1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
#define BOOST_TEST_MODULE hypervolume_utils_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <cmath>
#include <fstream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <pagmo/io.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problem.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/types.hpp>
#include <pagmo/utils/hv_algos/hv_algorithm.hpp>
#include <pagmo/utils/hv_algos/hv_bf_approx.hpp>
#include <pagmo/utils/hv_algos/hv_bf_fpras.hpp>
#include <pagmo/utils/hv_algos/hv_hv2d.hpp>
#include <pagmo/utils/hv_algos/hv_hv3d.hpp>
#include <pagmo/utils/hv_algos/hv_hvwfg.hpp>
#include <pagmo/utils/hypervolume.hpp>
using namespace pagmo;
/**
* Assertion method that tests correct computation of contributions for the whole contribution method
* and the single exclusive method.
*/
void assertContribs(const std::vector<vector_double> &points, std::vector<double> &ref, std::vector<double> &answers)
{
hypervolume hv = hypervolume(points, true);
BOOST_CHECK((hv.contributions(ref) == answers));
for (unsigned i = 0u; i < answers.size(); i++) {
BOOST_CHECK(std::fabs(hv.exclusive(i, ref) - answers[i]) < 1.E-13);
}
hv = hypervolume(points, false);
BOOST_CHECK((hv.contributions(ref) == answers));
for (unsigned i = 0u; i < answers.size(); i++) {
BOOST_CHECK(std::fabs(hv.exclusive(i, ref) - answers[i]) < 1.E-13);
}
hv.set_copy_points(false);
BOOST_CHECK((hv.contributions(ref) == answers));
BOOST_CHECK(std::fabs(hv.exclusive(0, ref) - answers[0]) < 1.E-13);
}
class hypervolume_test
{
public:
hypervolume_test(std::istream &input, std::string test_type, std::string method_name, double eps)
: m_input(input), m_test_type(test_type), m_eps(eps)
{
// determine method
if (method_name == "hv2d") {
m_method = hv2d().clone();
} else if (method_name == "hv3d") {
m_method = hv3d().clone();
} else if (method_name == "wfg") {
m_method = hvwfg().clone();
} else {
// The specified algorithm is not available
BOOST_CHECK((false));
}
}
void run_test()
{
m_input >> m_num_tests;
// int OK_counter = 0;
for (unsigned t = 0u; t < m_num_tests; ++t) {
load_common();
hypervolume hv_obj = hypervolume(m_points, true);
// run correct test
if (m_test_type == "compute") {
load_compute();
double hypvol = hv_obj.compute(m_ref_point, *m_method);
BOOST_CHECK((std::abs(hypvol - m_hv_ans) < m_eps));
} else if (m_test_type == "exclusive") {
load_exclusive();
double hypvol = hv_obj.exclusive(m_p_idx, m_ref_point, *m_method);
BOOST_CHECK((std::abs(hypvol - m_hv_ans) < m_eps));
} else if (m_test_type == "least_contributor") {
load_least_contributor();
auto point_idx = hv_obj.least_contributor(m_ref_point, *m_method);
BOOST_CHECK((point_idx == m_idx_ans));
} else if (m_test_type == "greatest_contributor") {
load_least_contributor(); // loads the same data as least contributor
auto point_idx = hv_obj.greatest_contributor(m_ref_point, *m_method);
BOOST_CHECK((point_idx == m_idx_ans));
} else {
// The specified computational method is not available (what do you want to compute?)
