File: hypervolume.cpp

package info (click to toggle)
pagmo 2.19.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 85,228 kB
  • sloc: cpp: 1,753,592; makefile: 223; sh: 121; python: 46
file content (816 lines) | stat: -rw-r--r-- 31,747 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
/* Copyright 2017-2021 PaGMO development team

This file is part of the PaGMO library.

The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 3 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library.  If not,
see https://www.gnu.org/licenses/. */

#define BOOST_TEST_MODULE hypervolume_utils_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>

#include <cmath>
#include <fstream>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>

#include <pagmo/io.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problem.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/types.hpp>
#include <pagmo/utils/hv_algos/hv_algorithm.hpp>
#include <pagmo/utils/hv_algos/hv_bf_approx.hpp>
#include <pagmo/utils/hv_algos/hv_bf_fpras.hpp>
#include <pagmo/utils/hv_algos/hv_hv2d.hpp>
#include <pagmo/utils/hv_algos/hv_hv3d.hpp>
#include <pagmo/utils/hv_algos/hv_hvwfg.hpp>
#include <pagmo/utils/hypervolume.hpp>

using namespace pagmo;

/**
 * Assertion method that tests correct computation of contributions for the whole contribution method
 * and the single exclusive method.
 */
void assertContribs(const std::vector<vector_double> &points, std::vector<double> &ref, std::vector<double> &answers)
{
    hypervolume hv = hypervolume(points, true);
    BOOST_CHECK((hv.contributions(ref) == answers));
    for (unsigned i = 0u; i < answers.size(); i++) {
        BOOST_CHECK(std::fabs(hv.exclusive(i, ref) - answers[i]) < 1.E-13);
    }
    hv = hypervolume(points, false);
    BOOST_CHECK((hv.contributions(ref) == answers));
    for (unsigned i = 0u; i < answers.size(); i++) {
        BOOST_CHECK(std::fabs(hv.exclusive(i, ref) - answers[i]) < 1.E-13);
    }
    hv.set_copy_points(false);
    BOOST_CHECK((hv.contributions(ref) == answers));
    BOOST_CHECK(std::fabs(hv.exclusive(0, ref) - answers[0]) < 1.E-13);
}

class hypervolume_test
{
public:
    hypervolume_test(std::istream &input, std::string test_type, std::string method_name, double eps)
        : m_input(input), m_test_type(test_type), m_eps(eps)
    {

        // determine method
        if (method_name == "hv2d") {
            m_method = hv2d().clone();
        } else if (method_name == "hv3d") {
            m_method = hv3d().clone();
        } else if (method_name == "wfg") {
            m_method = hvwfg().clone();
        } else {
            // The specified algorithm is not available
            BOOST_CHECK((false));
        }
    }

    void run_test()
    {
        m_input >> m_num_tests;

        // int OK_counter = 0;
        for (unsigned t = 0u; t < m_num_tests; ++t) {
            load_common();
            hypervolume hv_obj = hypervolume(m_points, true);

            // run correct test
            if (m_test_type == "compute") {
                load_compute();
                double hypvol = hv_obj.compute(m_ref_point, *m_method);
                BOOST_CHECK((std::abs(hypvol - m_hv_ans) < m_eps));
            } else if (m_test_type == "exclusive") {
                load_exclusive();
                double hypvol = hv_obj.exclusive(m_p_idx, m_ref_point, *m_method);
                BOOST_CHECK((std::abs(hypvol - m_hv_ans) < m_eps));
            } else if (m_test_type == "least_contributor") {
                load_least_contributor();
                auto point_idx = hv_obj.least_contributor(m_ref_point, *m_method);
                BOOST_CHECK((point_idx == m_idx_ans));
            } else if (m_test_type == "greatest_contributor") {
                load_least_contributor(); // loads the same data as least contributor
                auto point_idx = hv_obj.greatest_contributor(m_ref_point, *m_method);
                BOOST_CHECK((point_idx == m_idx_ans));
            } else {
                // The specified computational method is not available (what do you want to compute?)
                BOOST_CHECK((false));
            }
        }
    }

