax, centering, x, y, f,
</PRE><A NAME="351683"><PRE>                                   &#147;xy&#148;, &#147;f&#148;,
</PRE><A NAME="351684"><PRE>                                   lncolor, lnwidth, lnstyle);
</PRE><A NAME="351685"><PRE> 
</PRE><A NAME="351686"><PRE>     data-&gt;info = </a>PG_set_tds_info(data-&gt;info, PLOT_CONTOUR, CARTESIAN,
</PRE><A NAME="351645"><PRE>                                  lnstyle, lncolor, 10, 1.0,
</PRE><A NAME="351646"><PRE>                                  lnwidth, 0.0, 0.0, 0.0, HUGE);
</PRE><A NAME="351687"><PRE> 
</PRE><A NAME="351688"><PRE>     </a>PG_contour_plot(SCR_dev, dataset);
</PRE><A NAME="351689"><PRE>     </a>PG_contour_plot(PS_dev, dataset);
</PRE><A NAME="351690"><PRE> 
</PRE><A NAME="351691"><PRE>     SC_pause();
</PRE><A NAME="351692"><PRE> 
</PRE><A NAME="351693"><PRE>     </a>PG_close_device(SCR_dev);
</PRE><A NAME="351694"><PRE>     </a>PG_close_device(PS_dev);
</PRE><A NAME="351695"><PRE> 
</PRE><A NAME="351696"><PRE>     exit(0);}
</PRE><A NAME="351697"><PRE> 
</PRE><A NAME="351698"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351699"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351700"><PRE> 
</PRE><a name="351701">
<h2>7.6   </a>Image </a>Plots</h2>
</a>
<a name="351702">
PGS has facilities for manipulating </a>cell array data and </a>rendering such data sets. In PGS these are referred to as image plots. The following program generates and plots some images.<p>
</a>
<A NAME="351703"><PRE> 
</PRE><A NAME="351704"><PRE> #include &#147;</a>pgs.h&#148;
</PRE><A NAME="351705"><PRE> 
</PRE><A NAME="351706"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351707"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351708"><PRE> 
</PRE><A NAME="351709"><PRE> main()
</PRE><A NAME="351710"><PRE>    {int k, l;
</PRE><A NAME="351711"><PRE>     int X_max, Y_max;
</PRE><A NAME="351712"><PRE>     double dx, dy, x, y, sf;
</PRE><A NAME="351713"><PRE>     char *s;
</PRE><A NAME="351714"><PRE>     </a>PG_palette *pl;
</PRE><A NAME="351715"><PRE>     </a>PG_image *calc_im;
</PRE><A NAME="351716"><PRE>     </a>PG_device *SCR_dev, *SCR_dew, *PS_dev;
</PRE><A NAME="351717"><PRE>     unsigned char *bf, *p;
</PRE><A NAME="351718"><PRE> 
</PRE><A NAME="351719"><PRE>     X_max  = 250;
</PRE><A NAME="351720"><PRE>     Y_max  = 250;
</PRE><A NAME="351721"><PRE> 
</PRE><A NAME="351722"><PRE>     calc_im = </a>PG_make_image(&#147;Test Image&#148;, SC_CHAR_S,
</PRE><A NAME="351723"><PRE>                             0.0, 0.0, 0.0, 0.0, -1.0, 1.0,
</PRE><A NAME="351724"><PRE>                             X_max, Y_max, 4, NULL);
</PRE><A NAME="351725"><PRE>     if (calc_im == NULL)
</PRE><A NAME="351726"><PRE>        {PRINT(stdout, &#147;CAN&#146;T ALLOCATE IMAGE&#148;);
</PRE><A NAME="351727"><PRE>         exit(1);};
</PRE><A NAME="351728"><PRE> 
</PRE><A NAME="351729"><PRE>     </a>PG_open_console(&#147;GSIMTS&#148;, &#147;MONOCHROME&#148;, 1,
</PRE><A NAME="351730"><PRE>                     0.05, 0.7, 0.9, 0.20);
</PRE><A NAME="351731"><PRE> 