BOOST_CHECK((false));
}
}
}
private:
void load_common()
{
m_input >> m_f_dim >> m_num_points;
m_points = std::vector<vector_double>(m_num_points, vector_double(m_f_dim, 0.0));
m_ref_point = vector_double(m_f_dim, 0.0);
for (unsigned d = 0u; d < m_f_dim; ++d) {
m_input >> m_ref_point[d];
}
for (unsigned i = 0u; i < m_num_points; ++i) {
for (unsigned d = 0u; d < m_f_dim; ++d) {
m_input >> m_points[i][d];
}
}
}
void load_compute()
{
m_input >> m_hv_ans;
}
void load_exclusive()
{
m_input >> m_p_idx;
m_input >> m_hv_ans;
}
void load_least_contributor()
{
m_input >> m_idx_ans;
}
unsigned m_num_tests, m_f_dim, m_num_points, m_p_idx;
unsigned m_idx_ans;
double m_hv_ans;
vector_double m_ref_point;
std::vector<vector_double> m_points;
std::shared_ptr<hv_algorithm> m_method;
std::istream &m_input;
std::string m_test_type;
double m_eps;
};
// only here to access and test protected members of hv_algorithm
class hv_fake_algo final : public hv_algorithm
{
public:
hv_fake_algo() = default;
static int accessible_cmp(const vector_double &a, const vector_double &b, vector_double::size_type dim_bound = 0u)
{
return hv_algorithm::dom_cmp(a, b, dim_bound);
}
double compute(std::vector<vector_double> &points, const vector_double &ref) const override
{
return hv2d().compute(points, ref);
};
void verify_before_compute(const std::vector<vector_double> &, const vector_double &) const override{};
std::shared_ptr<hv_algorithm> clone() const override
{
return std::shared_ptr<hv_algorithm>(new hv_fake_algo(*this));
}
};
BOOST_AUTO_TEST_CASE(hypervolume_compute_test)
{
hypervolume hv;
// by vector
std::vector<vector_double> x1{{1, 2}, {3, 4}};
hv = hypervolume(x1, true);
BOOST_CHECK(hv.get_points() == x1);
// by list constructor
hv = hypervolume{{{6, 4}, {3, 5}}};
std::vector<vector_double> x2{{6, 4}, {3, 5}};
BOOST_CHECK((hv.get_points() == x2));
// by population
population pop1{problem{zdt{1, 5}}, 2};
hv = hypervolume(pop1, true);
// errors
population pop2{problem{rosenbrock(10)}, 2};
BOOST_CHECK_THROW(hypervolume(pop2, true), std::invalid_argument);
// Checks the hypervolume cannot be constructed if nans are present
BOOST_CHECK_THROW(hypervolume({{std::numeric_limits<double>::quiet_NaN(), 2.}, {2., 1.}}), std::invalid_argument);
// Checks the hypervolume cannot be constructed if point have different dimensions
BOOST_CHECK_THROW(hypervolume({{1., 2.}, {2., 1.}, {3, 0, 5}}), std::invalid_argument);
// Checks the hypervolume cannot be constructed if points have no dimension
std::vector<double> empty;
std::vector<std::vector<double>> emptyempty;
BOOST_CHECK_THROW(hypervolume({empty, empty}), std::invalid_argument);
// Checks the hypervolume cannot be constructed if points are empty
BOOST_CHECK_THROW(hypervolume{emptyempty}, std::invalid_argument);
// 2d computation of hypervolume indicator
hv = hypervolume{{{1, 2}, {2, 1}}};
BOOST_CHECK((hv.compute({3, 3}) == 3));
// point on the border of refpoint(2D)
BOOST_CHECK((hv.compute({2, 2}) == 0));
// 3d computation of hypervolume indicator
hv = hypervolume({{1, 1, 1}, {2, 2, 2}});
BOOST_CHECK((hv.compute({3, 3, 3}) == 8));
// points on the border of refpoint(3D)
hv = hypervolume({{1, 2, 1}, {2, 1, 1}});
BOOST_CHECK((hv.compute({2, 2, 2}) == 0));
// 4d computation of hypervolume indicator
hv = hypervolume({{1, 1, 1, 1}, {2, 2, 2, 2}});
BOOST_CHECK((hv.compute({3, 3, 3, 3}) == 16));
// points on the border of refpoint(4D)
hv = hypervolume({{1, 1, 1, 3}, {2, 2, 2, 3}});
BOOST_CHECK((hv.compute({3, 3, 3, 3}) == 0));
// 4d duplicate point
hv = hypervolume({{1, 1, 1, 1}, {1, 1, 1, 1}});
BOOST_CHECK((hv.compute({2, 2, 2, 2}) == 1));
// 4d duplicate and dominated
hv = hypervolume({{1.0, 1.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0}, {0.0, 0.0, 0.0, 0.0}});
BOOST_CHECK((hv.compute({2.0, 2.0, 2.0, 2.0}) == 16.0));
// test for flags
hv = hypervolume({{1, 1, 1}, {2, 2, 2}}, false);
hv.set_copy_points(false);
BOOST_CHECK((hv.compute({3, 3, 3}) == 8));
// tests for invalid reference points
hv = hypervolume({{1, 3}, {2, 2}, {3, 1}});
// equal to some other point
BOOST_CHECK_THROW(hv.compute({3, 1}), std::invalid_argument);
// refpoint dominating some points
BOOST_CHECK_THROW(hv.compute({1.5, 1.5}), std::invalid_argument);
// refpoint dominating all points
BOOST_CHECK_THROW(hv.compute({0, 0}), std::invalid_argument);
// invalid dimensions of points.