private:
    void load_common()
    {
        m_input >> m_f_dim >> m_num_points;
        m_points = std::vector<vector_double>(m_num_points, vector_double(m_f_dim, 0.0));
        m_ref_point = vector_double(m_f_dim, 0.0);

        for (unsigned d = 0u; d < m_f_dim; ++d) {
            m_input >> m_ref_point[d];
        }

        for (unsigned i = 0u; i < m_num_points; ++i) {
            for (unsigned d = 0u; d < m_f_dim; ++d) {
                m_input >> m_points[i][d];
            }
        }
    }

    void load_compute()
    {
        m_input >> m_hv_ans;
    }

    void load_exclusive()
    {
        m_input >> m_p_idx;
        m_input >> m_hv_ans;
    }

    void load_least_contributor()
    {
        m_input >> m_idx_ans;
    }

    unsigned m_num_tests, m_f_dim, m_num_points, m_p_idx;
    unsigned m_idx_ans;
    double m_hv_ans;
    vector_double m_ref_point;
    std::vector<vector_double> m_points;

    std::shared_ptr<hv_algorithm> m_method;
    std::istream &m_input;
    std::string m_test_type;
    double m_eps;
};

// only here to access and test protected members of hv_algorithm
class hv_fake_algo final : public hv_algorithm
{
public:
    hv_fake_algo() = default;
    static int accessible_cmp(const vector_double &a, const vector_double &b, vector_double::size_type dim_bound = 0u)
    {
        return hv_algorithm::dom_cmp(a, b, dim_bound);
    }
    double compute(std::vector<vector_double> &points, const vector_double &ref) const override
    {
        return hv2d().compute(points, ref);
    };
    void verify_before_compute(const std::vector<vector_double> &, const vector_double &) const override{};
    std::shared_ptr<hv_algorithm> clone() const override
    {
        return std::shared_ptr<hv_algorithm>(new hv_fake_algo(*this));
    }
};

BOOST_AUTO_TEST_CASE(hypervolume_compute_test)
{
    hypervolume hv;

    // by vector
    std::vector<vector_double> x1{{1, 2}, {3, 4}};
    hv = hypervolume(x1, true);
    BOOST_CHECK(hv.get_points() == x1);

    // by list constructor
    hv = hypervolume{{{6, 4}, {3, 5}}};
    std::vector<vector_double> x2{{6, 4}, {3, 5}};
    BOOST_CHECK((hv.get_points() == x2));

    // by population
    population pop1{problem{zdt{1, 5}}, 2};
    hv = hypervolume(pop1, true);

    // errors
    population pop2{problem{rosenbrock(10)}, 2};
    BOOST_CHECK_THROW(hypervolume(pop2, true), std::invalid_argument);
    // Checks the hypervolume cannot be constructed if nans are present
    BOOST_CHECK_THROW(hypervolume({{std::numeric_limits<double>::quiet_NaN(), 2.}, {2., 1.}}), std::invalid_argument);
    // Checks the hypervolume cannot be constructed if point have different dimensions
    BOOST_CHECK_THROW(hypervolume({{1., 2.}, {2., 1.}, {3, 0, 5}}), std::invalid_argument);
    // Checks the hypervolume cannot be constructed if points have no dimension
    std::vector<double> empty;
    std::vector<std::vector<double>> emptyempty;
    BOOST_CHECK_THROW(hypervolume({empty, empty}), std::invalid_argument);
    // Checks the hypervolume cannot be constructed if points are empty
    BOOST_CHECK_THROW(hypervolume{emptyempty}, std::invalid_argument);

    // 2d computation of hypervolume indicator
    hv = hypervolume{{{1, 2}, {2, 1}}};
    BOOST_CHECK((hv.compute({3, 3}) == 3));

    // point on the border of refpoint(2D)
    BOOST_CHECK((hv.compute({2, 2}) == 0));

