1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835
|
/*
* MLMESH.C - 2D logical-rectangular mesh generation routines
*
* Source Version: 2.0
* Software Release #92-0043
*
*/
#include "cpyright.h"
#include "pml.h"
#define FIND_ELEMENT(off, i0) \
i = PM_element(n_map, j, 1) + off; \
for (m = 1; m <= n; m++) \
{if (PM_element(n_map, m, 1) == i) \
PM_element(n_map, j, i0) = m;}
#define LOAD_LAPLACIAN(ar, dt, off, n, a) \
j0 = j + off; \
if (nodet[j0] == 0.0) \
{m = PM_element(n_map, i, n); \
if (m >= 0) \
{PM_element(lapl, i, m) = a;};} \
else \
{for (k = 0; k < na; k++) \
{PM_element(ar[k], i, 1) -= a*dt[k][j0];};} \
#define vecset4(v,v1,v2,v3,v4) \
v2 = v; \
v3 = v2 - 1; \
v4 = v3 - kbnd; \
v1 = v4 + 1
#define NODE_OF(k, l) (((l) - 1)*kbnd + (k) - 1)
/*--------------------------------------------------------------------------*/
/* SERVICE ROUTINES */
/*--------------------------------------------------------------------------*/
/* _PM_FILL_MAP - fill out the map array with nearest neighbor information */
static void _PM_fill_map(n_map, kmax, lmax, nodet)
PM_matrix *n_map;
int kmax, lmax;
REAL *nodet;
{int m, j, i, k, l, n;
int kbnd, lbnd;
kbnd = kmax + 1;
lbnd = lmax + 1;
/* put the nodes into the n_map array */
n = 0;
for (k = 1; k <= kmax; k++)
for (l = 1; l <= lmax; l++)
{i = NODE_OF(k, l);
if (nodet[i] == -1.0)
{PM_element(n_map, ++n, 1) = i;
nodet[i] = 0.0;};};
/* put the neighbors into the n_map array */
for (j = 1; j <= n; j++)
{FIND_ELEMENT(1, 2);
FIND_ELEMENT(kbnd, 3);
FIND_ELEMENT(-1, 4);
FIND_ELEMENT(-kbnd, 5);
FIND_ELEMENT(kbnd+1, 6);
FIND_ELEMENT(kbnd-1, 7);
FIND_ELEMENT(-kbnd-1, 8);
FIND_ELEMENT(-kbnd+1, 9);};
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_FIN_SOL - map the solutions in tx and ty back into the mesh */
static void _PM_fin_sol(n_map, m, reg_map, nodet)
PM_matrix *n_map;
int m, *reg_map;
REAL *nodet;
{int i, j, n;
n = n_map->nrow;
for (j = 1; j <= n; j++)
{i = PM_element(n_map, j, 1);
reg_map[i] = m;
nodet[i] = 1.0;};
return;}
/*--------------------------------------------------------------------------*/
#if 0
/*--------------------------------------------------------------------------*/
/* _PM_MESH_CONVERGED - return TRUE iff the coordinates have converged */
static int _PM_mesh_converged(xn, yn, xo, yo, n_map, n)
PM_matrix *xn, *yn, *xo, *yo;
int n;
{int i;
REAL *pxo, *pyo, *pxn, *pyn;
double s, dx, dy, rx1, ry1, rx2, ry2, ax, ay;
pxo = xo->array;
pyo = yo->array;
pxn = xn->array;
pyn = yn->array;
s = 0.0;
for (i = 0; i < n; i++)
{rx1 = *pxo++;
rx2 = *pxn++;
ry1 = *pyo++;
ry2 = *pyn++;
dx = rx2 - rx1;
dy = ry2 - ry1;
ax = 0.5*(rx2 + rx1);
ay = 0.5*(ry2 + ry1);
