1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
/*
* MLFFT.C - Fast Fourier Transform routines for PML
*
* Source Version: 2.0
* Software Release #92-0043
*
*/
#include "cpyright.h"
#include "pml.h"
#define SWAP(a, b) tempr = (a);(a) = (b);(b) = tempr
void
SC_DECLARE(PM_even_space,
(REAL *x, int n, double xmin, double xmax)),
SC_DECLARE(PM_even_space_y,
(REAL *x, REAL *y, REAL *ax, REAL *ay, int n)),
SC_DECLARE(_PM_fft_fin,
(complex *y, REAL *x, int nh,
double xmn, double xmx, int ordr));
complex
SC_DECLARE(*PM_fft_sc_real, (REAL *x, int n, int flag));
static int
SC_DECLARE(_PM_fft_sc_real_hsp, (REAL *f, int n, int sgn));
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_EVEN_SPACE - compute evenly spaced x values for the given x array */
void PM_even_space(x, n, xmin, xmax)
REAL *x;
int n;
double xmin, xmax;
{REAL step;
int i;
step = (xmax - xmin)/(n - 1);
for (i = 0; i < n; i++)
x[i] = xmin + step*i;
x[n-1] = xmax;
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_EVEN_SPACE_Y - compute evenspaced y values for the given (x, y) pairs
* - x,y input x and y values
* - ax,ay ouput evenspaced x and y values
* - n number of points in evenspaced x array
*/
void PM_even_space_y(x, y, ax, ay, n)
REAL *x, *y, *ax, *ay;
int n;
{int i;
REAL xta, xtb, xtc, yta, ytb;
for (i = 0; i < n; i++)
{while (ax[i] > x[1])
{x++;
y++;};
PM_interp(ay[i], ax[i], *x, *y, x[1], y[1]);};
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_NEXT_EXP_TWO - return the largest M such that 2^M <= N */
int PM_next_exp_two(n)
int n;
{int i, m;
for (m = 0, i = n; i > 1; i >>= 1, m++);
return(m);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_NEXT_POWER_TWO - return the smallest integer, P, such that
* - |P| >= |N| and |P| is an integer power of 2
*/
int PM_next_power_two(n)
int n;
{int sgn, p;
sgn = 1;
if (n != 0)
{sgn = abs(n)/n;
n *= sgn;};
for (p = 1; n > p; p <<= 1);
return(sgn*p);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_NEAR_POWER - return the number nearest N which is a power of A */
int PM_near_power(n, a)
int n, a;
{int i, d;
i = PM_round(log((double) n)/log((double) a));
d = (int) (POW((double) a, (double) i) + .999);
return(d);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_FFT_SC_COMPLEX - perform an FFT on a scalar set of complex data
* - DATA is an array of N complex values
* - if FLAG > 0 do FFT and do inv(FFT) otherwise
* - return TRUE iff successful
*/
int PM_fft_sc_complex(x, n, flag)
complex *x;
int n, flag;
{int m, mmax, istep;
complex temp, w, dw;
unsigned int i, j;
REAL nrm, dth;
m = PM_next_exp_two(n);
/* permute series */
for (i = 0; i < n; i++)
{j = SC_bit_reverse(i, m);
if (i < j)
{temp = x[j];
x[j] = x[i];
x[i] = temp;};};
/* transform series */
mmax = 1;
while (mmax < n)
{istep = mmax << 1;
dth = PI*flag/mmax;
dw = PM_COMPLEX(cos(dth), sin(dth));
w = PM_COMPLEX(1.0, 0.0);
