1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
#define BOOST_TEST_MODULE cstrs_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <cmath>
#include <iostream>
#include <string>
#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/compass_search.hpp>
#include <pagmo/algorithms/cstrs_self_adaptive.hpp>
#include <pagmo/algorithms/de.hpp>
#include <pagmo/io.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problems/cec2006.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/inventory.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/s11n.hpp>
#include <pagmo/threading.hpp>
#include <pagmo/types.hpp>
using namespace pagmo;
BOOST_AUTO_TEST_CASE(penalized_problem_construction)
{
using namespace detail;
auto NP = 20u;
problem udp{cec2006{1u}};
population pop{udp, NP};
penalized_udp udp_p{pop};
BOOST_CHECK(udp_p.m_pop_ptr == &pop);
BOOST_CHECK_EQUAL(udp_p.m_c_max.size(), udp.get_nc());
BOOST_CHECK_EQUAL(udp_p.m_f_hat_down.size(), udp.get_nf());
BOOST_CHECK_EQUAL(udp_p.m_f_hat_up.size(), udp.get_nf());
BOOST_CHECK_EQUAL(udp_p.m_f_hat_round.size(), udp.get_nf());
BOOST_CHECK_EQUAL(udp_p.get_nix(), udp.get_nix());
BOOST_CHECK_EQUAL(udp_p.m_fitness_map.size(), NP);
// We also test get bounds here
BOOST_CHECK(udp_p.get_bounds() == udp.get_bounds());
// And the debug stream operator
std::ostringstream text;
text << udp_p;
BOOST_CHECK(text.str().find("Best (hat down)") != std::string::npos);
}
BOOST_AUTO_TEST_CASE(penalized_problem_fitness_cache)
{
using namespace detail;
auto NP = 20u;
problem udp{cec2006{1u}};
population pop{udp, NP};
penalized_udp udp_p{pop};
BOOST_CHECK_EQUAL(udp_p.m_pop_ptr->get_problem().get_fevals(), NP);
population new_pop{udp_p};
// The following lines do not cause fevals increments as the cache is hit.
for (decltype(NP) i = 0u; i < NP; ++i) {
new_pop.push_back(pop.get_x()[i]);
}
// We check the cache was hit -> not increasing the fevals
BOOST_CHECK_EQUAL(udp_p.m_pop_ptr->get_problem().get_fevals(), NP);
new_pop.set_x(0, vector_double(13, 0.5));
// We check the cache was not hit -> increasing the fevals
BOOST_CHECK_EQUAL(udp_p.m_pop_ptr->get_problem().get_fevals(), NP + 1);
new_pop.set_x(1, vector_double(13, 0.5));
// We check the cache was hit -> not increasing the fevals
BOOST_CHECK_EQUAL(udp_p.m_pop_ptr->get_problem().get_fevals(), NP + 1);
}
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_construction)
{
{ // default constructor
cstrs_self_adaptive udp;
BOOST_CHECK(udp.get_inner_algorithm().extract<de>() != NULL);
BOOST_CHECK(udp.get_inner_algorithm().extract<compass_search>() == NULL);
}
{ // constructor from iters
BOOST_CHECK_NO_THROW((cstrs_self_adaptive{1500u}));
BOOST_CHECK_NO_THROW((cstrs_self_adaptive{1500u, de{}}));
BOOST_CHECK_NO_THROW((cstrs_self_adaptive{1500u, de{}, 32u}));
}
// Here we only test that evolution is deterministic if the
// seed is controlled
{
problem prob{hock_schittkowski_71{}};
prob.set_c_tol({1e-3, 1e-3});
population pop1{prob, 5u, 23u};
population pop2{prob, 5u, 23u};
population pop3{prob, 5u, 23u};
cstrs_self_adaptive user_algo1{150u, de{10u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
BOOST_CHECK(user_algo1.get_log().size() > 0u);
