1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
#define BOOST_TEST_MODULE gaco_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <iostream>
#include <string>
#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/cstrs_self_adaptive.hpp>
#include <pagmo/algorithms/gaco.hpp>
#include <pagmo/io.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problems/cec2006.hpp>
#include <pagmo/problems/golomb_ruler.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/inventory.hpp>
#include <pagmo/problems/lennard_jones.hpp>
#include <pagmo/problems/minlp_rastrigin.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/s11n.hpp>
#include <pagmo/types.hpp>
using namespace pagmo;
// Construction tests: we verify that the algorithm throws an error for wrong input parameters
BOOST_AUTO_TEST_CASE(construction_test)
{
gaco user_algo{2u, 13u, 1.0, 0.0, 0.01, 1u, 7u, 1000u, 1000u, 0.0, false, 23u};
BOOST_CHECK(user_algo.get_verbosity() == 0u);
BOOST_CHECK(user_algo.get_seed() == 23u);
BOOST_CHECK((user_algo.get_log() == gaco::log_type{}));
BOOST_CHECK_THROW((gaco{2u, 13u, 1.0, 0.0, -0.01, 1u, 7u, 1000u, 1000u, 0.1, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((gaco{2u, 13u, 1.0, 0.0, 0.01, 1u, 7u, 1000u, 1000u, -0.1, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((gaco{2u, 13u, -1.0, 0.0, 0.01, 1u, 7u, 1000u, 1000u, 0.0, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((gaco{2u, 13u, 1.0, 0.0, 0.01, 3u, 7u, 1000u, 1000u, 0.0, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((gaco{2u, 13u, 1.0, 0.0, 0.01, 0u, 7u, 1000u, 1000u, 0.0, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((gaco{2u, 13u, 1.0, 0.0, 0.01, 0u, 7u, 1000u, 1000u, 0.0, true, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((gaco{2u, 1u, 1.0, 0.0, 0.01, 1u, 7u, 1000u, 1000u, 0.0, false, 23u}), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(evolve_test)
{
// Here we only test that evolution is deterministic if the
// seed is controlled for all variants
{
problem prob{rosenbrock{2u}};
population pop1{prob, 10u, 23u};
population pop2{prob, 10u, 23u};
population pop3{prob, 10u, 23u};
for (unsigned i = 1u; i < 3u; ++i) {
gaco user_algo1{3u, 5u, 1.0, 1e9, 0.01, i, 7u, 1000u, 1000u, 0.0, false, 23u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
BOOST_CHECK(user_algo1.get_log().size() > 0u);
gaco user_algo2{3u, 5u, 1.0, 1e9, 0.01, i, 7u, 1000u, 1000u, 0.0, false, 23u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
gaco user_algo3{3u, 5u, 1.0, 1e9, 0.01, i, 7u, 1000u, 1000u, 0.0, false, 23u};
user_algo3.set_verbosity(1u);
pop3 = user_algo3.evolve(pop3);
BOOST_CHECK(user_algo2.get_log() == user_algo3.get_log());
}
}
// Here we check that the exit condition of impstop and evalstop actually provoke an exit within 300u gen
// (rosenbrock{10} and rosenbrock{2} are used)
{
gaco user_algo{200u, 15u, 1.0, 0.0, 0.01, 150u, 7u, 1u, 1000u, 0.0, false, 23u};
user_algo.set_verbosity(1u);
problem prob{rosenbrock{2u}};
population pop{prob, 20u, 23u};