for (m = 1; m <= mmax; m++)
{for (i = m-1; i < n; i += istep)
{j = i + mmax;
temp = PM_TIMES_CC(w, x[j]);
x[j] = PM_MINUS_CC(x[i], temp);
x[i] = PM_PLUS_CC(x[i], temp);};
w = PM_TIMES_CC(w, dw);};
mmax = istep;};
/* fix normalization */
if (flag == 1)
nrm = 2.0/((double) n);
else
nrm = 0.5;
for (i = 0; i < n; i++)
x[i] = PM_TIMES_RC(nrm, x[i]);
return(TRUE);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_FFT_SC_REAL - perform an FFT on a scalar set of real data
* - X is an array of N (N must power of 2) evenly spaced
* - real values (use PM_fft_sc_real_data for standard data
* - sets encountered in practice)
* - if FLAG > 0 do FFT and do inv(FFT) otherwise
* - return array of complex values iff successful
* - return NULL otherwise
* - formerly in ULTRA
*/
complex *PM_fft_sc_real(x, n, flag)
REAL *x;
int n, flag;
{int i;
complex *cx;
cx = FMAKE_N(complex, n + 1, "PM_FFT_SC_REAL:cx");
if (cx == NULL)
{sprintf(PM_error, "CAN'T ALLOCATE SPACE - PM_FFT_SC_REAL");
return(NULL);};
for (i = 0; i <= n; i++)
cx[i] = PM_COMPLEX(x[i], 0.0);
PM_fft_sc_complex(cx, n, flag);
return(cx);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_FFT_SC_REAL_DATA - do FFT on set of real data which is not necessarily
* - evenly spaced
* - returned via the argument list are the frequency
* - values from most negative to most positive
* - and the complex transform values can be in the same
* - order as the frequency array (this is counter to the
* - standard FFT practice but is the way one thinks of
* - the transform data (this is controlled by ORDR)
* - return the number of points in the transform arrays
* - if successful and 0 otherwise
*/
int PM_fft_sc_real_data(pcy, px, ipx, ipy, n, xmn, xmx, ordr)
complex **pcy;
REAL **px, *ipx, *ipy;
int n;
double xmn, xmx;
int ordr;
{int nh, np;
REAL *x, *y;
complex *cy;
n = PM_near_power(n, 2);
np = n + 1;
nh = n >> 1;
/* allocate space for arrays */
x = FMAKE_N(REAL, np, "PM_FFT_SC_REAL_DATA:x");
y = FMAKE_N(REAL, np, "PM_FFT_SC_REAL_DATA:y");
if ((x == NULL) || (y == NULL))
{sprintf(PM_error, "CAN`T ALLOCATE MEMORY - PM_FFT_SC_REAL_DATA");
return(0);}
/* generate even spaced x values for interpolation */
PM_even_space(x, n, xmn, xmx);
/* interpolate to find even spaced y's */
PM_even_space_y(ipx, ipy, x, y, n);
cy = PM_fft_sc_real(y, n, 1);
_PM_fft_fin(cy, x, nh, xmn, xmx, ordr);
*pcy = cy;
*px = x;
/* shouldn't y be freed now? */
SFREE(y);
return(np);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_FFT_SC_COMPLEX_DATA - do FFT on set of complex data which is not
* - necessarily evenly spaced
* - FLAG is 1 for FFT and -1 for inv(FFT)
* - returned via the argument list are the frequency
* - values from most negative to most positive
* - and the complex transform values can be in the
* - same order as the frequency array (this is
* - counter to the standard FFT practice but is