s += (dx*dx + dy*dy)/(ax*ax + ay*ay + SMALL);};
s = sqrt(s/((REAL) n));
return((s < 0.0001) ? TRUE : FALSE);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_CARTESIAN_REGION - return TRUE iff the region described by the part
* - has straight line side all the way around
*/
static int _PM_cartesian_region(ipart)
PM_part *ipart;
{int ret;
PM_conic_curve *crv;
PM_side *ib;
ret = TRUE;
for (ib = ipart->leg; TRUE; )
{crv = ib->crve;
ret &= ((crv->xx == 0.0) && (crv->yy == 0.0) && (crv->xy == 0.0));
if ((ib = ib->next) == ipart->leg)
break;};
return(ret);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_CURVATURE - compute the curvature at J of the coordinate contour
* - implied by the stride, S
*/
static double _PM_curvature(j, s)
int j, s;
{double dx1, dy1, dx2, dy2, dx3, dy3, dxf, dyf;
double d0, t0, r0;
dx1 = rx[j] - rx[j-s];
dy1 = ry[j] - ry[j-s];
dx2 = rx[j+s] - rx[j];
dy2 = ry[j+s] - ry[j];
dx3 = 0.5*(rx[j+s] - rx[j-s]);
dy3 = 0.5*(ry[j+s] - ry[j-s]);
d0 = dx1*dy2 - dy1*dx2;
if (d0 == 0.0)
r0 = SMALL;
else
{t0 = (dx3*dx2 + dy3*dy2)/d0;
dxf = 0.5*dx1 + t0*dy1;
dyf = 0.5*dy1 - t0*dx1;
r0 = 1.0/(sqrt(dxf*dxf + dyf*dyf) + SMALL);};
r0 = min(r0, param[9]);
r0 = max(r0, param[8]);
return(r0);}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_COPY_SOL - copy the coordinate solutions */
static void _PM_copy_sol(xo, xn, yo, yn, n_map)
PM_matrix *xo, *xn, *yo, *yn, *n_map;
{int i, j, n;
REAL *pxo, *pyo, *pxn, *pyn;
n = xo->nrow;
pxo = xo->array;
pyo = yo->array;
pxn = xn->array;
pyn = yn->array;
for (i = 0; i < n; i++)
{*pxo++ = *pxn++;
*pyo++ = *pyn++;};
for (j = 1; j <= n; j++)
{i = PM_element(n_map, j, 1);
rx[i] = PM_element(xn, j, 1);
ry[i] = PM_element(yn, j, 1);};
return;}
/*--------------------------------------------------------------------------*/
#endif
/* LAPLACE SOLVER */
/*--------------------------------------------------------------------------*/
/* _PM_FILL_LAPL_OP - set up the laplacian operator and the boundary arrays
* - for the 2D laplacian solver
* - this operator uses only the tangential
* - spacing ratios
* - if KRA or LRA are NULL or CRF is TRUE, use constant
* - ratios KRC and LRC
*/
static void _PM_fill_lapl_op(lapl, kmax, lmax,
na, ar, dt, kra, lra, nodet,
n_map, ts, krc, lrc, crf)
PM_matrix *lapl;
int kmax, lmax, na;
PM_matrix **ar;
REAL **dt, *kra, *lra, *nodet;
PM_matrix *n_map;
double ts, krc, lrc;
int crf;
{int n, m, j, j0, i, k;
int kbnd, lbnd;
double s1, s2, s3, s4, sr, sl, sb, st;
double pnt, cnt;
kbnd = kmax + 1;
lbnd = lmax + 1;
n = n_map->nrow;
PM_set_value(lapl->array, n*n, 0.0);
pnt = min(ts, 1.0);
pnt = max(pnt, 0.0);
cnt = 2.0 - pnt;
for (i = 1; i <= n; i++)
