File: decompose.cpp

package info (click to toggle)
pagmo 2.19.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 85,228 kB
  • sloc: cpp: 1,753,592; makefile: 223; sh: 121; python: 46
file content (314 lines) | stat: -rw-r--r-- 11,269 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
/* Copyright 2017-2021 PaGMO development team

This file is part of the PaGMO library.

The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 3 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library.  If not,
see https://www.gnu.org/licenses/. */

#define BOOST_TEST_MODULE decompose_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>

#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <limits>
#include <stdexcept>
#include <string>

#include <pagmo/exceptions.hpp>
#include <pagmo/io.hpp>
#include <pagmo/problem.hpp>
#include <pagmo/problems/decompose.hpp>
#include <pagmo/problems/null_problem.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/types.hpp>

using namespace pagmo;

struct mc_01 {
    vector_double fitness(const vector_double &) const
    {
        return {1., 1.};
    }
    vector_double::size_type get_nobj() const
    {
        return 2u;
    }
    vector_double::size_type get_nec() const
    {
        return 1u;
    }
    std::pair<vector_double, vector_double> get_bounds() const
    {
        return {{0.}, {1.}};
    }
};

BOOST_AUTO_TEST_CASE(decompose_construction_test)
{
    // First we check directly the two constructors
    problem p0{decompose{}};
    problem p1{decompose{null_problem{2}, {0.5, 0.5}, {0., 0.}, "weighted", false}};

    auto p0_string = boost::lexical_cast<std::string>(p0);
    auto p1_string = boost::lexical_cast<std::string>(p1);

    // We check that the default constructor constructs a problem
    // which has an identical representation to the problem
    // built by the explicit constructor.
    BOOST_CHECK(p0_string == p1_string);

    // We check the throws
    auto inf = std::numeric_limits<double>::infinity();
    auto nan = std::numeric_limits<double>::quiet_NaN();
    // single objective problem
    BOOST_CHECK_THROW(decompose(rosenbrock{}, {0.5, 0.5}, {0., 0.}), std::invalid_argument);
    // constrained problem
    BOOST_CHECK_THROW(decompose(mc_01{}, {0.5, 0.5}, {0., 0.}, "weighted", false), std::invalid_argument);
    // random decomposition method
    BOOST_CHECK_THROW(decompose(zdt{1u, 2u}, {0.5, 0.5}, {0., 0.}, "my_method", false), std::invalid_argument);
    // wrong length for the weights
    BOOST_CHECK_THROW(decompose(zdt{1u, 2u}, {0.5, 0.2, 0.3}, {0., 0.}, "weighted", false), std::invalid_argument);
    BOOST_CHECK_THROW(decompose(zdt{1u, 2u}, {0.5, inf}, {0., 0.}, "weighted", false), std::invalid_argument);
    // wrong length for the reference point
    BOOST_CHECK_THROW(decompose(zdt{1u, 2u}, {0.5, 0.5}, {1.}, "weighted", false), std::invalid_argument);
    BOOST_CHECK_THROW(decompose(zdt{1u, 2u}, {0.5, 0.5}, {0., nan}, "weighted", false), std::invalid_argument);
    // weight sum != 1
    BOOST_CHECK_THROW(decompose(zdt{1u, 2u}, {0.9, 0.5}, {0., 0.}, "weighted", false), std::invalid_argument);
    // weight contains negative component
    BOOST_CHECK_THROW(decompose(zdt{1u, 2u}, {1.5, -0.5}, {0., 0.}, "weighted", false), std::invalid_argument);

    print(p1);
}

BOOST_AUTO_TEST_CASE(decompose_integration_into_problem_test)
{
    problem p{decompose{zdt{1u, 2u}, {0.5, 0.5}, {0., 0.}, "weighted", false}};
    BOOST_CHECK(p.has_gradient() == false);
    BOOST_CHECK(p.has_hessians() == false);
    BOOST_CHECK(p.get_nobj() == 1u);
    BOOST_CHECK_THROW(p.gradient({1, 2}), not_implemented_error);
    BOOST_CHECK_THROW(p.hessians({1, 2}), not_implemented_error);
}