    // 3d computation of hypervolume indicator
    hv = hypervolume({{1, 1, 1}, {2, 2, 2}});
    BOOST_CHECK((hv.compute({3, 3, 3}) == 8));

    // points on the border of refpoint(3D)
    hv = hypervolume({{1, 2, 1}, {2, 1, 1}});
    BOOST_CHECK((hv.compute({2, 2, 2}) == 0));

    // 4d computation of hypervolume indicator
    hv = hypervolume({{1, 1, 1, 1}, {2, 2, 2, 2}});
    BOOST_CHECK((hv.compute({3, 3, 3, 3}) == 16));

    // points on the border of refpoint(4D)
    hv = hypervolume({{1, 1, 1, 3}, {2, 2, 2, 3}});
    BOOST_CHECK((hv.compute({3, 3, 3, 3}) == 0));

    // 4d duplicate point
    hv = hypervolume({{1, 1, 1, 1}, {1, 1, 1, 1}});
    BOOST_CHECK((hv.compute({2, 2, 2, 2}) == 1));

    // 4d duplicate and dominated
    hv = hypervolume({{1.0, 1.0, 1.0, 1.0}, {1.0, 1.0, 1.0, 1.0}, {0.0, 0.0, 0.0, 0.0}});
    BOOST_CHECK((hv.compute({2.0, 2.0, 2.0, 2.0}) == 16.0));

    // test for flags
    hv = hypervolume({{1, 1, 1}, {2, 2, 2}}, false);
    hv.set_copy_points(false);
    BOOST_CHECK((hv.compute({3, 3, 3}) == 8));

    // tests for invalid reference points
    hv = hypervolume({{1, 3}, {2, 2}, {3, 1}});
    // equal to some other point
    BOOST_CHECK_THROW(hv.compute({3, 1}), std::invalid_argument);
    // refpoint dominating some points
    BOOST_CHECK_THROW(hv.compute({1.5, 1.5}), std::invalid_argument);
    // refpoint dominating all points
    BOOST_CHECK_THROW(hv.compute({0, 0}), std::invalid_argument);

    // invalid dimensions of points.
    BOOST_CHECK_THROW(hv = hypervolume({{2.3, 3.4, 5.6}, {1.0, 2.0, 3.0, 4.0}}), std::invalid_argument);

    // Calling specific algorithms
    hv2d hv_algo_2d;
    hv3d hv_algo_3d;
    hvwfg hv_algo_nd;              // stop-dimension 2 by default
    hvwfg hv_algo_nd2 = hvwfg(3u); // stop-dimension 3

    hv = hypervolume({{2.3, 4.5}, {3.4, 3.4}, {6.0, 1.2}});
    BOOST_CHECK((hv.compute({7.0, 7.0}) == 17.91));
    BOOST_CHECK((hv.compute({7.0, 7.0}, hv_algo_2d) == 17.91));
    BOOST_CHECK_THROW(hv.compute({7.0, 7.0}, hv_algo_3d), std::invalid_argument);
    BOOST_CHECK((hv.compute({7.0, 7.0}, hv_algo_nd) == 17.91));
    BOOST_CHECK((hv.compute({7.0, 7.0}, hv_algo_nd2) == 17.91));

    hv = hypervolume({{2.3, 4.5, 3.2}, {3.4, 3.4, 3.4}, {6.0, 1.2, 3.6}});
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}) == 66.386));
    BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0}, hv_algo_2d), std::invalid_argument);
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_3d) == 66.386));
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd) == 66.386));
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd2) == 66.386));

    hv = hypervolume({{2.3, 4.5, 3.2}, {3.4, 3.4, 3.4}, {6.0, 1.2, 3.6}});
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}) == 66.386));
    BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0}, hv_algo_2d), std::invalid_argument);
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_3d) == 66.386));
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd) == 66.386));
    BOOST_CHECK((hv.compute({7.0, 7.0, 7.0}, hv_algo_nd2) == 66.386));

    hv = hypervolume({{2.3, 4.5, 3.2, 1.9, 6.0}, {3.4, 3.4, 3.4, 2.1, 5.8}, {6.0, 1.2, 3.6, 3.0, 6.0}});
    BOOST_CHECK(std::fabs(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}) - 373.21228) < 1.E-13);
    BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_2d), std::invalid_argument);
    BOOST_CHECK_THROW(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_3d), std::invalid_argument);
    BOOST_CHECK(std::fabs(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_nd) - 373.21228) < 1.E-13);
    BOOST_CHECK(std::fabs(hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_algo_nd2) - 373.21228) < 1.E-13);