pop = user_algo.evolve(pop);
BOOST_CHECK(user_algo.get_log().size() < 200u);
}
{
gaco user_algo{200u, 15u, 1.0, 0.0, 0.01, 150u, 7u, 1000u, 1u, 0.0, false, 23u};
user_algo.set_verbosity(1u);
problem prob{rosenbrock{2u}};
population pop{prob, 20u, 23u};
pop = user_algo.evolve(pop);
BOOST_CHECK(user_algo.get_log().size() < 200u);
}
// We then check that the evolve throws if called on unsuitable problems
// Integer variables problem
// BOOST_CHECK_THROW(gaco{2u}.evolve(population{problem{minlp_rastrigin{}}, 64u}), std::invalid_argument);
// Multi-objective problem
BOOST_CHECK_THROW(gaco{2u}.evolve(population{problem{zdt{}}, 64u}), std::invalid_argument);
// Population size smaller than ker size
BOOST_CHECK_THROW(gaco{2u}.evolve(population{problem{rosenbrock{}}, 60u}), std::invalid_argument);
// Population size smaller than 2
BOOST_CHECK_THROW(gaco{1u}.evolve(population{problem{rosenbrock{}}, 1}), std::invalid_argument);
// Stochastic problem
BOOST_CHECK_THROW((gaco{}.evolve(population{inventory{}, 65u, 23u})), std::invalid_argument);
// and a clean exit for 0 generation
population pop{rosenbrock{2u}, 10u};
BOOST_CHECK(gaco{0u}.evolve(pop).get_x()[0] == pop.get_x()[0]);
}
BOOST_AUTO_TEST_CASE(setters_getters_test)
{
gaco user_algo{10u, 13u, 1.0, 0.0, 0.01, 9u, 7u, 1000u, 1000u, 0.0, false, 23u};
user_algo.set_verbosity(23u);
BOOST_CHECK(user_algo.get_verbosity() == 23u);
user_algo.set_seed(23u);
BOOST_CHECK(user_algo.get_seed() == 23u);
BOOST_CHECK(user_algo.get_name().find("GACO: Ant Colony Optimization") != std::string::npos);
BOOST_CHECK(user_algo.get_extra_info().find("Oracle parameter") != std::string::npos);
BOOST_CHECK_NO_THROW(user_algo.get_log());
}
BOOST_AUTO_TEST_CASE(serialization_test)
{
// Make one evolution
problem prob{rosenbrock{2u}};
population pop{prob, 15u, 23u};
algorithm algo{gaco{10u, 13u, 1.0, 100.0, 0.01, 9u, 7u, 1000u, 1000u, 0.0, false, 23u}};
algo.set_verbosity(1u);
pop = algo.evolve(pop);
// Store the string representation of p.
std::stringstream ss;
auto before_text = boost::lexical_cast<std::string>(algo);
auto before_log = algo.extract<gaco>()->get_log();
// Now serialize, deserialize and compare the result.
{
boost::archive::binary_oarchive oarchive(ss);
oarchive << algo;
}
// Change the content of p before deserializing.
algo = algorithm{};
{
boost::archive::binary_iarchive iarchive(ss);
iarchive >> algo;
}
auto after_text = boost::lexical_cast<std::string>(algo);
auto after_log = algo.extract<gaco>()->get_log();
BOOST_CHECK_EQUAL(before_text, after_text);
BOOST_CHECK(before_log == after_log);
// so we implement a close check
BOOST_CHECK(before_log.size() > 0u);
for (auto i = 0u; i < before_log.size(); ++i) {
BOOST_CHECK_EQUAL(std::get<0>(before_log[i]), std::get<0>(after_log[i]));
BOOST_CHECK_EQUAL(std::get<1>(before_log[i]), std::get<1>(after_log[i]));
BOOST_CHECK_CLOSE(std::get<2>(before_log[i]), std::get<2>(after_log[i]), 1e-8);
BOOST_CHECK_EQUAL(std::get<3>(before_log[i]), std::get<3>(after_log[i]));