{j = PM_element(n_map, i, 1);
if (crf || (kra == NULL) || (lra == NULL))
{sr = 1.0/(1.0 + krc);
sl = krc*sr;
st = 1.0/(1.0 + lrc);
sb = lrc*st;}
else
{sr = 1.0/(1.0 + kra[j]);
sl = kra[j]*sr;
st = 1.0/(1.0 + lra[j]);
sb = lra[j]*st;};
s1 = -pnt*sr*sb;
s2 = -pnt*sr*st;
s3 = -pnt*sl*st;
s4 = -pnt*sl*sb;
PM_element(lapl, i, i) = -cnt;
for (k = 0; k < na; k++)
{PM_element(ar[k], i, 1) = 0;};
LOAD_LAPLACIAN(ar, dt, 1, 2, sr);
LOAD_LAPLACIAN(ar, dt, kbnd, 3, st);
LOAD_LAPLACIAN(ar, dt, -1, 4, sl);
LOAD_LAPLACIAN(ar, dt, -kbnd, 5, sb);
LOAD_LAPLACIAN(ar, dt, kbnd+1, 6, s2);
LOAD_LAPLACIAN(ar, dt, kbnd-1, 7, s3);
LOAD_LAPLACIAN(ar, dt, -kbnd-1, 8, s4);
LOAD_LAPLACIAN(ar, dt, -kbnd+1, 9, s1);};
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_LAPLACE_SOL - compute the coordinates using the correct laplacian
* - this operator uses only the tangential
* - spacing ratios
*/
static void _PM_laplace_sol(lapl, kmax, lmax,
na, ar, dt, kra, lra, nodet, n_map, ips,
ts, krc, lrc, crf)
PM_matrix *lapl;
int kmax, lmax, na;
PM_matrix **ar;
REAL **dt, *kra, *lra, *nodet;
PM_matrix *n_map;
int *ips;
double ts, krc, lrc;
int crf;
{int n, j, i, k;
/* fill in the laplacian, bx, by and n_map arrays */
_PM_fill_lapl_op(lapl, kmax, lmax,
na, ar, dt, kra, lra, nodet, n_map,
ts, krc, lrc, crf);
/* do the lu decomposition */
PM_decompose(lapl, ips, FALSE);
/* do the sol part */
for (k = 0; k < na; k++)
{PM_sol(lapl, ar[k], ips, FALSE);};
n = n_map->nrow;
for (j = 1; j <= n; j++)
{i = PM_element(n_map, j, 1);
for (k = 0; k < na; k++)
dt[k][i] = PM_element(ar[k], j, 1);};
return;}
/*--------------------------------------------------------------------------*/
/* LAPLACE SOLVER A */
/*--------------------------------------------------------------------------*/
/* _PM_COMPUTE_A_BND - compute the a quantities on the given side */
static void _PM_compute_a_bnd(as, xs, ae, xe, v,
kmax, lmax, kmn, kmx, lmn, lmx)
double as, xs, ae, xe;
REAL *v;
int kmax, lmax, kmn, kmx, lmn, lmx;
{int i, j, n, nt, sdk, sdl;
int kbnd, lbnd;
double ps, pe, dk, dl;
kbnd = kmax + 1;
lbnd = lmax + 1;
if (as < 0.0)
{ps = -1.0;
as *= -1.0;}
else
ps = 1.0;
if (ae < 0.0)
{pe = -1.0;
ae *= -1.0;}
else
pe = 1.0;
dk = kmx - kmn;
dl = lmx - lmn;
n = sqrt(dk*dk + dl*dl);
nt = n/2;
sdk = (dk > 0);
sdl = (dl > 0);
if (as != 0.0)
{for (j = 0; j < nt; j++)
{i = NODE_OF(kmn + sdk*(j + 1), lmn + sdl*(j + 1));
v[i] = pow((1.0 + as*exp(-j*xs)), ps);};};
if (ae != 0.0)
{for (j = 0; j < nt; j++)
{i = NODE_OF(kmx - sdk*j, lmx - sdl*j);
v[i] = pow((1.0 + ae*exp(-j*xe)), pe);};};
if (2*nt != n)
{i = NODE_OF(kmn + sdk*(nt + 1), lmn + sdl*(nt + 1));
v[i] = 1.0;};