BOOST_CHECK_THROW(hv = hypervolume({{2.3, 3.4, 5.6}, {1.0, 2.0, 3.0, 4.0}}), std::invalid_argument);
// Calling specific algorithms
hv2d hv_algo_2d;
hv3d hv_algo_3d;
hvwfg hv_algo_nd; // stop-dimension 2 by default
hvwfg hv_algo_nd2 = hvwfg(3u); // stop-dimension 3
hv = hypervolume({{2.3, 4.5}, {3.4, 3.4}, {6.0, 1.2}});
BOOST_CHECK((hv.compute({7.0, 7.0}) == 17.91));
BOOST_CHECK((hv.compute({7.0, 7.0}, hv_algo_2d) == 17.91));
BOOST_CHECK_THROW(hv.compute({7.0, 7.0}, hv_algo_3d), std::invalid_argument);
BOOST_CHECK((hv.compute({7.0, 7.0}, hv_algo_nd) == 17.91));
BOOST_CHECK((hv.compute({7.0, 7.0}, hv_algo_nd2) == 17.91));
hv = hypervolume({{2.3, 4.5, 3.2}, {3.4, 3.4, 3.4}, {6.0, 1.2, 3.6}});
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}) == 66.386));
BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0}, hv_algo_2d), std::invalid_argument);
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_3d) == 66.386));
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd) == 66.386));
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd2) == 66.386));
hv = hypervolume({{2.3, 4.5, 3.2}, {3.4, 3.4, 3.4}, {6.0, 1.2, 3.6}});
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}) == 66.386));
BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0}, hv_algo_2d), std::invalid_argument);
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_3d) == 66.386));
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd) == 66.386));
BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd2) == 66.386));
hv = hypervolume({{2.3, 4.5, 3.2, 1.9, 6.0}, {3.4, 3.4, 3.4, 2.1, 5.8}, {6.0, 1.2, 3.6, 3.0, 6.0}});
BOOST_CHECK(std::fabs(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}) - 373.21228) < 1.E-13);
BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_2d), std::invalid_argument);
BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_3d), std::invalid_argument);
BOOST_CHECK(std::fabs(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_nd) - 373.21228) < 1.E-13);
BOOST_CHECK(std::fabs(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_nd2) - 373.21228) < 1.E-13);
BOOST_CHECK_THROW(hvwfg(0), std::invalid_argument);
BOOST_CHECK_THROW(hvwfg(1), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(hypervolume_contributions_test)
{
// Tests for contributions and exclusive hypervolumes
std::vector<vector_double> points;
std::vector<double> ref;
std::vector<double> answers;
/* This test contains a front with 3 non dominated points,
and many dominated points. Most of the dominated points
lie on edges of the front, which makes their exclusive contribution
equal to 0.*/
points = {
{1, 6.5}, {1, 6}, {1, 5}, {2, 5}, {3, 5}, {3, 3}, {4, 6.5}, {4.5, 4}, {5, 3}, {5, 1.5}, {7, 1.5}, {7, 3.5},
};
ref = {
7.0,
6.5,
};
answers = {
0.0, 0.0, 1.0, 0.0, 0.0, 3.5, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0,
};
assertContribs(points, ref, answers);
// same test with duplicates and points on the edge of the ref-point
points = {{1, 6.5}, {1, 6}, {1, 5}, {2, 5}, {3, 5}, {3, 3}, {4, 6.5}, {4.5, 4},
{5, 3}, {5, 1.5}, {7, 1.5}, {7, 3.5}, {7, 0.5}, {7, 1.0}, {7, 4.5}, {0.0, 6.5},
{5.5, 6.5}, {7, 0.5}, {5.5, 6.5}, {5, 5}, {5, 5}, {5, 5}};
ref = {
7.0,
6.5,
};
answers = {0.0, 0.0, 1.0, 0.0, 0.0, 3.5, 0.0, 0.0, 0.0, 3.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
assertContribs(points, ref, answers);
// some test especially for the base-method of hv-algo (which should be called from hv2d
hypervolume hv = hypervolume(points, true);
hv2d hv2dalgo = hv2d();
BOOST_CHECK((hv.contributions(ref, hv2dalgo) == answers));
// testing the default implementation
hv_fake_algo fa{};
BOOST_CHECK((hv_fake_algo{}.contributions(points, ref) == answers));
BOOST_CHECK((hv.contributions(ref, fa) == answers));
points = std::vector<vector_double>{{1, 1}};
BOOST_CHECK((hv_fake_algo{}.contributions(points, vector_double{3, 3}) == vector_double{4}));
// Gradually adding duplicate points to the set, making sure the contribution change accordingly.