cstrs_self_adaptive user_algo2{150u, de{10u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
user_algo2.set_seed(32u);
user_algo2.get_inner_algorithm().extract<de>()->set_seed(32u);
pop3 = user_algo2.evolve(pop3);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
}
// We then check that the evolve throws if called on unsuitable problems
{
cstrs_self_adaptive user_algo{150u, de{10u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u};
BOOST_CHECK_THROW(user_algo.evolve(population{zdt{}, 15u}), std::invalid_argument);
}
{
cstrs_self_adaptive user_algo{150u, de{10u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u};
BOOST_CHECK_THROW(user_algo.evolve(population{inventory{}, 15u}), std::invalid_argument);
}
{
cstrs_self_adaptive user_algo{150u, de{10u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u};
BOOST_CHECK_THROW(user_algo.evolve(population{rosenbrock{}, 15u}), std::invalid_argument);
}
{
cstrs_self_adaptive user_algo{150u, de{10u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u};
BOOST_CHECK_THROW(user_algo.evolve(population{hock_schittkowski_71{}, 3u}), std::invalid_argument);
}
// And a clean exit for 0 iterations
problem prob{hock_schittkowski_71{}};
population pop{prob, 10u};
BOOST_CHECK((cstrs_self_adaptive{0u, de{10u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u}.evolve(pop).get_x()[0])
== (pop.get_x()[0]));
}
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_serialization)
{
// Make one evolution
problem prob{hock_schittkowski_71{}};
population pop{prob, 10u, 23u};
algorithm algo{cstrs_self_adaptive{1500u, de{1u, 0.8, 0.9, 2u, 1e-6, 1e-6, 32u}, 32u}};
algo.set_verbosity(1u);
pop = algo.evolve(pop);
// Store the string representation of p.
std::stringstream ss;
auto before_text = boost::lexical_cast<std::string>(algo);
auto before_log = algo.extract<cstrs_self_adaptive>()->get_log();
// Now serialize, deserialize and compare the result.
{
boost::archive::binary_oarchive oarchive(ss);
oarchive << algo;
}
// Change the content of p before deserializing.
algo = algorithm{};
{
boost::archive::binary_iarchive iarchive(ss);
iarchive >> algo;
}
auto after_text = boost::lexical_cast<std::string>(algo);
auto after_log = algo.extract<cstrs_self_adaptive>()->get_log();
BOOST_CHECK_EQUAL(before_text, after_text);
BOOST_CHECK(before_log == after_log);
// so we implement a close check
BOOST_CHECK(before_log.size() > 0u);
for (auto i = 0u; i < before_log.size(); ++i) {
BOOST_CHECK_EQUAL(std::get<0>(before_log[i]), std::get<0>(after_log[i]));
BOOST_CHECK_EQUAL(std::get<1>(before_log[i]), std::get<1>(after_log[i]));
BOOST_CHECK_CLOSE(std::get<2>(before_log[i]), std::get<2>(after_log[i]), 1e-8);
BOOST_CHECK_CLOSE(std::get<3>(before_log[i]), std::get<3>(after_log[i]), 1e-8);
BOOST_CHECK_EQUAL(std::get<4>(before_log[i]), std::get<4>(after_log[i]));
BOOST_CHECK_CLOSE(std::get<5>(before_log[i]), std::get<5>(after_log[i]), 1e-8);
BOOST_CHECK_EQUAL(std::get<6>(before_log[i]), std::get<6>(after_log[i]));
}
}
struct ts1 {
population evolve(population pop) const
{
return pop;
}
};
struct ts2 {
population evolve(population pop) const
{
return pop;
}