</PRE><A NAME="351732"><PRE>     SCR_dev = </a>PG_make_device(&#147;WINDOW&#148;, &#147;COLOR&#148;, &#147;PGS Image Test&#148;);
</PRE><A NAME="351733"><PRE>     </a>PG_background_white(SCR_dev, FALSE;
</PRE><A NAME="351734"><PRE>     </a>PG_open_device(SCR_dev, 0.05, 0.1, 0.4, 0.4);
</PRE><A NAME="351735"><PRE> 
</PRE><A NAME="351736"><PRE>     SCR_dew = </a>PG_make_device(s, &#147;COLOR&#148;, &#147;PGS Image Test&#148;);
</PRE><A NAME="351737"><PRE>     </a>PG_background_white(SCR_dew, TRUE);
</PRE><A NAME="351738"><PRE>     </a>PG_open_device(SCR_dew, 0.55, 0.1, 0.4, 0.4);
</PRE><A NAME="351739"><PRE> 
</PRE><A NAME="351740"><PRE>     PS_dev  = </a>PG_make_device(&#147;PS&#148;, &#147;COLOR&#148;, &#147;PGS Test&#148;);
</PRE><A NAME="351741"><PRE>     </a>PG_open_device(PS_dev, 0.0, 0.0, 0.0, 0.0);
</PRE><A NAME="351742"><PRE> 
</PRE><A NAME="351743"><PRE>     </a>PG_set_viewport(SCR_dev, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351744"><PRE>     </a>PG_set_window(SCR_dev, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351745"><PRE> 
</PRE><A NAME="351746"><PRE>     </a>PG_set_viewport(SCR_dew, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351747"><PRE>     </a>PG_set_window(SCR_dew, 0.0, 1.0, 0.0, 1.0);
</PRE><A NAME="351748"><PRE> 
</PRE><A NAME="351749"><PRE> /* draw the first image */
</PRE><A NAME="351750"><PRE>     bf = calc_im-&gt;buffer;
</PRE><A NAME="351751"><PRE>     pl = </a>PG_set_palette(SCR_dev, &#147;</a>bw&#148;);
</PRE><A NAME="351752"><PRE>     sf = pl-&gt;n_pal_colors;
</PRE><A NAME="351753"><PRE>     for (l = 0; l &lt; Y_max; l++)
</PRE><A NAME="351754"><PRE>         {for (k = 0; k &lt; X_max; k++)
</PRE><A NAME="351755"><PRE>              *bf++ = sf*((double) k)*((double) (Y_max - l - 1))/
</PRE><A NAME="351756"><PRE>                            ((double) Y_max*X_max);};
</PRE><A NAME="351757"><PRE> 
</PRE><A NAME="351758"><PRE>     </a>PG_draw_image(SCR_dev, calc_im, &#147;Test Data A&#148;);
</PRE><A NAME="351759"><PRE> 
</PRE><A NAME="351760"><PRE>     </a>PG_set_palette(PS_dev, &#147;</a>bw&#148;);
</PRE><A NAME="351761"><PRE>     </a>PG_draw_image(PS_dev, calc_im, &#147;Test Data HC&#148;);
</PRE><A NAME="351762"><PRE> 
</PRE><A NAME="351763"><PRE>     SC_pause();
</PRE><A NAME="351764"><PRE> 
</PRE><A NAME="351765"><PRE> /* draw the second image */
</PRE><A NAME="351766"><PRE>     dx = 2.0*PI/((double) X_max);
</PRE><A NAME="351767"><PRE>     dy = 2.0*PI/((double) Y_max);
</PRE><A NAME="351768"><PRE>     bf = calc_im-&gt;buffer;
</PRE><A NAME="351769"><PRE>     pl = </a>PG_set_palette(SCR_dew, &#147;</a>rainbow&#148;);
</PRE><A NAME="351770"><PRE>     sf = pl-&gt;n_pal_colors;
</PRE><A NAME="351771"><PRE>     for (l = 0; l &lt; Y_max; l++)
</PRE><A NAME="351772"><PRE>         {for (k = 0; k &lt; X_max; k++)
</PRE><A NAME="351773"><PRE>              {x = ((double) k)*dx;
</PRE><A NAME="351774"><PRE>               y = ((double) (Y_max - l - 1))*dy;
</PRE><A NAME="351775"><PRE>              *bf++ = sf*(0.5 + 0.5*sin(x)*cos(y));};};
</PRE><A NAME="351776"><PRE> 