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_COMPUTE_A - compute the a quantities */
static void _PM_compute_a(apk, apl, kra, lra, kmax, lmax,
kmn, kmx, lmn, lmx,
ask, xsk, aek, xek, asl, xsl, ael, xel,
constr)
REAL *apk, *apl, *kra, *lra;
int kmax, lmax, kmn, kmx, lmn, lmx;
double ask, xsk, aek, xek;
double asl, xsl, ael, xel;
int constr;
{int j, j0, k, l;
int kbnd, lbnd, nz;
double u, dk, dl, dkl;
REAL *x1, *x2, *x3, *x4, *s, *t;
kbnd = kmax + 1;
lbnd = lmax + 1;
nz = kbnd*lbnd;
/* extrapolate lra to the undetermined boundary */
if (lmx - lmn < 3)
{for (k = kmn; k <= kmx; k++)
{j = NODE_OF(k, lmx);
lra[j] = lra[j-kbnd];
j = NODE_OF(k, lmn);
lra[j] = lra[j+kbnd];};}
else
{for (k = kmn; k <= kmx; k++)
{j = NODE_OF(k, lmx);
lra[j] = 2.0*lra[j-kbnd] - lra[j-2*kbnd];
j = NODE_OF(k, lmn);
lra[j] = 2.0*lra[j+kbnd] - lra[j+2*kbnd];};};
/* extrapolate kra to the undetermined boundary */
if (kmx - kmn < 3)
{for (l = lmn; l <= lmx; l++)
{j = NODE_OF(kmx, l);
kra[j] = kra[j-1];
j = NODE_OF(kmn, l);
kra[j] = kra[j+1];};}
else
{for (l = lmn; l <= lmx; l++)
{j = NODE_OF(kmx, l);
kra[j] = 2.0*kra[j-1] - kra[j-2];
j = NODE_OF(kmn, l);
kra[j] = 2.0*kra[j+1] - kra[j+2];};};
_PM_compute_a_bnd(ask, xsk, aek, xek, apk,
kmax, lmax, kmn, kmx, lmx, lmx);
_PM_compute_a_bnd(asl, xsl, ael, xel, apl,
kmax, lmax, kmx, kmx, lmn, lmx);
t = FMAKE_N(REAL, nz, "COMPUTE_A:t");
s = FMAKE_N(REAL, nz, "COMPUTE_A:s");
/* compute apl */
PM_set_value(s, nz, 0.0);
PM_set_value(t, nz, 0.0);
vecset4(lra, x1, x2, x3, x4);
for (l = lmn+1; l <= lmx; l++)
{j0 = NODE_OF(kmx, l);
if (constr)
/* sweep to the right */
{for (k = kmn+1; k <= kmx; k++)
{j = NODE_OF(k, l);
u = 4.0/(x1[j] + x2[j] + x3[j] + x4[j]);
dk = 0.5*(x2[j] - x3[j] - x4[j] + x1[j]);
dl = 0.5*(x2[j] + x3[j] - x4[j] - x1[j]);
dkl = 0.25*(x2[j] - x3[j] + x4[j] - x1[j]);
s[j] = s[j-1] + 2.0*dl + dk*u*u - dkl*u;};
/* sweep to the left */
for (k = kmx-1; k >= kmn; k--)
{j = NODE_OF(k, l);
u = 4.0/(x1[j] + x2[j] + x3[j] + x4[j]);
dk = 0.5*(x2[j] - x3[j] - x4[j] + x1[j]);
dl = 0.5*(x2[j] + x3[j] - x4[j] - x1[j]);
dkl = 0.25*(x2[j] - x3[j] + x4[j] - x1[j]);
t[j] = t[j+1] - 2.0*dl - dk*u*u + dkl*u;};};
for (k = kmn+1; k <= kmx; k++)
{j = NODE_OF(k, l);
apl[j] = 0.5*(s[j] + t[j]) + apl[j0];};};
/* compute apk */
PM_set_value(s, nz, 0.0);
PM_set_value(t, nz, 0.0);
vecset4(kra, x1, x2, x3, x4);
for (k = kmn+1; k <= kmx; k++)
{j0 = NODE_OF(k, lmx);
if (constr)
/* sweep up */
{for (l = lmn+1; l <= lmx; l++)
{j = NODE_OF(k, l);
u = 4.0/(x1[j] + x2[j] + x3[j] + x4[j]);
dk = 0.5*(x2[j] - x3[j] - x4[j] + x1[j]);
dl = 0.5*(x2[j] + x3[j] - x4[j] - x1[j]);
dkl = 0.25*(x2[j] - x3[j] + x4[j] - x1[j]);
s[j] = s[j-kbnd] + 2.0*dk + dl*u*u - dkl*u;};