    BOOST_CHECK_THROW(hvwfg(0), std::invalid_argument);
    BOOST_CHECK_THROW(hvwfg(1), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(hypervolume_contributions_test)
{
    // Tests for contributions and exclusive hypervolumes
    std::vector<vector_double> points;
    std::vector<double> ref;
    std::vector<double> answers;

    /*  This test contains a front with 3 non dominated points,
        and many dominated points. Most of the dominated points
        lie on edges of the front, which makes their exclusive contribution
        equal to 0.*/
    points = {
        {1, 6.5}, {1, 6}, {1, 5}, {2, 5}, {3, 5}, {3, 3}, {4, 6.5}, {4.5, 4}, {5, 3}, {5, 1.5}, {7, 1.5}, {7, 3.5},
    };
    ref = {
        7.0,
        6.5,
    };
    answers = {
        0.0, 0.0, 1.0, 0.0, 0.0, 3.5, 0.0, 0.0, 0.0, 3.0, 0.0, 0.0,
    };
    assertContribs(points, ref, answers);

    // same test with duplicates and points on the edge of the ref-point
    points = {{1, 6.5},   {1, 6},   {1, 5},     {2, 5},   {3, 5},   {3, 3},   {4, 6.5}, {4.5, 4},
              {5, 3},     {5, 1.5}, {7, 1.5},   {7, 3.5}, {7, 0.5}, {7, 1.0}, {7, 4.5}, {0.0, 6.5},
              {5.5, 6.5}, {7, 0.5}, {5.5, 6.5}, {5, 5},   {5, 5},   {5, 5}};
    ref = {
        7.0,
        6.5,
    };
    answers = {0.0, 0.0, 1.0, 0.0, 0.0, 3.5, 0.0, 0.0, 0.0, 3.0, 0.0,
               0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0};
    assertContribs(points, ref, answers);

    // some test especially for the base-method of hv-algo (which should be called from hv2d
    hypervolume hv = hypervolume(points, true);
    hv2d hv2dalgo = hv2d();
    BOOST_CHECK((hv.contributions(ref, hv2dalgo) == answers));

    // testing the default implementation
    hv_fake_algo fa{};
    BOOST_CHECK((hv_fake_algo{}.contributions(points, ref) == answers));
    BOOST_CHECK((hv.contributions(ref, fa) == answers));

    points = std::vector<vector_double>{{1, 1}};
    BOOST_CHECK((hv_fake_algo{}.contributions(points, vector_double{3, 3}) == vector_double{4}));

    // Gradually adding duplicate points to the set, making sure the contribution change accordingly.
    points = {{1, 1}};
    ref = {2, 2};
    answers = {1.0};
    assertContribs(points, ref, answers);

    points.push_back({1, 1});
    answers = {0.0, 0.0};
    assertContribs(points, ref, answers);

    points.push_back({1, 1});
    answers = {0.0, 0.0, 0.0};
    assertContribs(points, ref, answers);

    points.push_back({0.5, 0.5});
    answers = {0.0, 0.0, 0.0, 1.25};
    assertContribs(points, ref, answers);

    points.push_back({0.5, 0.5});
    answers = {0.0, 0.0, 0.0, 0.0, 0.0};
    assertContribs(points, ref, answers);

    // Next test contains a tricky front in 3D with some weakly dominated points on the "edges" of the bounding box.
    // Non - tricky base problem
    points = {{-6, -1, -6}, {-1, -3, -5}, {-3, -4, -4}, {-4, -2, -3}, {-5, -5, -2}, {-2, -6, -1}};
    ref = {0, 0, 0};
    answers = {18, 2, 12, 1, 18, 2};
    assertContribs(points, ref, answers);