</PRE><A NAME="351777"><PRE>     </a>PG_clear_window(SCR_dew);
</PRE><A NAME="351778"><PRE>     </a>PG_draw_image(SCR_dew, calc_im, &#147;Test Data B&#148;);
</PRE><A NAME="351779"><PRE> 
</PRE><A NAME="351780"><PRE>     SC_pause();
</PRE><A NAME="351781"><PRE> 
</PRE><A NAME="351782"><PRE>     </a>PG_close_device(SCR_dev);
</PRE><A NAME="351783"><PRE>     </a>PG_close_device(SCR_dew);
</PRE><A NAME="351784"><PRE>     </a>PG_close_device(PS_dev);
</PRE><A NAME="351785"><PRE> 
</PRE><A NAME="351786"><PRE>     </a>PG_rl_image(calc_im);
</PRE><A NAME="351787"><PRE> 
</PRE><A NAME="351788"><PRE>     exit(0);}
</PRE><A NAME="351789"><PRE> 
</PRE><A NAME="351790"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351791"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351792"><PRE> 
</PRE><a name="351793">
<h2>7.7   </a>Surface </a>Plots</h2>
</a>
<a name="351794">
PGS also has the ability to </a>render data sets as </a>wire-frame meshes with </a>hidden line removal. The following program shows how this is done.<p>
</a>
<A NAME="351795"><PRE> 
</PRE><A NAME="351796"><PRE> #include &#147;pgs.h&#148;
</PRE><A NAME="351797"><PRE> 
</PRE><A NAME="351798"><PRE> #define N_POINTS 10
</PRE><A NAME="351799"><PRE> 
</PRE><A NAME="351800"><PRE> static void
</PRE><A NAME="351801"><PRE>  DECLARE(draw_set, (PG_device *SCR_dev, PG_device *PS_dev,
</PRE><A NAME="351802"><PRE> 		    PG_device *CGM_dev, REAL *rz, REAL *rs, REAL *ext,
</PRE><A NAME="351803"><PRE> 		    REAL *rx, REAL *ry, int n_pts,
</PRE><A NAME="351804"><PRE> 		    double xmn, double xmx, double ymn, double ymx,
</PRE><A NAME="351805"><PRE> 		    double theta, double phi, double width,
</PRE><A NAME="351806"><PRE> 		    int color, int style, int type, int *maxes)),
</PRE><A NAME="351807"><PRE>  DECLARE(print_help, (byte));
</PRE><A NAME="351808"><PRE> 
</PRE><A NAME="351809"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351810"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351811"><PRE> 
</PRE><A NAME="351812"><PRE> main(argc, argv)
</PRE><A NAME="351813"><PRE>    int argc;
</PRE><A NAME="351814"><PRE>    char **argv;
</PRE><A NAME="351815"><PRE>    {int i, k, l;
</PRE><A NAME="351816"><PRE>     int maxes[2], X_max, Y_max, n_pts, use_color, type;
</PRE><A NAME="351817"><PRE>     double x, y, dx, dy, theta, phi, dp;
</PRE><A NAME="351818"><PRE>     char *s, t[MAXLINE], *token;
</PRE><A NAME="351819"><PRE>     PG_device *SCR_dev, *PS_dev, *CGM_dev;
</PRE><A NAME="351820"><PRE>     REAL *rx, *ry, *rz, *rs, *px, *py, *pz, *ps, *ext;
</PRE><A NAME="351821"><PRE> 
</PRE><A NAME="351822"><PRE>     X_max     = N_POINTS;
</PRE><A NAME="351823"><PRE>     Y_max     = N_POINTS;
</PRE><A NAME="351824"><PRE>     use_color = FALSE;
</PRE><A NAME="351825"><PRE>     type      = PLOT_WIRE_MESH;
</PRE><A NAME="351826"><PRE>     dp        = 0.0;
</PRE><A NAME="351827"><PRE>     for (i = 1; i &lt; argc; i++)
</PRE><A NAME="351828"><PRE>         {if (argv[i][0] == &#145;-&#146;)
</PRE><A NAME="351829"><PRE>             {switch (argv[i][1])
</PRE><A NAME="351830"><PRE>                 {case &#145;c&#146; : use_color = TRUE;