BOOST_AUTO_TEST_CASE(decompose_fitness_test)
{
    problem p{zdt{1u, 2u}};
    vector_double lambda{0.5, 0.5};
    vector_double z{0., 0.};
    problem pdw{decompose{zdt{1u, 2u}, lambda, z, "weighted", false}};
    problem pdtch{decompose{zdt{1u, 2u}, lambda, z, "tchebycheff", false}};
    problem pdbi{decompose{zdt{1u, 2u}, lambda, z, "bi", false}};

    vector_double point{1., 1.};
    auto f = p.fitness(point);
    auto fdw = pdw.fitness(point);
    auto fdtch = pdtch.fitness(point);
    auto fdbi = pdbi.fitness(point);

    BOOST_CHECK_CLOSE(fdw[0], f[0] * lambda[0] + f[1] * lambda[1], 1e-8);
    BOOST_CHECK_CLOSE(fdtch[0], std::max(lambda[0] * std::abs(f[0] - z[0]), lambda[1] * std::abs(f[1] - z[1])), 1e-8);
    double lnorm = std::sqrt(lambda[0] * lambda[0] + lambda[1] * lambda[1]);
    vector_double ilambda{lambda[0] / lnorm, lambda[1] / lnorm};
    double d1 = (f[0] - z[0]) * ilambda[0] + (f[1] - z[1]) * ilambda[1];
    double d20 = f[0] - (z[0] + d1 * ilambda[0]);
    double d21 = f[1] - (z[1] + d1 * ilambda[1]);
    d20 *= d20;
    d21 *= d21;
    double d2 = std::sqrt(d20 + d21);
    BOOST_CHECK_CLOSE(fdbi[0], d1 + 5.0 * d2, 1e-8);
}

BOOST_AUTO_TEST_CASE(original_fitness_test)
{
    zdt p{zdt{1u, 2u}};
    vector_double lambda{0.5, 0.5};
    vector_double z{0., 0.};
    decompose pdw{zdt{1u, 2u}, lambda, z, "weighted", false};
    decompose pdtch{zdt{1u, 2u}, lambda, z, "tchebycheff", false};
    decompose pdbi{zdt{1u, 2u}, lambda, z, "bi", false};

    vector_double dv{1., 1.};
    auto f = p.fitness(dv);
    auto fdw = pdw.original_fitness(dv);
    auto fdtch = pdtch.original_fitness(dv);
    auto fdbi = pdbi.original_fitness(dv);

    // We check that the original fitness is always the same
    BOOST_CHECK(f == fdw);
    BOOST_CHECK(f == fdtch);
    BOOST_CHECK(f == fdbi);
}

BOOST_AUTO_TEST_CASE(decompose_ideal_point_adaptation_test)
{
    // no adaptation
    {
        problem p{decompose{zdt{1u, 2u}, {0.5, 0.5}, {2., 2.}, "weighted", false}};
        BOOST_CHECK(p.extract<decompose>()->get_z() == vector_double({2., 2.}));
        p.fitness({1., 1.});
        BOOST_CHECK(p.extract<decompose>()->get_z() == vector_double({2., 2.}));
    }

    // adaptation at work
    {
        problem p{decompose{zdt{1u, 2u}, {0.5, 0.5}, {2., 2.}, "weighted", true}};
        BOOST_CHECK(p.extract<decompose>()->get_z() == vector_double({2., 2.}));
        p.fitness({1., 1.});
        BOOST_CHECK(p.extract<decompose>()->get_z() == vector_double({1., 2.}));
        p.fitness({0., 0.});
        BOOST_CHECK(p.extract<decompose>()->get_z() == vector_double({0., 1.}));
    }
}

BOOST_AUTO_TEST_CASE(decompose_has_dense_sparsities_test)
{
    problem p{decompose{zdt{1u, 2u}, {0.5, 0.5}, {2., 2.}, "weighted", false}};
    BOOST_CHECK(p.gradient_sparsity() == detail::dense_gradient(1u, 2u));
    BOOST_CHECK(p.hessians_sparsity() == detail::dense_hessians(1u, 2u));
}

BOOST_AUTO_TEST_CASE(decompose_name_and_extra_info_test)
{
    decompose p{zdt{1u, 2u}, {0.5, 0.5}, {2., 2.}, "weighted", false};
    BOOST_CHECK(p.get_name().find("[decomposed]") != std::string::npos);
    BOOST_CHECK(p.get_extra_info().find("Ideal point adaptation") != std::string::npos);
}