/* sweep down */
for (l = lmx-1; l > lmn; l--)
{j = NODE_OF(k, l);
u = 4.0/(x1[j] + x2[j] + x3[j] + x4[j]);
dk = 0.5*(x2[j] - x3[j] - x4[j] + x1[j]);
dl = 0.5*(x2[j] + x3[j] - x4[j] - x1[j]);
dkl = 0.25*(x2[j] - x3[j] + x4[j] - x1[j]);
t[j] = t[j+kbnd] - 2.0*dk - dl*u*u + dkl*u;};};
for (l = lmn+1; l <= lmx; l++)
{j = NODE_OF(k, l);
apk[j] = 0.5*(s[j] + t[j]) + apk[j0];};};
SFREE_N(s, nz);
SFREE_N(t, nz);
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_FILL_LAPL_OPA - set up the laplacian operator and the boundary arrays
* - for the 2D laplacian solver
* - this operator uses both the normal and tangential
* - spacing ratios
* - if KRA, LRA, APK, or APL are NULL or CRF is TRUE,
* - use constant ratios KRC and LRC
*/
static void _PM_fill_lapl_opa(lapl, kmax, lmax,
na, ar, dt, kra, lra, apk, apl, nodet,
n_map, ts, krc, lrc, crf, theta)
PM_matrix *lapl;
int kmax, lmax, na;
PM_matrix **ar;
REAL **dt, *kra, *lra, *apk, *apl, *nodet;
PM_matrix *n_map;
double ts, krc, lrc;
int crf;
double theta;
{int n, m, j, j0, i, k, kbnd, lbnd;
double alpha, beta;
double s1, s2, s3, s4, sr, sl, sb, st;
double akp, akm, alp, alm;
double ckp, ck, ckm, clp, cl, clm;
double bkp, bk, bkm, blp, bl, blm;
double pnt, cnt;
theta *= 0.5*PI;
alpha = cos(theta);
beta = sin(theta);
pnt = alpha + beta;
alpha /= pnt;
beta /= pnt;
kbnd = kmax + 1;
lbnd = lmax + 1;
n = n_map->nrow;
PM_set_value(lapl->array, n*n, 0.0);
pnt = min(ts, 1.0);
pnt = max(pnt, 0.0);
cnt = 2.0 - pnt;
for (i = 1; i <= n; i++)
{j = PM_element(n_map, i, 1);
if ((kra == NULL) || (lra == NULL) ||
(apk == NULL) || (apl == NULL) ||
crf)
{sr = 1.0/(1.0 + krc);
sl = krc*sr;
st = 1.0/(1.0 + lrc);
sb = lrc*st;
s1 = -pnt*sr*sb;
s2 = -pnt*sr*st;
s3 = -pnt*sl*st;
s4 = -pnt*sl*sb;}
else
{akp = apk[j+1];
akm = 1.0/apk[j];
alp = apl[j+kbnd];
alm = 1.0/apl[j];
ckp = 1.0/(1.0 + kra[j+kbnd]);
ck = 1.0/(1.0 + kra[j]);
ckm = 1.0/(1.0 + kra[j-kbnd]);
clp = 1.0/(1.0 + lra[j+1]);
cl = 1.0/(1.0 + lra[j]);
clm = 1.0/(1.0 + lra[j-1]);
bkp = ckp*kra[j+kbnd];
bk = ck*kra[j];
bkm = ckm*kra[j-kbnd];
blp = clp*lra[j+1];
bl = cl*lra[j];
blm = clm*lra[j-1];
sr = (alpha + beta*akp)*ck;
sl = (alpha + beta*akm)*bk;
st = (alpha*alp + beta)*cl;
sb = (alpha*alm + beta)*bl;
s1 = -pnt*(alpha*alm*bl*ckm + beta*akp*ck*blp);
s2 = -pnt*(alpha*alp*cl*ckp + beta*akp*ck*clp);
s3 = -pnt*(alpha*alp*cl*bkp + beta*akm*bk*clm);
s4 = -pnt*(alpha*alm*bl*bkm + beta*akm*bk*blm);};
PM_element(lapl, i, i) = -cnt;
for (k = 0; k < na; k++)
{PM_element(ar[k], i, 1) = 0;};
LOAD_LAPLACIAN(ar, dt, 1, 2, sr);
LOAD_LAPLACIAN(ar, dt, kbnd, 3, st);
LOAD_LAPLACIAN(ar, dt, -1, 4, sl);
LOAD_LAPLACIAN(ar, dt, -kbnd, 5, sb);