</PRE><A NAME="351831"><PRE>                             break;
</PRE><A NAME="351832"><PRE>                  case &#145;p&#146; : dp = ATOF(argv[++i]);
</PRE><A NAME="351833"><PRE>                             break;
</PRE><A NAME="351834"><PRE>                  case &#145;s&#146; : type = PLOT_SURFACE;
</PRE><A NAME="351835"><PRE>                             break;
</PRE><A NAME="351836"><PRE>                  case &#145;w&#146; : type = PLOT_WIRE_MESH;
</PRE><A NAME="351837"><PRE>                             break;
</PRE><A NAME="351838"><PRE>                  case &#145;z&#146; : X_max = Y_max = atoi(argv[++i]);
</PRE><A NAME="351839"><PRE>                             break;};}
</PRE><A NAME="351840"><PRE> 
</PRE><A NAME="351841"><PRE>          else
</PRE><A NAME="351842"><PRE>             break;};
</PRE><A NAME="351843"><PRE> 
</PRE><A NAME="351844"><PRE>     maxes[0] = X_max;
</PRE><A NAME="351845"><PRE>     maxes[1] = Y_max;
</PRE><A NAME="351846"><PRE>     n_pts    = X_max*Y_max;
</PRE><A NAME="351847"><PRE> 
</PRE><A NAME="351848"><PRE>     PG_open_console(&#147;GSSFTS&#148;, &#147;MONOCHROME&#148;, 1,
</PRE><A NAME="351849"><PRE>                     0.55, 0.1, 0.4, 0.8);
</PRE><A NAME="351850"><PRE> 
</PRE><A NAME="351851"><PRE>     if (use_color)
</PRE><A NAME="351852"><PRE>        SCR_dev = PG_make_device(&#147;WINDOW&#148;, &#147;COLOR&#148;, &#147;PGS Surface Test&#148;);
</PRE><A NAME="351853"><PRE>     else
</PRE><A NAME="351854"><PRE>        SCR_dev = PG_make_device(&#147;WINDOW&#148;, &#147;MONOCHROME&#148;,
</PRE><A NAME="351855"><PRE>                                 &#147;PGS Surface Test&#148;);
</PRE><A NAME="351856"><PRE>     PG_open_device(SCR_dev, 0.1, 0.1, 0.4, 0.4);
</PRE><A NAME="351857"><PRE> 
</PRE><A NAME="351858"><PRE>     if (type == PLOT_SURFACE)
</PRE><A NAME="351859"><PRE>        PG_set_palette(SCR_dev, &#147;spectrum&#148;);
</PRE><A NAME="351860"><PRE> 
</PRE><A NAME="351861"><PRE>     rx = px = MAKE_N(REAL, n_pts);
</PRE><A NAME="351862"><PRE>     ry = py = MAKE_N(REAL, n_pts);
</PRE><A NAME="351863"><PRE>     rz = pz = MAKE_N(REAL, n_pts);
</PRE><A NAME="351864"><PRE> 
</PRE><A NAME="351865"><PRE>     if (type == PLOT_SURFACE)
</PRE><A NAME="351866"><PRE>        rs = ps = MAKE_N(REAL, n_pts);
</PRE><A NAME="351867"><PRE>     else
</PRE><A NAME="351868"><PRE>        rs = ps = pz;
</PRE><A NAME="351869"><PRE> 
</PRE><A NAME="351870"><PRE>     ext = MAKE_N(REAL, 4);
</PRE><A NAME="351871"><PRE>     ext[0] = -1;
</PRE><A NAME="351872"><PRE>     ext[1] =  1;
</PRE><A NAME="351873"><PRE>     ext[2] = -1;
</PRE><A NAME="351874"><PRE>     ext[3] =  1;
</PRE><A NAME="351875"><PRE> 
</PRE><A NAME="351876"><PRE> /* draw the first image */
</PRE><A NAME="351877"><PRE>     dx = 2.0*PI/((double) (X_max - 1));
</PRE><A NAME="351878"><PRE>     dy = 2.0*PI/((double) (Y_max - 1));
</PRE><A NAME="351879"><PRE>     for (l = 0; l &lt; Y_max; l++)
</PRE><A NAME="351880"><PRE>         {for (k = 0; k &lt; X_max; k++)
</PRE><A NAME="351881"><PRE>              {*px++ = x = ((double) k)*dx;