thread_safety get_thread_safety() const
{
return thread_safety::none;
}
};
struct ts3 {
population evolve(population pop) const
{
return pop;
}
thread_safety get_thread_safety()
{
return thread_safety::none;
}
};
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_threading_test)
{
BOOST_CHECK((algorithm{cstrs_self_adaptive{1500u, ts1{}, 32u}}.get_thread_safety() == thread_safety::basic));
BOOST_CHECK((algorithm{cstrs_self_adaptive{1500u, ts2{}, 32u}}.get_thread_safety() == thread_safety::none));
BOOST_CHECK((algorithm{cstrs_self_adaptive{1500u, ts3{}, 32u}}.get_thread_safety() == thread_safety::basic));
}
struct ia1 {
population evolve(const population &pop) const
{
return pop;
}
double m_data = 0.;
};
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_inner_algo_get_test)
{
// We check that the correct overload is called according to (*this) being const or not
{
const cstrs_self_adaptive uda(1500u, ia1{}, 32u);
BOOST_CHECK(std::is_const<decltype(uda)>::value);
BOOST_CHECK(std::is_const<std::remove_reference<decltype(uda.get_inner_algorithm())>::type>::value);
}
{
cstrs_self_adaptive uda(1500u, ia1{}, 32u);
BOOST_CHECK(!std::is_const<decltype(uda)>::value);
BOOST_CHECK(!std::is_const<std::remove_reference<decltype(uda.get_inner_algorithm())>::type>::value);
}
}
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_all_feasible_test)
{
// We check the behavior when all individuals are feasible
// We build an all feasible population
problem prob{hock_schittkowski_71{}};
population pop{prob, 4u};
BOOST_CHECK_EQUAL(prob.get_nf(), 3u);
BOOST_CHECK_EQUAL(prob.get_nobj(), 1u);
BOOST_CHECK_EQUAL(prob.get_nec(), 1u);
BOOST_CHECK_EQUAL(prob.get_nic(), 1u);
pop.set_xf(0, vector_double{1., 2., 3., 4.}, vector_double{2, 0., -1});
pop.set_xf(1, vector_double{2., 2., 3., 4.}, vector_double{3, 0., -2});
pop.set_xf(2, vector_double{3., 2., 3., 4.}, vector_double{5, 0., -2});
pop.set_xf(3, vector_double{4., 2., 3., 4.}, vector_double{7, 0., -23});
// We define the penalized_udp problem. Upon construction the update method will be called
// and all penalties assigned. We test the correctness of their value
detail::penalized_udp udp_p{pop};
BOOST_CHECK_EQUAL(udp_p.m_scaling_factor, 0.);
BOOST_CHECK_EQUAL(udp_p.m_i_hat_up, 0.);
BOOST_CHECK_EQUAL(udp_p.m_i_hat_down, 0.);
BOOST_CHECK_EQUAL(udp_p.m_i_hat_round, 0.);
BOOST_CHECK_EQUAL(udp_p.m_apply_penalty_1, false);
BOOST_CHECK((udp_p.m_c_max == vector_double{0., 0.}));
BOOST_CHECK_EQUAL(udp_p.m_n_feasible, 4);
BOOST_CHECK((udp_p.m_f_hat_up == vector_double{2, 0., -1}));
BOOST_CHECK((udp_p.m_f_hat_round == vector_double{2, 0., -1}));
}
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_infeasible_better_than_hat_down_test)
{
// We check the behavior when all individuals are feasible
// We build an all feasible population
problem prob{hock_schittkowski_71{}};
population pop{prob, 4u};
BOOST_CHECK_EQUAL(prob.get_nf(), 3u);
BOOST_CHECK_EQUAL(prob.get_nobj(), 1u);
BOOST_CHECK_EQUAL(prob.get_nec(), 1u);
BOOST_CHECK_EQUAL(prob.get_nic(), 1u);
pop.set_xf(0, vector_double{1., 2., 3., 4.}, vector_double{2, 0., -1.}); // feasible (hat_down)