points = {{1, 1}};
ref = {2, 2};
answers = {1.0};
assertContribs(points, ref, answers);
points.push_back({1, 1});
answers = {0.0, 0.0};
assertContribs(points, ref, answers);
points.push_back({1, 1});
answers = {0.0, 0.0, 0.0};
assertContribs(points, ref, answers);
points.push_back({0.5, 0.5});
answers = {0.0, 0.0, 0.0, 1.25};
assertContribs(points, ref, answers);
points.push_back({0.5, 0.5});
answers = {0.0, 0.0, 0.0, 0.0, 0.0};
assertContribs(points, ref, answers);
// Next test contains a tricky front in 3D with some weakly dominated points on the "edges" of the bounding box.
// Non - tricky base problem
points = {{-6, -1, -6}, {-1, -3, -5}, {-3, -4, -4}, {-4, -2, -3}, {-5, -5, -2}, {-2, -6, -1}};
ref = {0, 0, 0};
answers = {18, 2, 12, 1, 18, 2};
assertContribs(points, ref, answers);
// Add some points that contribute nothing and do not alter other
points = {{-6, -1, -6}, {-1, -3, -5}, {-3, -4, -4}, {-4, -2, -3}, {-5, -5, -2}, {-2, -6, -1}, {-3, -1, -3},
{-1, -1, -5}, {-1, -2, -4}, {-1, -3, -4}, {-7, -7, 0}, {0, -5, -5}, {-7, 0, -7}};
answers = {18, 2, 12, 1, 18, 2, 0, 0, 0, 0, 0, 0, 0};
assertContribs(points, ref, answers);
// Gradually adding points, some of which are dominated or duplicates.
// Tests whether contributions and repeated exclusive method produce the same results.
points = {{3, 3, 3}};
ref = {5, 5, 5};
answers = {8.0};
assertContribs(points, ref, answers);
// Decrease the contribution of first point.Second point is dominated.
points.push_back({4, 4, 4});
answers = {
7,
0,
};
assertContribs(points, ref, answers);
// Add duplicate point
points.push_back({3, 3, 3});
answers = {0, 0, 0};
assertContribs(points, ref, answers);
points.push_back({3, 3, 2});
answers = {0, 0, 0, 4};
assertContribs(points, ref, answers);
points.push_back({3, 3, 1});
answers = {0, 0, 0, 0, 4};
assertContribs(points, ref, answers);
// Combine extreme points together. Mixing small and large contributions in a single front
points = {{-1, -1, -1}, {-1, -1, -1}, {-1, -1, -1}};
ref = {0, 0, 0};
answers = {0, 0, 0};
assertContribs(points, ref, answers);
// Adding a point far away
points.push_back({-1000, -1000, -1000});
answers = {0, 0, 0, 999999999};
assertContribs(points, ref, answers);
// Adding an even further point
points.push_back({-10000, -10000, -10000});
answers = {0, 0, 0, 0, 999000000000};
assertContribs(points, ref, answers);
// Gradually adding points in 4d. Tests whether contributions and repeated exclusive methods produce the same
// results.