* - the way one thinks of the transform data
* - (this is controlled by ORDR)
* - return the number of points in the transform
* - arrays if successful and 0 otherwise
*/
int PM_fft_sc_complex_data(pcy, px, ipx, ipy, n, xmn, xmx, flag, ordr)
complex **pcy;
REAL **px, *ipx;
complex *ipy;
int n;
double xmn, xmx;
int flag, ordr;
{int i, nh, np, no, nr;
REAL dt;
REAL *x, *ya, *yb;
complex *cy;
no = n;
n = PM_near_power(n, 2);
np = n + 1;
nh = n >> 1;
/* allocate space for arrays */
ya = FMAKE_N(REAL, no, "PM_FFT_SC_COMPLEX_DATA:ya");
yb = FMAKE_N(REAL, np, "PM_FFT_SC_COMPLEX_DATA:yb");
x = FMAKE_N(REAL, np, "PM_FFT_SC_COMPLEX_DATA:x");
cy = FMAKE_N(complex, np, "PM_FFT_SC_COMPLEX_DATA:cy");
if ((x == NULL) || (cy == NULL) ||
(ya == NULL) || (yb == NULL))
{sprintf(PM_error, "CAN`T ALLOCATE MEMORY - PM_FFT_SC_COMPLEX_DATA");
return(0);};
*px = x;
*pcy = cy;
/* generate evenly spaced x values for interpolation */
if (flag == 1)
PM_even_space(x, n, xmn, xmx);
else
PM_even_space(x, np, xmn, xmx);
/* interpolate the real part of y */
for (i = 0; i < no; i++)
ya[i] = PM_REAL_C(ipy[i]);
if (flag == 1)
{PM_even_space_y(ipx, ya, x, yb, n);
for (i = 0; i < n; i++)
PM_REAL_C(cy[i]) = yb[i];}
else
{PM_even_space_y(ipx, ya, x, yb, np);
for (i = 0; i <= nh; i++)
{PM_REAL_C(cy[i]) = yb[nh+i]; /* this one needs to be first */
PM_REAL_C(cy[n-i]) = yb[nh-i];};};
/* interpolate the imaginary part of y */
for (i = 0; i < no; i++)
ya[i] = PM_IMAGINARY_C(ipy[i]);
if (flag == 1)
{PM_even_space_y(ipx, ya, x, yb, n);
for (i = 0; i < n; i++)
PM_IMAGINARY_C(cy[i]) = yb[i];}
else
{PM_even_space_y(ipx, ya, x, yb, np);
for (i = 0; i <= nh; i++)
{PM_IMAGINARY_C(cy[i]) = yb[nh+i]; /* this one needs to be first */
PM_IMAGINARY_C(cy[n-i]) = yb[nh-i];};};
SFREE(ya);
SFREE(yb);
PM_fft_sc_complex(cy, n, flag);
if (flag == -1)
{dt = 1.0/(x[n-1] - x[0]);
for (i = 0; i < n; i++)
x[i] = dt*i;
nr = n;}
else
{_PM_fft_fin(cy, x, nh, xmn, xmx, ordr);
nr = np;};
return(nr);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_FFT_FIN - complete an FFT including such things as:
* - normalizing the frequency axis
* - reordering the transform into intuitive order
* - introducing a phase shift to get IFFT to match original
*/
void _PM_fft_fin(y, x, nh, xmn, xmx, ordr)
complex *y;
REAL *x;
int nh;
double xmn, xmx;
int ordr;
{int i;
double dt;
dt = 1.0/(xmx - xmn);
for (i = 0; i <= nh; i++)
{x[nh+i] = dt*i;
x[nh-i] = -dt*i;};
/* if the transform was requested in intuitive order, reorder the array */
if (ordr)
{for (i = 0; i < nh; i++)
{PM_COMPLEX_SWAP(y[i], y[nh+i]);};
y[2*nh] = y[0];};
return;}
/*--------------------------------------------------------------------------*/
/* FFT CONVOLUTION ROUTINES */
/*--------------------------------------------------------------------------*/
/* PM_CONVOLVE - convolve two data sets regardless of their coordinate
* - spacings