</PRE><A NAME="351882"><PRE>               *py++ = y = ((double) l)*dy;
</PRE><A NAME="351883"><PRE>               *pz++ = cos(y);
</PRE><A NAME="351884"><PRE>               if (type == PLOT_SURFACE)
</PRE><A NAME="351885"><PRE>                  *ps++ = sin(x);};};
</PRE><A NAME="351886"><PRE> 
</PRE><A NAME="351887"><PRE>     if (dp == 0.0)
</PRE><A NAME="351888"><PRE>        {while (TRUE)
</PRE><A NAME="351889"><PRE>            {PRINT(stdout, &#147;Viewing Angle: &#147;);
</PRE><A NAME="351890"><PRE>             GETLN(t, MAXLINE, stdin);
</PRE><A NAME="351891"><PRE> 
</PRE><A NAME="351892"><PRE>             if ((token = strtok(t, &#147; ,&#148;)) == NULL)
</PRE><A NAME="351893"><PRE>                break;
</PRE><A NAME="351894"><PRE>             theta = DEG_RAD*ATOF(token);
</PRE><A NAME="351895"><PRE> 
</PRE><A NAME="351896"><PRE>             if ((token = strtok(NULL, &#147; ,&#148;)) == NULL)
</PRE><A NAME="351897"><PRE>                break;
</PRE><A NAME="351898"><PRE>             phi = DEG_RAD*ATOF(token);
</PRE><A NAME="351899"><PRE> 
</PRE><A NAME="351900"><PRE>             draw_set(SCR_dev, PS_dev, CGM_dev,
</PRE><A NAME="351901"><PRE>                      rz, rs, ext, rx, ry,
</PRE><A NAME="351902"><PRE>                      n_pts,
</PRE><A NAME="351903"><PRE>                      0.0, 2.0*PI, 0.0, 2.0*PI,
</PRE><A NAME="351904"><PRE>                      theta, phi,
</PRE><A NAME="351905"><PRE>                      0.0, SCR_dev-&gt;BLUE, SOLID,
</PRE><A NAME="351906"><PRE>                      type, maxes);};}
</PRE><A NAME="351907"><PRE> 
</PRE><A NAME="351908"><PRE>     else
</PRE><A NAME="351909"><PRE>        {for (phi = 0.0; phi &lt;= 90.0; phi += dp)
</PRE><A NAME="351910"><PRE>             {draw_set(SCR_dev, PS_dev, CGM_dev,
</PRE><A NAME="351911"><PRE>                       rz, rs, ext, rx, ry,
</PRE><A NAME="351912"><PRE>                       n_pts,
</PRE><A NAME="351913"><PRE>                       0.0, 2.0*PI, 0.0, 2.0*PI,
</PRE><A NAME="351914"><PRE>                       0.0, DEG_RAD*phi,
</PRE><A NAME="351915"><PRE>                       0.0, SCR_dev-&gt;BLUE, SOLID,
</PRE><A NAME="351916"><PRE>                       type, maxes);};};
</PRE><A NAME="351917"><PRE> 
</PRE><A NAME="351918"><PRE>     PG_close_device(SCR_dev);
</PRE><A NAME="351919"><PRE> 
</PRE><A NAME="351920"><PRE>     exit(0);}
</PRE><A NAME="351921"><PRE> 
</PRE><A NAME="351922"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351923"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351924"><PRE> 
</PRE><A NAME="351925"><PRE> /* DRAW_SET - draw a complete set of plots */
</PRE><A NAME="351926"><PRE> 
</PRE><A NAME="351927"><PRE> static void draw_set(SCR_dev, PS_dev, CGM_dev, rz, rs, ext, rx, ry,
</PRE><A NAME="351928"><PRE>                      n_pts, xmn, xmx, ymn, ymx, theta, phi,
</PRE><A NAME="351929"><PRE>                      width, color, style, type, maxes)
</PRE><A NAME="351930"><PRE>    PG_device *SCR_dev, *PS_dev, *CGM_dev;
</PRE><A NAME="351931"><PRE>    REAL *rz, *rs, *ext, *rx, *ry;