BOOST_AUTO_TEST_CASE(decompose_serialization_test)
{
    problem p{decompose{zdt{1u, 2u}, {0.5, 0.5}, {2., 2.}, "weighted", false}};
    // Call objfun to increase the internal counters.
    p.fitness({1., 1.});
    // Store the string representation of p.
    std::stringstream ss;
    auto before = boost::lexical_cast<std::string>(p);
    // Now serialize, deserialize and compare the result.
    {
        boost::archive::binary_oarchive oarchive(ss);
        oarchive << p;
    }
    // Change the content of p before deserializing.
    p = problem{};
    {
        boost::archive::binary_iarchive iarchive(ss);
        iarchive >> p;
    }
    auto after = boost::lexical_cast<std::string>(p);
    BOOST_CHECK_EQUAL(before, after);
}

template <typename T>
void check_inheritance(T udp, const vector_double &w, const vector_double &r)
{
    BOOST_CHECK_EQUAL(problem(decompose(udp, w, r)).get_nobj(), 1u);
    BOOST_CHECK_EQUAL(problem(decompose(udp, w, r)).get_nix(), problem(udp).get_nix());
    BOOST_CHECK(problem(decompose(udp, w, r)).get_bounds() == problem(udp).get_bounds());
    BOOST_CHECK_EQUAL(problem(decompose(udp, w, r)).has_set_seed(), problem(udp).has_set_seed());
}

struct smobjp {
    smobjp(unsigned seed = 0u) : m_seed(seed) {}
    vector_double fitness(const vector_double &) const
    {
        return {1u, 1u};
    }
    std::pair<vector_double, vector_double> get_bounds() const
    {
        return {{0.}, {1.}};
    }
    vector_double::size_type get_nobj() const
    {
        return 2u;
    }
    void set_seed(unsigned seed)
    {
        m_seed = seed;
    }
    std::string get_extra_info() const
    {
        return "Seed: " + std::to_string(m_seed);
    }
    unsigned m_seed;
};

BOOST_AUTO_TEST_CASE(decompose_inheritance_test)
{
    check_inheritance(zdt{1u, 2u}, vector_double{0.5, 0.5}, vector_double{1.5, 1.5});
    // We check the forwarding of the integer dimension
    check_inheritance(null_problem{2u, 0u, 0u, 1u}, vector_double{0.5, 0.5}, vector_double{1.5, 1.5});
    check_inheritance(null_problem{2u, 0u, 0u, 0u}, vector_double{0.5, 0.5}, vector_double{1.5, 1.5});

    // We check set_seed is working
    problem p{decompose{smobjp(1234567u), vector_double{0.5, 0.5}, vector_double{1.5, 1.5}}};
    std::ostringstream ss1, ss2;
    ss1 << p;
    BOOST_CHECK(ss1.str().find(std::to_string(1234567u)) != std::string::npos);
    p.set_seed(5672543u);
    ss2 << p;
    BOOST_CHECK(ss2.str().find(std::to_string(5672543u)) != std::string::npos);
}

BOOST_AUTO_TEST_CASE(decompose_inner_algo_get_test)
{
    // We check that the correct overload is called according to (*this) being const or not
    {
        const decompose udp(zdt{1u, 2u}, {0.5, 0.5}, {2., 2.}, "weighted", false);
        BOOST_CHECK(std::is_const<decltype(udp)>::value);
        BOOST_CHECK(std::is_const<std::remove_reference<decltype(udp.get_inner_problem())>::type>::value);
    }
    {
        decompose udp(zdt{1u, 2u}, {0.5, 0.5}, {2., 2.}, "weighted", false);
        BOOST_CHECK(!std::is_const<decltype(udp)>::value);
        BOOST_CHECK(!std::is_const<std::remove_reference<decltype(udp.get_inner_problem())>::type>::value);
    }
}

struct ts2 {
    vector_double fitness(const vector_double &) const
    {
        return {2, 2, 2};
    }
    std::pair<vector_double, vector_double> get_bounds() const
    {
        return {{0}, {1}};
    }
    vector_double::size_type get_nobj() const
    {
        return 2u;
    }
    thread_safety get_thread_safety() const
    {
        return thread_safety::none;
    }
};

BOOST_AUTO_TEST_CASE(decompose_thread_safety_test)
{
    zdt p0{1, 2};
    decompose t{p0, {0.5, 0.5}, {2., 2.}};
    BOOST_CHECK(t.get_thread_safety() == thread_safety::basic);
    BOOST_CHECK((decompose{ts2{}, {0.5, 0.5}, {2., 2.}}.get_thread_safety() == thread_safety::none));
}