* - for some users H is the response function
* - and G is the signal function
* - contributed by Charles McMillan 8/94
*/
int PM_convolve(gx, gy, gn, hx, hy, hn, dt, pxr, pyr, pnr)
REAL *gx, *gy;
int gn;
REAL *hx, *hy;
int hn;
double dt;
REAL **pxr, **pyr;
int *pnr;
{int i, j, gtn, hin;
REAL *gty, *hty, *xret, *yret;
REAL *hix, *hiy;
REAL *gdy, *hdy;
double hdx, hxmn, hxmx;
double gxmn, gxmx;
double cxmn, cxmx;
double igy, ihy, init_y, init_x, vx, nrm;
gdy = FMAKE_N(REAL, gn, "PM_CONVOLVE:gdy");
if (gdy == NULL)
return(FALSE);
_PM_spline(gx, gy, gn, HUGE, HUGE, gdy);
hdy = FMAKE_N(REAL, hn, "PM_CONVOLVE:hdy");
if (hdy == NULL)
return(FALSE);
_PM_spline(hx, hy, hn, HUGE, HUGE, hdy);
/* setup limits, find number of points */
gxmn = gx[0];
gxmx = gx[gn-1];
hxmn = hx[0];
hxmx = hx[hn-1];
hdx = hxmx - hxmn;
cxmn = gxmn - hdx;
cxmx = gxmx + hdx;
hin = hdx/dt;
gtn = (cxmx - cxmn + 2*hdx)/dt;
gtn = PM_next_power_two(gtn);
xret = FMAKE_N(REAL, gtn, "PM_CONVOLVE:xret");
gty = FMAKE_N(REAL, gtn, "PM_CONVOLVE:gty");
hty = FMAKE_N(REAL, gtn, "PM_CONVOLVE:hty");
hix = FMAKE_N(REAL, hin, "PM_CONVOLVE:hix");
hiy = FMAKE_N(REAL, hin, "PM_CONVOLVE:hiy");
/* interpolate signal */
init_y = gy[0];
for (i = 0; i < gtn; i++)
{vx = cxmn + i*dt;
xret[i] = vx;
if ((gxmn <= vx) && (vx <= gxmx))
{PM_cubic_spline_int(gx, gy, gdy, gn, vx, >y[i]);
gty[i] -= init_y;}
/* pad the ends of the array */
else
gty[i] = 0;};
/* interpolate response */
for (i = 0; i < hin; i++)
{vx = hxmn + i*dt;
hix[i] = vx;
PM_cubic_spline_int(hx, hy, hdy, hn, vx, &hiy[i]);};
/* reorder response for fft convolution */
init_x = 0;
for (i = 0; hix[i] < 0; i++);
j = i;
if (j == 0)
init_x = hxmn;
if (j == hin)
init_x = hxmx;
/* arrays are born zero but its cheap insurance */
for (i = 0; i < gtn; i++)
hty[i] = 0;
for (i = j; i < hin; i++)
hty[i-j] = hiy[i];
for (i = 0; i < j; i++)
hty[gtn-j+i] = hiy[i];
/* calculate the integrals for normalization */
igy = 0.0;
ihy = 0.0;
for (i = 0; i < gtn; i++)
{igy += gty[i];
ihy += hty[i];};
nrm = min(igy, ihy);
nrm = 1.0/nrm;
/* call fft convolution */
yret = FMAKE_N(REAL, 2*gtn, "PM_CONVOLVE:yret");
PM_convolve_logical(gty, gtn, hty, gtn, 1, yret);
SFREE(hix);
SFREE(hiy);
SFREE(gty);
SFREE(hty);
/* replace initial value */
for (i = 0; xret[i] < cxmx; i++)
{yret[i] = nrm*yret[i] + init_y;
xret[i] += init_x;};
*pnr = i;
*pxr = xret;
*pyr = yret;
return(TRUE);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_CONVOLVE_LOGICAL - compute and return the convolution of G and H in CNV
* - this is done on an implied grid of uniform spacing
* - where the G and H are defined on possibly different
* - parts of the same grid
* - adapted from Numerical Recipes in C
*/
int PM_convolve_logical(g, n, h, m, sgn, cnv)
REAL *g, *h, *cnv;
int n, m, sgn;
{int i, nh, mh;
double t, mg, in, a, b;
REAL *ft;
if (sgn*sgn != 1)
return(FALSE);