points = {{1, 1, 1, 1}};
ref = {5, 5, 5, 5};
answers = {256};
assertContribs(points, ref, answers);
points.push_back({4, 4, 4, 4});
answers = {255, 0};
assertContribs(points, ref, answers);
points.push_back({3, 3, 3, 3});
answers = {240, 0, 0};
assertContribs(points, ref, answers);
points.push_back({1, 1, 1, 1});
answers = {0, 0, 0, 0};
assertContribs(points, ref, answers);
// Gradually adding points in 5d. Tests whether contributions and repeated exclusive methods produce the same
// results.
points = {{1, 1, 1, 1, 1}};
ref = {5, 5, 5, 5, 5};
answers = {1024};
assertContribs(points, ref, answers);
points.push_back({4, 4, 4, 4, 4});
answers = {1023, 0};
assertContribs(points, ref, answers);
points.push_back({3, 3, 3, 3, 3});
answers = {992, 0, 0};
assertContribs(points, ref, answers);
points.push_back({1, 1, 1, 1, 1});
answers = {0, 0, 0, 0};
assertContribs(points, ref, answers);
}
BOOST_AUTO_TEST_CASE(hypervolume_least_contribution_test)
{
hypervolume hv;
std::vector<double> ref = {4, 4};
hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true); // All points are least contributors
BOOST_CHECK((hv.least_contributor(ref) <= 2));
BOOST_CHECK((hv.greatest_contributor(ref) <= 2));
hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, false); // All points are least contributors
BOOST_CHECK((hv.least_contributor(ref) <= 2));
BOOST_CHECK((hv.greatest_contributor(ref) <= 2));
hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true); // All points are least contributors
hv.set_copy_points(false);
BOOST_CHECK((hv.least_contributor(ref) <= 2));
BOOST_CHECK((hv.greatest_contributor(ref) <= 2));
hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, false); // All points are least contributors
hv.set_copy_points(false);
BOOST_CHECK((hv.least_contributor(ref) <= 2));
BOOST_CHECK((hv.greatest_contributor(ref) <= 2));
// Call corner case
hv = hypervolume({{1, 2}}, true);
hv_fake_algo al;
BOOST_CHECK((hv.least_contributor(ref, al)) == 0u);
BOOST_CHECK((hv.greatest_contributor(ref, al)) == 0u);
hv = hypervolume({{2.5, 1}, {2, 2}, {1, 3}});
BOOST_CHECK((hv.least_contributor(ref) == 1));
hv = hypervolume({{3.5, 1}, {2, 2}, {1, 3}});
BOOST_CHECK((hv.least_contributor(ref) == 0));
hv = hypervolume({{3, 1}, {2.5, 2.5}, {1, 3}});
BOOST_CHECK((hv.least_contributor(ref) == 1));
hv = hypervolume({{3, 1}, {2, 2}, {1, 3.5}});
BOOST_CHECK((hv.least_contributor(ref) == 2));
hv = hypervolume({{3, 1}, {2, 2}, {1, 3.5}});
BOOST_CHECK_THROW(hv.least_contributor({4, 4, 4}), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(hypervolume_exclusive_test)
{
hypervolume hv;
std::vector<double> ref = {4, 4};
// all are equal(take first->idx = 0)
{
hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true);
BOOST_CHECK((hv.exclusive(0, ref) == 1));
BOOST_CHECK((hv.exclusive(1, ref) == 1));
BOOST_CHECK((hv.exclusive(2, ref) == 1));
hv.set_copy_points(true);
BOOST_CHECK((hv.exclusive(0, ref) == 1));
BOOST_CHECK((hv.exclusive(1, ref) == 1));
BOOST_CHECK((hv.exclusive(2, ref) == 1));
}
{
hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, false);
BOOST_CHECK((hv.exclusive(0, ref) == 1));
BOOST_CHECK((hv.exclusive(1, ref) == 1));
BOOST_CHECK((hv.exclusive(2, ref) == 1));
hv.set_copy_points(true);
BOOST_CHECK((hv.exclusive(0, ref) == 1));
BOOST_CHECK((hv.exclusive(1, ref) == 1));
BOOST_CHECK((hv.exclusive(2, ref) == 1));
}
// index out of bounds
BOOST_CHECK_THROW(hv.exclusive(200, ref), std::invalid_argument);
// picking the wrong algorithm
hv3d hv_algo_3d;
hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true);
BOOST_CHECK_THROW(hv.exclusive(0, ref, hv_algo_3d), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(hypervolume_refpoint_test)
{
hypervolume hv = hypervolume({{3, 1}, {2, 2}, {1, 3}});
hypervolume hv_empty = hypervolume{};
BOOST_CHECK((hv_empty.refpoint() == vector_double{}));
BOOST_CHECK((hv.refpoint() == vector_double{3, 3}));
BOOST_CHECK((hv.refpoint(5) == vector_double{8, 8}));
BOOST_CHECK((hv.refpoint(0) == vector_double{3, 3}));
BOOST_CHECK((hv.refpoint(-0) == vector_double{3, 3}));
BOOST_CHECK((hv.refpoint(-1) == vector_double{2, 2}));
}
BOOST_AUTO_TEST_CASE(hypervolume_approximation_test)
{
hypervolume hv;
double correct;
// parameters for approx algorithm
double epsilon = 1e-2;
double delta = 1e-2;
unsigned seed = 42u;
/* bf_fpras is a random algorithm which will not always produce a result within the given quality range.