</PRE><A NAME="351932"><PRE>    int n_pts;
</PRE><A NAME="351933"><PRE>    double xmn, xmx, ymn, ymx, theta, phi, width;
</PRE><A NAME="351934"><PRE>    int color, style, type;
</PRE><A NAME="351935"><PRE>    int *maxes;
</PRE><A NAME="351936"><PRE>    {PG_draw_surface(SCR_dev, rz, rs, ext, rx, ry,
</PRE><A NAME="351937"><PRE>                     n_pts,
</PRE><A NAME="351938"><PRE>                     xmn, xmx, ymn, ymx, theta, phi, width, color,
</PRE><A NAME="351939"><PRE>                     style, type, &#147;Test Data&#148;,
</PRE><A NAME="351940"><PRE>                     &#147;Logical-Rectangular&#148;, maxes);
</PRE><A NAME="351941"><PRE>     return;}
</PRE><A NAME="351942"><PRE> 
</PRE><A NAME="351943"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351944"><PRE> /*-----------------------------------------------------------------*/
</PRE><A NAME="351945"><PRE> 
</PRE><a name="351946">
<h2>7.8   </a>Vector </a>Plots</h2>
</a>
<a name="351947">
PGS can </a>render </a>2 dimensional </a>vector </a>fields. The following program demonstrates this capability.<p>
</a>
<a name="351948">
<h2>7.9   </a>FORTRAN API Example</h2>
</a>
<A NAME="351949"><PRE> c
</PRE><A NAME="351950"><PRE> c GSTEST.F - test of PGS FORTRAN API
</PRE><A NAME="351951"><PRE> c
</PRE><A NAME="351952"><PRE> c -------------------------------------------------------------------
</PRE><A NAME="351953"><PRE> c -------------------------------------------------------------------
</PRE><A NAME="351954"><PRE> 
</PRE><A NAME="351955"><PRE>       program gsftst
</PRE><A NAME="351956"><PRE> 
</PRE><A NAME="351957"><PRE>       integer pgmkdv
</PRE><A NAME="351958"><PRE>       integer idev, idvp
</PRE><A NAME="351959"><PRE>       double precision x1, y1, x2, y2
</PRE><A NAME="351960"><PRE>       double precision x(5), y(5), u(4), v(4)
</PRE><A NAME="351961"><PRE>       character*8 names, namep
</PRE><A NAME="351962"><PRE>       character*10 name2, name3
</PRE><A NAME="351963"><PRE>       character*12 name4
</PRE><A NAME="351964"><PRE> 
</PRE><A NAME="351965"><PRE> c ... set up the window
</PRE><A NAME="351966"><PRE>       names = &#145;WINDOW&#146;
</PRE><A NAME="351967"><PRE>       name2 = &#145;COLOR&#146;
</PRE><A NAME="351968"><PRE>       name3 = &#145;PGS Test A&#146;
</PRE><A NAME="351969"><PRE>       idev = pgmkdv(6, names, 5, name2, 10, name3)
</PRE><A NAME="351970"><PRE>       x1 = 0.05
</PRE><A NAME="351971"><PRE>       y1 = 0.2
</PRE><A NAME="351972"><PRE>       x2 = 0.45
</PRE><A NAME="351973"><PRE>       y2 = 0.45
</PRE><A NAME="351974"><PRE>       call pgopen(idev, x1, y1, x2, y2)
</PRE><A NAME="351975"><PRE> 
</PRE><A NAME="351976"><PRE> c ... set up the PS device
</PRE><A NAME="351977"><PRE>       namep = &#145;PS&#146;
</PRE><A NAME="351978"><PRE>       name2 = &#145;MONOCHROME&#146;
</PRE><A NAME="351979"><PRE>       name3 = &#145;gsftst&#146;
</PRE><A NAME="351980"><PRE>       idvp = pgmkdv(2, namep, 10, name2, 6, name3)
</PRE><A NAME="351981"><PRE>       x1 = 0.0
</PRE><A NAME="351982"><PRE>       y1 = 0.0