    // Add some points that contribute nothing and do not alter other
    points = {{-6, -1, -6}, {-1, -3, -5}, {-3, -4, -4}, {-4, -2, -3}, {-5, -5, -2}, {-2, -6, -1}, {-3, -1, -3},
              {-1, -1, -5}, {-1, -2, -4}, {-1, -3, -4}, {-7, -7, 0},  {0, -5, -5},  {-7, 0, -7}};
    answers = {18, 2, 12, 1, 18, 2, 0, 0, 0, 0, 0, 0, 0};
    assertContribs(points, ref, answers);

    //	Gradually adding points, some of which are dominated or duplicates.
    //	Tests whether contributions and repeated exclusive method produce the same results.
    points = {{3, 3, 3}};
    ref = {5, 5, 5};
    answers = {8.0};
    assertContribs(points, ref, answers);

    // Decrease the contribution of first point.Second point is dominated.
    points.push_back({4, 4, 4});
    answers = {
        7,
        0,
    };
    assertContribs(points, ref, answers);

    // Add duplicate point
    points.push_back({3, 3, 3});
    answers = {0, 0, 0};
    assertContribs(points, ref, answers);

    points.push_back({3, 3, 2});
    answers = {0, 0, 0, 4};
    assertContribs(points, ref, answers);

    points.push_back({3, 3, 1});
    answers = {0, 0, 0, 0, 4};
    assertContribs(points, ref, answers);

    //	Combine extreme points together. Mixing small and large contributions in a single front
    points = {{-1, -1, -1}, {-1, -1, -1}, {-1, -1, -1}};
    ref = {0, 0, 0};
    answers = {0, 0, 0};
    assertContribs(points, ref, answers);

    // Adding a point far away
    points.push_back({-1000, -1000, -1000});
    answers = {0, 0, 0, 999999999};
    assertContribs(points, ref, answers);

    // Adding an even further point
    points.push_back({-10000, -10000, -10000});
    answers = {0, 0, 0, 0, 999000000000};
    assertContribs(points, ref, answers);

    //	Gradually adding points in 4d.	Tests whether contributions and repeated exclusive methods produce the same
    // results.
    points = {{1, 1, 1, 1}};
    ref = {5, 5, 5, 5};
    answers = {256};
    assertContribs(points, ref, answers);

    points.push_back({4, 4, 4, 4});
    answers = {255, 0};
    assertContribs(points, ref, answers);

    points.push_back({3, 3, 3, 3});
    answers = {240, 0, 0};
    assertContribs(points, ref, answers);

    points.push_back({1, 1, 1, 1});
    answers = {0, 0, 0, 0};
    assertContribs(points, ref, answers);

    //	Gradually adding points in 5d.	Tests whether contributions and repeated exclusive methods produce the same
    // results.
    points = {{1, 1, 1, 1, 1}};
    ref = {5, 5, 5, 5, 5};
    answers = {1024};
    assertContribs(points, ref, answers);

    points.push_back({4, 4, 4, 4, 4});
    answers = {1023, 0};
    assertContribs(points, ref, answers);

    points.push_back({3, 3, 3, 3, 3});
    answers = {992, 0, 0};
    assertContribs(points, ref, answers);

    points.push_back({1, 1, 1, 1, 1});
    answers = {0, 0, 0, 0};
    assertContribs(points, ref, answers);
}