This means that there is very small probability (delta), that a run of this test will fail.
To avoid this behavior, the test ist derandomized by fixing the seed.
However, fixing the seed does not guarantee the same random numbers on all platforms.
Thus, it remains a very small chance, that the test will fail on some platforms. However, it will
do so consistently and not in a random way. So when in doubt: change the seed! */
bf_fpras hv_bf_fpras(epsilon, delta, seed);
hv = hypervolume({{2.3, 4.5}, {3.4, 3.4}, {6.0, 1.2}});
correct = 17.91;
BOOST_CHECK(((hv.compute({7.0, 7.0}, hv_bf_fpras) <= correct * (1.0 + epsilon))
&& (hv.compute({7.0, 7.0}, hv_bf_fpras) >= correct * (1.0 - epsilon))));
hv = hypervolume({{2.3, 4.5, 3.2}, {3.4, 3.4, 3.4}, {6.0, 1.2, 3.6}});
correct = 66.386;
BOOST_CHECK(((hv.compute({7.0, 7.0, 7.0}, hv_bf_fpras) <= correct * (1.0 + epsilon))
&& (hv.compute({7.0, 7.0, 7.0}, hv_bf_fpras) >= correct * (1.0 - epsilon))));
hv = hypervolume({{2.3, 4.5, 3.2, 1.9, 6.0}, {3.4, 3.4, 3.4, 2.1, 5.8}, {6.0, 1.2, 3.6, 3.0, 6.0}});
correct = 373.21228;
BOOST_CHECK(((hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_bf_fpras) <= correct * (1.0 + epsilon))
&& (hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_bf_fpras) >= correct * (1.0 - epsilon))));
BOOST_CHECK_THROW(bf_fpras(1.1, delta, seed), std::invalid_argument);
BOOST_CHECK_THROW(bf_fpras(epsilon, -2.0, seed), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(hypervolume_contributor_approximation_test)
{
hypervolume hv;
std::vector<double> ref = {4, 4};
double epsilon = 1e-2;
double delta = 1e-6;
unsigned seed = 42u;
/* bf_approx is a random algorithm which will not always produce a result within the given quality range.
This means that there is very small probability (delta), that a run of this test will fail.
To avoid this behavior, the test ist derandomized by fixing the seed.
However, fixing the seed does not guarantee the same random numbers on all platforms.