</PRE><A NAME="351983"><PRE>       x2 = 0.0
</PRE><A NAME="351984"><PRE>       y2 = 0.0
</PRE><A NAME="351985"><PRE>       call pgopen(idvp, x1, y1, x2, y2)
</PRE><A NAME="351986"><PRE> 
</PRE><A NAME="351987"><PRE>       call pgclsc(idev)
</PRE><A NAME="351988"><PRE>       call pgclsc(idvp)
</PRE><A NAME="351989"><PRE> 
</PRE><A NAME="351990"><PRE> c ... set up the view port and world coordinate system
</PRE><A NAME="351991"><PRE>       x1 = 0.1
</PRE><A NAME="351992"><PRE>       x2 = 0.9
</PRE><A NAME="351993"><PRE>       y1 = 0.1
</PRE><A NAME="351994"><PRE>       y2 = 0.9
</PRE><A NAME="351995"><PRE>       call pgsvwp(idev, x1, x2, y1, y2)
</PRE><A NAME="351996"><PRE>       call pgsvwp(idvp, x1, x2, y1, y2)
</PRE><A NAME="351997"><PRE>       x1 =   0.0
</PRE><A NAME="351998"><PRE>       x2 =  10.0
</PRE><A NAME="351999"><PRE>       y1 = -15.0
</PRE><A NAME="352000"><PRE>       y2 =  30.0
</PRE><A NAME="352001"><PRE>       call pgswcs(idev, x1, x2, y1, y2)
</PRE><A NAME="352002"><PRE>       call pgswcs(idvp, x1, x2, y1, y2)
</PRE><A NAME="352003"><PRE> 
</PRE><A NAME="352004"><PRE> c ... draw a bounding box
</PRE><A NAME="352005"><PRE>       x1 =   0.0
</PRE><A NAME="352006"><PRE>       x2 =  10.0
</PRE><A NAME="352007"><PRE>       y1 = -15.0
</PRE><A NAME="352008"><PRE>       y2 =  30.0
</PRE><A NAME="352009"><PRE>       call pgdrbx(idev, x1, x2, y1, y2)
</PRE><A NAME="352010"><PRE>       call pgdrbx(idvp, x1, x2, y1, y2)
</PRE><A NAME="352011"><PRE> 
</PRE><A NAME="352012"><PRE> c ... write a string
</PRE><A NAME="352013"><PRE>       x1 = 5.0
</PRE><A NAME="352014"><PRE>       y1 = 0.0
</PRE><A NAME="352015"><PRE>       name4 = &#145;TEXT STRING&#146;
</PRE><A NAME="352016"><PRE>  100  format(1p, e10.2)
</PRE><A NAME="352017"><PRE>       call pgwrta(idev, x1, y1, 11, name4)
</PRE><A NAME="352018"><PRE>       call pgwrta(idvp, x1, y1, 11, name4)
</PRE><A NAME="352019"><PRE> 
</PRE><A NAME="352020"><PRE> c ... draw a line
</PRE><A NAME="352021"><PRE>       x1 =  1.0
</PRE><A NAME="352022"><PRE>       x2 =  9.0
</PRE><A NAME="352023"><PRE>       y1 = -4.0
</PRE><A NAME="352024"><PRE>       y2 = -1.0
</PRE><A NAME="352025"><PRE>       call pgdrln(idev, x1, y1, x2, y2)
</PRE><A NAME="352026"><PRE>       call pgdrln(idvp, x1, y1, x2, y2)
</PRE><A NAME="352027"><PRE> 
</PRE><A NAME="352028"><PRE> c ... do a vector plot
</PRE><A NAME="352029"><PRE>       x(1) =  3.0
</PRE><A NAME="352030"><PRE>       y(1) =  4.0
</PRE><A NAME="352031"><PRE>       u(1) = -0.5
</PRE><A NAME="352032"><PRE>       v(1) = -0.25
</PRE><A NAME="352033"><PRE> 
</PRE><A NAME="352034"><PRE>       x(2) =  4.0
</PRE><A NAME="352035"><PRE>       y(2) =  4.0
</PRE><A NAME="352036"><PRE>       u(2) =  0.5
</PRE><A NAME="352037"><PRE>       v(2) = -0.25
</PRE><A NAME="352038"><PRE> 
</PRE><A NAME="352039"><PRE>       x(3) = 4.0
</PRE><A NAME="352040"><PRE>       y(3) = 5.0
</PRE><A NAME="352041"><PRE>       u(3) = 0.5
</PRE><A NAME="352042"><PRE>       v(3) = 0.0
</PRE><A NAME="352043"><PRE> 
</PRE><A NAME="352044"><PRE>       x(4) =  3.0