BOOST_CHECK_CLOSE(std::get<4>(before_log[i]), std::get<4>(after_log[i]), 1e-8);
BOOST_CHECK_CLOSE(std::get<5>(before_log[i]), std::get<5>(after_log[i]), 1e-8);
BOOST_CHECK_CLOSE(std::get<6>(before_log[i]), std::get<6>(after_log[i]), 1e-8);
}
}
// Coverage tests: we make sure that the algorithm is tested in all the lines
BOOST_AUTO_TEST_CASE(miscellaneous_tests)
{
problem prob{hock_schittkowski_71{}};
population population1{prob, 15u, 23u};
prob.set_c_tol(1.0);
gaco user_algo1{100u, 13u, 1.0, 1500.0, 0.01, 90u, 1u, 1000u, 1000u, 1000.0, false, 23u};
user_algo1.set_verbosity(1u);
population1 = user_algo1.evolve(population1);
population population2{prob, 15u, 23u};
gaco user_algo2{100u, 13u, 1.0, 2700.0, 0.01, 90u, 7u, 1000u, 1000u, 0.0, false, 23u};
user_algo2.set_verbosity(1u);
population2 = user_algo2.evolve(population2);
population population3{prob, 15u, 23u};
gaco user_algo3{100u, 13u, 1.0, 1500.0, 0.01, 90u, 7u, 1000u, 1000u, 0.0, false, 23u};
user_algo3.set_verbosity(1u);
population3 = user_algo3.evolve(population3);
population population4{prob, 150u, 23u};
gaco user_algo4{10u, 130u, 1.5, 1500.0, 0.01, 9u, 7u, 1000u, 1000u, 0.0, false, 23u}; // 1
user_algo4.set_verbosity(1u);
population4 = user_algo4.evolve(population4);
population population5{prob, 150u, 23u};
gaco user_algo5{10u, 130u, 1.5, 1500.0, 0.01, 9u, 7u, 1000u, 1000u, 0.0, false, 23u}; // 3
user_algo5.set_verbosity(1u);
population5 = user_algo5.evolve(population5);
problem prob_ros{rosenbrock{10u}};
population population6{prob_ros, 200u, 23u};
gaco user_algo6{20u, 150u, 1.0, 0.0, 0.0, 9u, 7u, 10000u, 10000u, 0.0, false, 23u};
user_algo6.set_verbosity(1u);
population6 = user_algo6.evolve(population6);
problem prob_cec{cec2006{1u}};
population population7{prob_cec, 20u, 23u};
gaco user_algo7{20u, 15u, 1.0, 1e9, 0.0, 9u, 7u, 10000u, 10000u, 0.0, false, 23u}; // 3
user_algo7.set_verbosity(1u);
population7 = user_algo7.evolve(population7);
BOOST_CHECK(user_algo1.get_log().size() > 0u);
BOOST_CHECK(user_algo2.get_log().size() > 0u);
BOOST_CHECK(user_algo3.get_log().size() > 0u);
BOOST_CHECK(user_algo4.get_log().size() > 0u);
BOOST_CHECK(user_algo5.get_log().size() > 0u);
BOOST_CHECK(user_algo6.get_log().size() > 0u);
BOOST_CHECK(user_algo7.get_log().size() > 0u);
}
BOOST_AUTO_TEST_CASE(construction_test_2)
{
cec2006 udp(1u);
problem prob(udp);
cstrs_self_adaptive uda(4, gaco(10, 10, 1., -15., 0., 7, 7));
algorithm algo(uda);
population pop(prob, 10);
algo.set_verbosity(1);
pop = algo.evolve(pop);
}
// Inf and NaN tests: we verify that the algo can handle NaN and inf has objectives w/o returning errors
struct udp_inf {
/// Fitness
vector_double fitness(const vector_double &) const
{
double inf = std::numeric_limits<double>::infinity();
return {-inf};
}
vector_double::size_type get_nobj() const
{
return 1u;
}
/// Problem bounds
std::pair<vector_double, vector_double> get_bounds() const
{
return {{0., 0.}, {1., 1.}};
}
};
struct udp_nan {
/// Fitness
vector_double fitness(const vector_double &) const