Thus, it remains a very small chance, that the test will fail on some platforms. However, it will
do so consistently and not in a random way. So when in doubt: change the seed! */
bf_approx hv_bf_approx(true, 1, epsilon, delta, 0.775, 0.2, 0.1, 0.25, seed);
hv = hypervolume({{2.5, 1}, {2, 2}, {1, 3}});
BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 1));
hv = hypervolume({{3.5, 1}, {2, 2}, {1, 3}});
BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 0));
hv = hypervolume({{3, 1}, {2.5, 2.5}, {1, 3}});
BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 1));
hv = hypervolume({{3, 1}, {2, 2}, {1, 3.5}});
BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 2));
BOOST_CHECK_THROW(bf_approx(true, 1, epsilon, 5000.0, 0.775, 0.2, 0.1, 0.25, seed), std::invalid_argument);
BOOST_CHECK_THROW(bf_approx(true, 1, -1.0, delta, 0.775, 0.2, 0.1, 0.25, seed), std::invalid_argument);
// The following case should actually trigger the sampling routines
hv = hypervolume({{2.49, 3.15, 2.3, 5.1, 5.07}, {4.47, 5.89, 5.1, 1.61, 3.7}, {1.88, 6.33, 3.43, 6.45, 6.63},
{4.49, 4.54, 3.55, 3.74, 5.38}, {5.17, 2.09, 4.67, 3.85, 4.9}, {5.13, 6.58, 2.18, 5.97, 4.59},
{5.89, 2.05, 3.87, 5.16, 4.}, {4.7, 3.23, 3.9, 3.79, 6.37}, {6.93, 2.04, 5.1, 5.07, 4.07},
{2.13, 3.82, 4.73, 2.89, 1.99}, {3.45, 5.41, 3.83, 4.61, 7.26}, {4.4, 2.96, 4.61, 5.58, 3.73},
{6.36, 6.35, 1.93, 5.05, 5.61}, {5.83, 3.85, 4.13, 4.18, 3.75}, {3.79, 6.06, 3.87, 3.77, 5.39},
{4.17, 3.81, 6.17, 4.19, 1.82}, {5.44, 4.07, 3.54, 4.68, 6.65}, {3.43, 3.37, 2.39, 6.31, 4.84},
{3.99, 4.98, 2.97, 3.89, 1.43}, {4.44, 4.56, 3.28, 5.04, 5.35}, {3.34, 4.48, 2.81, 5.82, 4.94},
{3.04, 2.94, 2.76, 7.08, 6.39}, {3.39, 2.51, 6.62, 6.4, 6.04}, {4.84, 6.8, 4.42, 3.42, 5.04},
{4.36, 4.29, 3.94, 4.6, 5.8}, {3.28, 5.02, 4.03, 6.48, 2.58}, {7.59, 6.59, 2.57, 6.05, 3.39},
{2.85, 8.52, 4.57, 4.06, 4.77}, {3.89, 5.67, 4.43, 5.57, 2.88}, {4.64, 3.17, 3.93, 4.12, 5.52},
{5.42, 5.61, 3.22, 3.86, 4.32}, {4.9, 4.8, 4.29, 4.98, 5.27}, {3.58, 4.47, 4.32, 4.45, 8.01},
{4.62, 2.86, 5.92, 3.9, 6.44}});
ref = {10.0, 10.0, 10.0, 10.0, 10.0};
BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 31));
BOOST_CHECK((hv.greatest_contributor(ref, hv_bf_approx) == 9));
}
BOOST_AUTO_TEST_CASE(hypervolume_test_instances)
{
/** uses some precomputed fronts and hypervolumes to test if algorithms are correct */
std::string line;
// root directory of the hypervolume data
std::string input_data_dir("./hypervolume_test_data/");
// root directory of the testcases
std::string input_data_testcases_dir(input_data_dir + "testcases/");
// load list of testcases
std::ifstream ifs;
ifs.open((input_data_dir + "testcases_list.txt").c_str());
if (ifs.is_open()) {
while (ifs.good()) {
getline(ifs, line);
if (line == "" || line[0] == '#') continue;
std::stringstream ss(line);
std::string test_type;
std::string method_name;
std::string test_name;
double eps;
ss >> test_type;
ss >> method_name;
ss >> test_name;
ss >> eps;
// start reading the testcase
std::ifstream input((input_data_testcases_dir + test_name).c_str());
if (input.is_open()) {
hypervolume_test hvt(input, test_type, method_name, eps);
hvt.run_test();
input.close();
}
input.close();
}
ifs.close();
} else {
// The testcase file is missing
BOOST_CHECK((false));
}
}
BOOST_AUTO_TEST_CASE(hypervolume_serialization_test)
{
// Construct the object
hypervolume hv({{1., 1.}, {-1., 3.}}, false);
hv.set_copy_points(false);
auto before = hv.compute({4., 4.});
// Now serialize, deserialize and compare the result.
std::stringstream ss;
{
boost::archive::binary_oarchive oarchive(ss);
oarchive << hv;
}
// Change the content of p before deserializing.