</PRE><A NAME="352045"><PRE>       y(4) =  5.0
</PRE><A NAME="352046"><PRE>       u(4) = -0.5
</PRE><A NAME="352047"><PRE>       v(4) =  0.5
</PRE><A NAME="352048"><PRE> 
</PRE><A NAME="352049"><PRE>       call pgplvc(idev, x, y, u, v, 4)
</PRE><A NAME="352050"><PRE>       call pgplvc(idvp, x, y, u, v, 4)
</PRE><A NAME="352051"><PRE> 
</PRE><A NAME="352052"><PRE> c ... draw and fill a polygon (color 4 is blue)
</PRE><A NAME="352053"><PRE>       x(1) = 5.0
</PRE><A NAME="352054"><PRE>       x(2) = 6.0
</PRE><A NAME="352055"><PRE>       x(3) = 6.0
</PRE><A NAME="352056"><PRE>       x(4) = 5.0
</PRE><A NAME="352057"><PRE>       x(5) = 5.0
</PRE><A NAME="352058"><PRE>       y(1) = 8.0
</PRE><A NAME="352059"><PRE>       y(2) = 8.0
</PRE><A NAME="352060"><PRE>       y(3) = 9.0
</PRE><A NAME="352061"><PRE>       y(4) = 9.0
</PRE><A NAME="352062"><PRE>       y(5) = 8.0
</PRE><A NAME="352063"><PRE>       call pgfply(idev, x, y, 5, 4)
</PRE><A NAME="352064"><PRE>       call pgfply(idvp, x, y, 5, 4)
</PRE><A NAME="352065"><PRE> 
</PRE><A NAME="352066"><PRE>       call pgfnpl(idev)
</PRE><A NAME="352067"><PRE>       call pgfnpl(idvp)
</PRE><A NAME="352068"><PRE> 
</PRE><A NAME="352069"><PRE>       pause
</PRE><A NAME="352070"><PRE> 
</PRE><A NAME="352071"><PRE> c ... close the device
</PRE><A NAME="352072"><PRE>       call pgclos(idev)
</PRE><A NAME="352073"><PRE>       call pgclos(idvp)
</PRE><A NAME="352074"><PRE> 
</PRE><A NAME="352075"><PRE>       call exit
</PRE><A NAME="352076"><PRE>       end
</PRE><A NAME="352077"><PRE> 
</PRE><A NAME="352078"><PRE> c ------------------------------------------------------------------
</PRE><A NAME="352079"><PRE> c ------------------------------------------------------------------
</PRE><A NAME="352080"><PRE> 
</PRE><a name="352081">
<h1>8.0   Other </a>PACT </a>Documentation</h1>
</a>
<a name="352082">
</a>PGS depends on the </a>SCORE and </a>PML PACT libraries for certain key supporting functionalities. In turn PGS structures are used in </a>ULTRA II, </a>SX, and </a>PANACEA. Some readers may find it helpful to refer to these and other PACT documents.<p>
</a>
<a name="352083">
The list of PACT Documents is:<p>
</a>
<A NAME="352084"><PRE>   PACT User&#146;s Guide, UCRL-MA-112087
</PRE><A NAME="352085"><PRE>   SCORE User&#146;s Manual, UCRL-MA-108976 Rev.1
</PRE><A NAME="352086"><PRE>   PPC User&#146;s Manual UCRL-MA-108964 Rev.1
</PRE><A NAME="352087"><PRE>   PML User&#146;s Manual, UCRL-MA-108965 Rev.1
</PRE><A NAME="352088"><PRE>   PDBLib User&#146;s Manual, M-270 Rev.2
</PRE><A NAME="352089"><PRE>   PGS User&#146;s Manual, UCRL-MA-108966 Rev.1 (this document)
</PRE><A NAME="352090"><PRE>   PANACEA User&#146;s Manual, M-276 Rev.2
</PRE><A NAME="352091"><PRE>   ULTRA II User&#146;s Manual, UCRL-MA-108967 Rev.1
</PRE><A NAME="352092"><PRE>   PDBDiff User&#146;s Manual, UCRL-MA-108975 Rev.1
</PRE><A NAME="352093"><PRE>   PDBView User&#146;s Manual, UCRL-MA-108968 Rev.1
</PRE><A NAME="352094"><PRE>   SX User&#146;s Manual, UCRL-MA-112315
</PRE><a name="352095">
<p>
</a>

<p><hr>

</body></html>