{
double nan = std::numeric_limits<double>::quiet_NaN();
return {nan};
}
vector_double::size_type get_nobj() const
{
return 1u;
}
/// Problem bounds
std::pair<vector_double, vector_double> get_bounds() const
{
return {{0., 0.}, {1., 1.}};
}
};
BOOST_AUTO_TEST_CASE(test_for_inf_and_nan)
{
gaco{10, 10, 1., -15., 0., 7}.evolve(population{problem{udp_inf{}}, 15u});
gaco{10, 10, 1., -15., 0., 7}.evolve(population{problem{udp_nan{}}, 15u});
}
// Memory test: we verify that the algorithm has implemented memory correctly
BOOST_AUTO_TEST_CASE(memory_test)
{
gaco uda{1u, 20u, 1.0, 1e9, 0.01, 1u, 7u, 1000u, 1000u, 100.0, true, 23u};
gaco uda_2{10u, 20u, 1.0, 1e9, 0.01, 1u, 7u, 1000u, 1000u, 100.0, false, 23u};
// for coverage purposes we introduce also a third one:
gaco uda_3{1u, 2u, 1.0, 1e9, 0.01, 1u, 7u, 1000u, 1000u, 100.0, false, 23u};
uda.set_seed(23u);
uda_2.set_seed(23u);
uda_3.set_seed(23u);
uda.set_verbosity(1u);
uda_2.set_verbosity(1u);
uda_3.set_verbosity(1u);
problem prob{rosenbrock{2u}};
population pop_1{prob, 20u, 23u};
population pop_2{prob, 20u, 23u};
population pop_3{prob, 2u, 23u};
for (int iter = 0u; iter < 10; ++iter) {
pop_1 = uda.evolve(pop_1);
}
pop_2 = uda_2.evolve(pop_2);
pop_3 = uda_3.evolve(pop_3);
BOOST_CHECK_EQUAL(pop_1.champion_f()[0], pop_2.champion_f()[0]);
}
// Integer tests: we verify that the returned population is actually made by integers
BOOST_AUTO_TEST_CASE(integer_test_1)
{
population pop{minlp_rastrigin{3u, 3u}, 10u, 23u};
gaco uda{10u, 10u, 1.0, 1e9, 0.0, 5u, 7u, 1000u, 1000u, 0.0, false, 23u};
uda.set_verbosity(1u);
pop = uda.evolve(pop);
for (decltype(pop.size()) i = 0u; i < pop.size(); ++i) {
auto x = pop.get_x()[i];
BOOST_CHECK(std::all_of(x.begin() + 3, x.end(), [](double el) { return (el == std::floor(el)); }));
}
}
BOOST_AUTO_TEST_CASE(integer_test_2)
{
population pop{golomb_ruler{7, 10}, 10u, 23u};
gaco uda{10u, 10u, 1.0, 25.0, 0.01, 5u, 7u, 1000u, 1000u, 0.0, false, 23u};
uda.set_verbosity(1u);
pop = uda.evolve(pop);
for (decltype(pop.size()) i = 0u; i < pop.size(); ++i) {
auto x = pop.get_x()[i];
BOOST_CHECK(std::all_of(x.begin(), x.end(), [](double el) { return (el == std::floor(el)); }));
}
}
BOOST_AUTO_TEST_CASE(bfe_usage_test)
{
population pop{rosenbrock{10u}, 200u, 23u};
gaco uda{40u, 10u, 1.0, 25.0, 0.01, 5u, 7u, 1000u, 1000u, 0.0, false, 23u};
uda.set_verbosity(1u);
uda.set_seed(23u);
uda.set_bfe(bfe{}); // This will use the default bfe.
pop = uda.evolve(pop);
population pop_2{rosenbrock{10u}, 200u, 23u};
gaco uda_2{40u, 10u, 1.0, 25.0, 0.01, 5u, 7u, 1000u, 1000u, 0.0, false, 23u};
uda_2.set_verbosity(1u);
uda_2.set_seed(23u);
pop_2 = uda_2.evolve(pop_2);
BOOST_CHECK_EQUAL(pop.champion_f()[0], pop_2.champion_f()[0]);
}
BOOST_AUTO_TEST_CASE(out_of_bounds_test)
{
population pop{rosenbrock{}, 10u, 23u};
pop.set_x(0, {-20., 12});//both out of bounds
gaco uda{10u, 10u, 1.0, 25.0, 0.01, 5u, 7u, 1000u, 1000u, 0.0, false, 23u};
uda.set_verbosity(1u);
uda.set_seed(23u);
pop = uda.evolve(pop);
}
|