pop.set_xf(1, vector_double{2., 2., 3., 4.}, vector_double{1, 0., 1.}); // infeasible (better than hat_down)
pop.set_xf(2, vector_double{2., 2., 3., 4.}, vector_double{0, 0., 1.}); // infeasible (better than hat_down)
pop.set_xf(3, vector_double{4., 2., 3., 4.}, vector_double{7, 3.4, 23});
// We define the penalized_udp problem. Upon construction the update method will be called
// and all penalties assigned. We test the correctness of their value
detail::penalized_udp udp_p{pop};
BOOST_CHECK((udp_p.m_f_hat_up == vector_double{0, 0., 1.}));
BOOST_CHECK((udp_p.m_f_hat_down == vector_double{2, 0., -1.}));
BOOST_CHECK((udp_p.m_f_hat_round == vector_double{7, 3.4, 23}));
BOOST_CHECK_EQUAL(udp_p.m_apply_penalty_1, true);
}
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_infeasible_not_better_than_hat_down_test)
{
// We check the behavior when all individuals are feasible
// We build an all feasible population
problem prob{hock_schittkowski_71{}};
population pop{prob, 5u};
BOOST_CHECK_EQUAL(prob.get_nf(), 3u);
BOOST_CHECK_EQUAL(prob.get_nobj(), 1u);
BOOST_CHECK_EQUAL(prob.get_nec(), 1u);
BOOST_CHECK_EQUAL(prob.get_nic(), 1u);
pop.set_xf(0, vector_double{1., 2., 3., 4.}, vector_double{2, 0., -1.}); // feasible (hat_down)
pop.set_xf(1, vector_double{2., 2., 3., 4.}, vector_double{3, 21, 10.}); // infeasible (worse than hat_down)
pop.set_xf(2, vector_double{2., 2., 3., 4.}, vector_double{3, 22, 10.}); // infeasible (worse than hat_down)
pop.set_xf(3, vector_double{2., 2., 3., 4.}, vector_double{4, 22., 10.}); // infeasible (worse than hat_down)
pop.set_xf(4, vector_double{4., 2., 3., 4.}, vector_double{7, 3.4, 23});
// We define the penalized_udp problem. Upon construction the update method will be called
// and all penalties assigned. We test the correctness of their value
detail::penalized_udp udp_p{pop};
BOOST_CHECK((udp_p.m_f_hat_up == vector_double{4, 22., 10.}));
BOOST_CHECK((udp_p.m_f_hat_down == vector_double{2, 0., -1.}));
BOOST_CHECK((udp_p.m_f_hat_round == vector_double{7, 3.4, 23}));
BOOST_CHECK_EQUAL(udp_p.m_apply_penalty_1, false);
}
BOOST_AUTO_TEST_CASE(cstrs_self_adaptive_all_infeasible_test)
{
// We check the behavior when all individuals are feasible
// We build an all feasible population
problem prob{hock_schittkowski_71{}};
population pop{prob, 4u};
BOOST_CHECK_EQUAL(prob.get_nf(), 3u);
BOOST_CHECK_EQUAL(prob.get_nobj(), 1u);
BOOST_CHECK_EQUAL(prob.get_nec(), 1u);
BOOST_CHECK_EQUAL(prob.get_nic(), 1u);
pop.set_xf(0, vector_double{1., 2., 3., 4.}, vector_double{2., 1., 1.});
pop.set_xf(1, vector_double{2., 2., 3., 4.}, vector_double{1., 1., 1.});
pop.set_xf(2, vector_double{2., 2., 3., 4.}, vector_double{4, 22., 10.});
pop.set_xf(3, vector_double{4., 2., 3., 4.}, vector_double{7, 22., 10.});
// We define the penalized_udp problem. Upon construction the update method will be called
// and all penalties assigned. We test the correctness of their value
detail::penalized_udp udp_p{pop};
BOOST_CHECK((udp_p.m_f_hat_up == vector_double{7, 22., 10.}));
BOOST_CHECK((udp_p.m_f_hat_down == vector_double{1., 1., 1.}));
BOOST_CHECK((udp_p.m_f_hat_round == vector_double{7, 22., 10.}));
BOOST_CHECK_EQUAL(udp_p.m_apply_penalty_1, true);
}
|