BOOST_AUTO_TEST_CASE(hypervolume_least_contribution_test)
{
    hypervolume hv;
    std::vector<double> ref = {4, 4};

    hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true); // All points are least contributors
    BOOST_CHECK((hv.least_contributor(ref) <= 2));
    BOOST_CHECK((hv.greatest_contributor(ref) <= 2));
    hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, false); // All points are least contributors
    BOOST_CHECK((hv.least_contributor(ref) <= 2));
    BOOST_CHECK((hv.greatest_contributor(ref) <= 2));
    hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true); // All points are least contributors
    hv.set_copy_points(false);
    BOOST_CHECK((hv.least_contributor(ref) <= 2));
    BOOST_CHECK((hv.greatest_contributor(ref) <= 2));
    hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, false); // All points are least contributors
    hv.set_copy_points(false);
    BOOST_CHECK((hv.least_contributor(ref) <= 2));
    BOOST_CHECK((hv.greatest_contributor(ref) <= 2));

    // Call corner case
    hv = hypervolume({{1, 2}}, true);
    hv_fake_algo al;
    BOOST_CHECK((hv.least_contributor(ref, al)) == 0u);
    BOOST_CHECK((hv.greatest_contributor(ref, al)) == 0u);

    hv = hypervolume({{2.5, 1}, {2, 2}, {1, 3}});
    BOOST_CHECK((hv.least_contributor(ref) == 1));

    hv = hypervolume({{3.5, 1}, {2, 2}, {1, 3}});
    BOOST_CHECK((hv.least_contributor(ref) == 0));

    hv = hypervolume({{3, 1}, {2.5, 2.5}, {1, 3}});
    BOOST_CHECK((hv.least_contributor(ref) == 1));

    hv = hypervolume({{3, 1}, {2, 2}, {1, 3.5}});
    BOOST_CHECK((hv.least_contributor(ref) == 2));

    hv = hypervolume({{3, 1}, {2, 2}, {1, 3.5}});
    BOOST_CHECK_THROW(hv.least_contributor({4, 4, 4}), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(hypervolume_exclusive_test)
{
    hypervolume hv;
    std::vector<double> ref = {4, 4};

    // all are equal(take first->idx = 0)
    {
        hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true);
        BOOST_CHECK((hv.exclusive(0, ref) == 1));
        BOOST_CHECK((hv.exclusive(1, ref) == 1));
        BOOST_CHECK((hv.exclusive(2, ref) == 1));
        hv.set_copy_points(true);
        BOOST_CHECK((hv.exclusive(0, ref) == 1));
        BOOST_CHECK((hv.exclusive(1, ref) == 1));
        BOOST_CHECK((hv.exclusive(2, ref) == 1));
    }
    {
        hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, false);
        BOOST_CHECK((hv.exclusive(0, ref) == 1));
        BOOST_CHECK((hv.exclusive(1, ref) == 1));
        BOOST_CHECK((hv.exclusive(2, ref) == 1));
        hv.set_copy_points(true);
        BOOST_CHECK((hv.exclusive(0, ref) == 1));
        BOOST_CHECK((hv.exclusive(1, ref) == 1));
        BOOST_CHECK((hv.exclusive(2, ref) == 1));
    }

    // index out of bounds
    BOOST_CHECK_THROW(hv.exclusive(200, ref), std::invalid_argument);

    // picking the wrong algorithm
    hv3d hv_algo_3d;
    hv = hypervolume({{3, 1}, {2, 2}, {1, 3}}, true);
    BOOST_CHECK_THROW(hv.exclusive(0, ref, hv_algo_3d), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(hypervolume_refpoint_test)
{
    hypervolume hv = hypervolume({{3, 1}, {2, 2}, {1, 3}});
    hypervolume hv_empty = hypervolume{};

    BOOST_CHECK((hv_empty.refpoint() == vector_double{}));

    BOOST_CHECK((hv.refpoint() == vector_double{3, 3}));
    BOOST_CHECK((hv.refpoint(5) == vector_double{8, 8}));
    BOOST_CHECK((hv.refpoint(0) == vector_double{3, 3}));
    BOOST_CHECK((hv.refpoint(-0) == vector_double{3, 3}));
    BOOST_CHECK((hv.refpoint(-1) == vector_double{2, 2}));
}

BOOST_AUTO_TEST_CASE(hypervolume_approximation_test)
{
    hypervolume hv;
    double correct;