hv = hypervolume({{23., 11.}, {-12., -23}}, true);
hv.set_copy_points(true);
{
boost::archive::binary_iarchive iarchive(ss);
iarchive >> hv;
}
auto after = hv.compute({4., 4.});
BOOST_CHECK_EQUAL(before, after);
BOOST_CHECK_EQUAL(hv.get_copy_points(), false);
BOOST_CHECK_EQUAL(hv.get_verify(), false);
}
BOOST_AUTO_TEST_CASE(hypervolume_construction_test)
{
population pop_empty(zdt(1u, 10u));
population pop_ok(zdt(1u, 10u), 10u);
population pop_wrong1(hock_schittkowski_71{}, 10u);
population pop_wrong2(rosenbrock{10u}, 10u);
BOOST_CHECK_THROW((hypervolume{pop_empty, true}), std::invalid_argument);
BOOST_CHECK_THROW((hypervolume{pop_wrong1, true}), std::invalid_argument);
BOOST_CHECK_THROW((hypervolume{pop_wrong2, true}), std::invalid_argument);
BOOST_CHECK_NO_THROW((hypervolume{pop_ok, true}));
auto points = pop_ok.get_f();
auto hv = hypervolume{pop_ok, true};
BOOST_CHECK(points == hv.get_points());
BOOST_CHECK_THROW((hypervolume(std::vector<vector_double>{}, true)), std::invalid_argument);
BOOST_CHECK_THROW((hypervolume{{{1.}, {2.}}, true}), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(hypervolume_cmp_test)
{
// expected_hv_operations
BOOST_CHECK_CLOSE(detail::expected_hv_operations(10u, 1u), 10. * std::log(10), 1e-12);
BOOST_CHECK_CLOSE(detail::expected_hv_operations(10u, 4u), 4. * 100., 1e-12);
BOOST_CHECK_CLOSE(detail::expected_hv_operations(10u, 5u), 0.0005 * 5. * std::pow(10, 5. * 0.5), 1e-12);
// dom_cmp
vector_double a, b;
a = {1, 2};
b = {1, 2};
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 3);
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 3);
a = {1, 2};
b = {2, 1};
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 4);
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 4);
a = {2, 1};
b = {1, 2};
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 4);
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 4);
a = {1, 1};
b = {2, 2};
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 2);
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 2);
a = {3, 3};
b = {2, 2};
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 1);
BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 1);
}
BOOST_AUTO_TEST_CASE(hypervolume_name_getters_test)
{
hv_fake_algo al;
BOOST_CHECK(al.get_name().find("hv_fake") != std::string::npos);
hv2d al1;
BOOST_CHECK(al1.get_name().find("hv2d") != std::string::npos);
hv3d al2;
BOOST_CHECK(al2.get_name().find("hv3d") != std::string::npos);
hvwfg al3;
BOOST_CHECK(al3.get_name().find("WFG") != std::string::npos);
bf_approx al4;
BOOST_CHECK(al4.get_name().find("Bringmann-Friedrich") != std::string::npos);
bf_fpras al5;
BOOST_CHECK(al5.get_name().find("bf_fpras") != std::string::npos);
}
BOOST_AUTO_TEST_CASE(hypervolume_bf_approx_test)
{
bf_approx al;
std::vector<vector_double> points;
vector_double ref;
BOOST_CHECK_THROW(al.compute(points, ref), std::invalid_argument);
auto al_clone = al.clone();
BOOST_CHECK(al_clone->get_name().find("Bringmann-Friedrich") != std::string::npos);
}
BOOST_AUTO_TEST_CASE(hypervolume_bf_pras_test)
{
bf_fpras al;
std::vector<vector_double> points;
vector_double ref;
BOOST_CHECK_THROW(al.exclusive(0u, points, ref), std::invalid_argument);
BOOST_CHECK_THROW(al.least_contributor(points, ref), std::invalid_argument);
BOOST_CHECK_THROW(al.greatest_contributor(points, ref), std::invalid_argument);
BOOST_CHECK_THROW(al.contributions(points, ref), std::invalid_argument);
auto al_clone = al.clone();
BOOST_CHECK(al_clone->get_name().find("bf_fpras") != std::string::npos);
}
|