LOAD_LAPLACIAN(ar, dt, kbnd+1, 6, s2);
LOAD_LAPLACIAN(ar, dt, kbnd-1, 7, s3);
LOAD_LAPLACIAN(ar, dt, -kbnd-1, 8, s4);
LOAD_LAPLACIAN(ar, dt, -kbnd+1, 9, s1);};
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* _PM_LAPLACE_SOLA - compute the coordinates using the correct laplacian
* - this operator uses both the normal and tangential
* - spacing ratios
*/
static void _PM_laplace_sola(lapl, kmax, lmax,
na, ar, dt, kra, lra, apk, apl, nodet, n_map, ips,
ts, krc, lrc, crf, theta)
PM_matrix *lapl;
int kmax, lmax, na;
PM_matrix **ar;
REAL **dt, *kra, *lra, *apk, *apl, *nodet;
PM_matrix *n_map;
int *ips;
double ts, krc, lrc;
int crf;
double theta;
{int n, j, i, k;
/* fill in the laplacian, bx, by and n_map arrays */
_PM_fill_lapl_opa(lapl, kmax, lmax,
na, ar, dt, kra, lra, apk, apl, nodet, n_map,
ts, krc, lrc, crf, theta);
/* do the lu decomposition */
PM_decompose(lapl, ips, FALSE);
/* do the sol part on bx and by, the boundary information for rx and ry */
for (k = 0; k < na; k++)
{PM_sol(lapl, ar[k], ips, FALSE);};
n = n_map->nrow;
for (j = 1; j <= n; j++)
{i = PM_element(n_map, j, 1);
for (k = 0; k < na; k++)
dt[k][i] = PM_element(ar[k], j, 1);};
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
/* PM_MESH_PART - find the rest of the nodes in the part
* - and compute the mesh in the part
* - Arguments:
* - RX space for x coordinate values (i/o)
* - RY space for y coordinate values (i/o)
* - NODET node type array (i)
* - REG_MAP material region map array (i)
* - N number of nodes in this part of the mesh
* - (K,L) a logical point in this part of the mesh
* - KMN patch minimum k value
* - KMX patch maximum k value
* - LMN patch minimum l value
* - LMX patch maximum l value
* - KMAX global mesh maximum k value
* - LMAX global mesh maximum l value
* - M material region number (i)
* - KR patch wide k-ratio (i)
* - LR patch wide l-ratio (i)
* - KRA k-ratio array (i)
* - LRA l-ratio array (i)
* - APK k-product array method 2 only (i)
* - APL l-product array method 2 only (i)
* - ASK k-product magnitude start method 2 only (i)
* - XSK k-product exponent start method 2 only (i)
* - AEK k-product magnitude end method 2 only (i)
* - XEK k-product exponent end method 2 only (i)
* - ASL l-product magnitude start method 2 only (i)
* - XSL l-product exponent start method 2 only (i)
* - AEL l-product magnitude end method 2 only (i)
* - XEL l-product exponent end method 2 only (i)
* - METHOD generation method: 1) ratios only;
* - 2) products and rations
* - CONSTR impose mesh generation constraint
* - DSPAT spatial differencing: 0.0 -> pure 5 point
* - 1.0 -> pure 9 point
* - DRAT ratio differencing: 0.0 -> pure 5 point