    // parameters for approx algorithm
    double epsilon = 1e-2;
    double delta = 1e-2;
    unsigned seed = 42u;

    /* bf_fpras is a random algorithm which will not always produce a result within the given quality range.
       This means that there is very small probability (delta), that a run of this test will fail.
       To avoid this behavior, the test ist derandomized by fixing the seed.
       However, fixing the seed does not guarantee the same random numbers on all platforms.
       Thus, it remains a very small chance, that the test will fail on some platforms. However, it will
       do so consistently and not in a random way. So when in doubt: change the seed! */
    bf_fpras hv_bf_fpras(epsilon, delta, seed);

    hv = hypervolume({{2.3, 4.5}, {3.4, 3.4}, {6.0, 1.2}});
    correct = 17.91;
    BOOST_CHECK(((hv.compute({7.0, 7.0}, hv_bf_fpras) <= correct * (1.0 + epsilon))
                 && (hv.compute({7.0, 7.0}, hv_bf_fpras) >= correct * (1.0 - epsilon))));

    hv = hypervolume({{2.3, 4.5, 3.2}, {3.4, 3.4, 3.4}, {6.0, 1.2, 3.6}});
    correct = 66.386;
    BOOST_CHECK(((hv.compute({7.0, 7.0, 7.0}, hv_bf_fpras) <= correct * (1.0 + epsilon))
                 && (hv.compute({7.0, 7.0, 7.0}, hv_bf_fpras) >= correct * (1.0 - epsilon))));

    hv = hypervolume({{2.3, 4.5, 3.2, 1.9, 6.0}, {3.4, 3.4, 3.4, 2.1, 5.8}, {6.0, 1.2, 3.6, 3.0, 6.0}});
    correct = 373.21228;
    BOOST_CHECK(((hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_bf_fpras) <= correct * (1.0 + epsilon))
                 && (hv.compute({7.0, 7.0, 7.0, 7.0, 7.0}, hv_bf_fpras) >= correct * (1.0 - epsilon))));

    BOOST_CHECK_THROW(bf_fpras(1.1, delta, seed), std::invalid_argument);
    BOOST_CHECK_THROW(bf_fpras(epsilon, -2.0, seed), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(hypervolume_contributor_approximation_test)
{
    hypervolume hv;
    std::vector<double> ref = {4, 4};
    double epsilon = 1e-2;
    double delta = 1e-6;
    unsigned seed = 42u;

    /* bf_approx is a random algorithm which will not always produce a result within the given quality range.
    This means that there is very small probability (delta), that a run of this test will fail.
    To avoid this behavior, the test ist derandomized by fixing the seed.
    However, fixing the seed does not guarantee the same random numbers on all platforms.
    Thus, it remains a very small chance, that the test will fail on some platforms. However, it will
    do so consistently and not in a random way. So when in doubt: change the seed! */
    bf_approx hv_bf_approx(true, 1, epsilon, delta, 0.775, 0.2, 0.1, 0.25, seed);

    hv = hypervolume({{2.5, 1}, {2, 2}, {1, 3}});
    BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 1));

    hv = hypervolume({{3.5, 1}, {2, 2}, {1, 3}});
    BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 0));

    hv = hypervolume({{3, 1}, {2.5, 2.5}, {1, 3}});
    BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 1));

    hv = hypervolume({{3, 1}, {2, 2}, {1, 3.5}});
    BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 2));

    BOOST_CHECK_THROW(bf_approx(true, 1, epsilon, 5000.0, 0.775, 0.2, 0.1, 0.25, seed), std::invalid_argument);
    BOOST_CHECK_THROW(bf_approx(true, 1, -1.0, delta, 0.775, 0.2, 0.1, 0.25, seed), std::invalid_argument);