ft = FMAKE_N(REAL, 2*n, "PM_CONVOLVE_LOGICAL:ft");
/* pad h in the middle */
mh = (m - 1)/2;
for (i = 0; i < mh; i++)
h[n+1-i] = h[m+1-i];
for (i = mh + 1; i < n - mh; i++)
h[i] = 0.0;
PM_fft_sc_real_simul(g, h, ft, cnv, n);
nh = n/2;
in = 1.0/nh;
for (i = 1; i < n+2; i += 2)
{t = cnv[i-1];
if (sgn == 1)
{mg = in;
cnv[i-1] = (ft[i-1]*t - ft[i]*cnv[i])*mg;
cnv[i] = (ft[i]*t + ft[i-1]*cnv[i])*mg;}
else
{a = cnv[i];
b = cnv[i-1];
mg = a*a + b*b;
if (mg == 0.0)
return(FALSE);
mg = in/mg;
cnv[i-1] = (ft[i-1]*t + ft[i]*cnv[i])*mg;
cnv[i] = (ft[i]*t - ft[i-1]*cnv[i])*mg;};};
cnv[1] = cnv[n];
_PM_fft_sc_real_hsp(cnv, nh, -1);
SFREE(ft);
return(TRUE);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_FFT_SC_REAL_SIMUL - do simultaneous FFT's on two real functions
* - adapted from Numerical Recipes in C
*/
int PM_fft_sc_real_simul(fx1, fx2, fw1, fw2, n)
REAL *fx1, *fx2, *fw1, *fw2;
int n;
{int i, j, nb, na;
double rep, rem, aip, aim, nrm;
for (j = 0, i = 1; j < n; j++, i += 2)
{fw1[i-1] = fx1[j];
fw1[i] = fx2[j];};
PM_fft_sc_complex((complex *) fw1, n, 1);
na = n << 1;
nb = na + 1;
/* fix normalization */
nrm = n/2.0;
fw2[0] = nrm*fw1[1];
fw1[0] *= nrm;
fw1[1] = fw2[1] = 0.0;
nrm *= 0.5;
for (j = 2; j < n+1; j += 2)
{rep = nrm*(fw1[j] + fw1[na-j]);
rem = nrm*(fw1[j] - fw1[na-j]);
aip = nrm*(fw1[j+1] + fw1[nb-j]);
aim = nrm*(fw1[j+1] - fw1[nb-j]);
fw1[j] = rep;
fw1[j+1] = aim;
fw1[na-j] = rep;
fw1[nb-j] = -aim;
fw2[j] = aip;
fw2[j+1] = -rem;
fw2[na-j] = aip;
fw2[nb-j] = rem;};
return(TRUE);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_FFT_SC_REAL_HSP - perform an FFT on a scalar set of real data in
* - Half the SPace required by PM_fft_sc_real
* - used as helper for convolution routine
* - unlikely to be useful in it own right since the
* - ordering of the transforms is NOT user friendly
* - adapted from Numerical Recipes in C
*/
static int _PM_fft_sc_real_hsp(f, n, sgn)
REAL *f;
int n, sgn;
{int i, i1, i2, i3, i4, na, nh;
double c1, c2, h1r, h1i, h2r, h2i;
double wr, wi, dwr, dwi, wt, dth;
dth = PI/((double) n);
if (sgn == 1)
{PM_fft_sc_complex((complex *) f, n, sgn);
c1 = 0.5;
c2 = -0.25*n;}
else
{c1 = 1.0;
c2 = 1.0;
dth = -dth;};
wr = cos(dth);
wi = sin(dth);
dwr = wr - 1.0;
dwi = wi;
na = 2*n + 1;
nh = n >> 1;
for (i = 1; i < nh; i++)
{i1 = 2*i;
i2 = i1 + 1;
i3 = na - i2;
i4 = i3 + 1;
h1r = c1*(f[i1] + f[i3]);
h1i = c1*(f[i2] - f[i4]);
h2r = -c2*(f[i2] + f[i4]);
h2i = c2*(f[i1] - f[i3]);
f[i1] = h1r + wr*h2r - wi*h2i;
f[i2] = h1i + wr*h2i + wi*h2r;
f[i3] = h1r - wr*h2r + wi*h2i;
f[i4] = -h1i + wr*h2i + wi*h2r;
wt = wr;
wr = wt*dwr - wi*dwi + wr;
wi = wi*dwr + wt*dwi + wi;};
if (sgn == 1)
{h1r = f[0];
c2 = 0.5*n;
f[0] = c2*(h1r + f[1]);
f[1] = c2*(h1r - f[1]);}
else
{h1r = f[0];
f[0] = h1r + f[1];
f[1] = h1r - f[1];
PM_fft_sc_complex((complex *) f, n, sgn);};
return(TRUE);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
|