* - 1.0 -> pure 9 point
* - ORIENT orientation: 0.0 -> pure K orientation
* - 1.0 -> pure L orientation
*/
void PM_mesh_part(rx, ry, nodet, reg_map,
n, k, l, kmn, kmx, lmn, lmx, kmax, lmax,
m, kr, lr, kra, lra, apk, apl,
ask, xsk, aek, xek,
asl, xsl, ael, xel,
method, constr, dspat, drat, orient)
REAL *rx, *ry, *nodet;
int *reg_map;
int n, k, l, kmn, kmx, lmn, lmx, kmax, lmax, m;
double kr, lr;
REAL *kra, *lra, *apk, *apl;
double ask, xsk, aek, xek, asl, xsl, ael, xel;
int method, constr;
double dspat, drat, orient;
{int j, na;
int *ips;
REAL **dt;
PM_matrix **ar, *n_map, *lapl;
switch (method)
/* this method uses only the tangential spacing ratios */
{case 1 :
ips = FMAKE_N(int, n, "MESH_PART:ips");
n_map = PM_create(n, 9);
lapl = PM_create(n, n);
_PM_fill_map(n_map, kmax, lmax, nodet);
na = 2;
ar = FMAKE_N(PM_matrix *, na, "MESH_PART:ar");
dt = FMAKE_N(REAL *, na, "MESH_PART:dt");
for (j = 0; j < na; j++)
ar[j] = PM_create(n, 1);
dt[0] = kra;
dt[1] = lra;
_PM_laplace_sol(lapl, kmax, lmax,
na, ar, dt, NULL, NULL, nodet,
n_map, ips, drat,
kr, lr, TRUE);
dt[0] = rx;
dt[1] = ry;
_PM_laplace_sol(lapl, kmax, lmax,
na, ar, dt, kra, lra, nodet,
n_map, ips, dspat,
1.0, 1.0, FALSE);
/* map xn and yn into rx and ry with n_map */
_PM_fin_sol(n_map, m, reg_map, nodet);
/* release the intermediate storage */
PM_destroy(lapl);
PM_destroy(n_map);
for (j = 0; j < na; j++)
PM_destroy(ar[j]);
SFREE(ar);
SFREE(ips);
break;
/* this method uses both the normal and tangential spacing ratios */
case 2 :
ips = FMAKE_N(int, n, "MESH_PART:ips");
n_map = PM_create(n, 9);
lapl = PM_create(n, n);
_PM_fill_map(n_map, kmax, lmax, nodet);
na = 4;
ar = FMAKE_N(PM_matrix *, na, "MESH_PART:ar");
dt = FMAKE_N(REAL *, na, "MESH_PART:dt");
for (j = 0; j < na; j++)
ar[j] = PM_create(n, 1);
dt[0] = kra;
dt[1] = lra;
dt[2] = apk;
dt[3] = apl;
_PM_laplace_sola(lapl, kmax, lmax,
na, ar, dt, NULL, NULL,
NULL, NULL, nodet,
n_map, ips, drat,
kr, lr, TRUE, orient);
_PM_compute_a(apk, apl, kra, lra, kmax, lmax,
kmn, kmx, lmn, lmx,
ask, xsk, aek, xek, asl, xsl, ael, xel,
constr);
na = 2;
dt[0] = rx;
dt[1] = ry;
_PM_laplace_sola(lapl, kmax, lmax,
na, ar, dt, kra, lra,
apk, apl, nodet,
n_map, ips, dspat,
1.0, 1.0, FALSE, orient);
/* map xn and yn into rx and ry with n_map */
_PM_fin_sol(n_map, m, reg_map, nodet);
/* release the intermediate storage */
PM_destroy(lapl);
PM_destroy(n_map);
for (j = 0; j < na; j++)
PM_destroy(ar[j]);
SFREE(ar);
SFREE(ips);
break;
default :
break;};
return;}
/*--------------------------------------------------------------------------*/
/*--------------------------------------------------------------------------*/
|