    // The following case should actually trigger the sampling routines
    hv = hypervolume({{2.49, 3.15, 2.3, 5.1, 5.07},   {4.47, 5.89, 5.1, 1.61, 3.7},   {1.88, 6.33, 3.43, 6.45, 6.63},
                      {4.49, 4.54, 3.55, 3.74, 5.38}, {5.17, 2.09, 4.67, 3.85, 4.9},  {5.13, 6.58, 2.18, 5.97, 4.59},
                      {5.89, 2.05, 3.87, 5.16, 4.},   {4.7, 3.23, 3.9, 3.79, 6.37},   {6.93, 2.04, 5.1, 5.07, 4.07},
                      {2.13, 3.82, 4.73, 2.89, 1.99}, {3.45, 5.41, 3.83, 4.61, 7.26}, {4.4, 2.96, 4.61, 5.58, 3.73},
                      {6.36, 6.35, 1.93, 5.05, 5.61}, {5.83, 3.85, 4.13, 4.18, 3.75}, {3.79, 6.06, 3.87, 3.77, 5.39},
                      {4.17, 3.81, 6.17, 4.19, 1.82}, {5.44, 4.07, 3.54, 4.68, 6.65}, {3.43, 3.37, 2.39, 6.31, 4.84},
                      {3.99, 4.98, 2.97, 3.89, 1.43}, {4.44, 4.56, 3.28, 5.04, 5.35}, {3.34, 4.48, 2.81, 5.82, 4.94},
                      {3.04, 2.94, 2.76, 7.08, 6.39}, {3.39, 2.51, 6.62, 6.4, 6.04},  {4.84, 6.8, 4.42, 3.42, 5.04},
                      {4.36, 4.29, 3.94, 4.6, 5.8},   {3.28, 5.02, 4.03, 6.48, 2.58}, {7.59, 6.59, 2.57, 6.05, 3.39},
                      {2.85, 8.52, 4.57, 4.06, 4.77}, {3.89, 5.67, 4.43, 5.57, 2.88}, {4.64, 3.17, 3.93, 4.12, 5.52},
                      {5.42, 5.61, 3.22, 3.86, 4.32}, {4.9, 4.8, 4.29, 4.98, 5.27},   {3.58, 4.47, 4.32, 4.45, 8.01},
                      {4.62, 2.86, 5.92, 3.9, 6.44}});

    ref = {10.0, 10.0, 10.0, 10.0, 10.0};
    BOOST_CHECK((hv.least_contributor(ref, hv_bf_approx) == 31));
    BOOST_CHECK((hv.greatest_contributor(ref, hv_bf_approx) == 9));
}

BOOST_AUTO_TEST_CASE(hypervolume_test_instances)
{
    /** uses some precomputed fronts and hypervolumes to test if algorithms are correct */
    std::string line;

    // root directory of the hypervolume data
    std::string input_data_dir("./hypervolume_test_data/");

    // root directory of the testcases
    std::string input_data_testcases_dir(input_data_dir + "testcases/");

    // load list of testcases
    std::ifstream ifs;
    ifs.open((input_data_dir + "testcases_list.txt").c_str());

    if (ifs.is_open()) {
        while (ifs.good()) {
            getline(ifs, line);
            if (line == "" || line[0] == '#') continue;
            std::stringstream ss(line);

            std::string test_type;
            std::string method_name;
            std::string test_name;
            double eps;

            ss >> test_type;
            ss >> method_name;
            ss >> test_name;
            ss >> eps;

            // start reading the testcase
            std::ifstream input((input_data_testcases_dir + test_name).c_str());
            if (input.is_open()) {
                hypervolume_test hvt(input, test_type, method_name, eps);
                hvt.run_test();
                input.close();
            }
            input.close();
        }
        ifs.close();
    } else {
        // The testcase file is missing
        BOOST_CHECK((false));
    }
}

BOOST_AUTO_TEST_CASE(hypervolume_serialization_test)
{
    // Construct the object
    hypervolume hv({{1., 1.}, {-1., 3.}}, false);
    hv.set_copy_points(false);
    auto before = hv.compute({4., 4.});
    // Now serialize, deserialize and compare the result.
    std::stringstream ss;
    {
        boost::archive::binary_oarchive oarchive(ss);
        oarchive << hv;
    }
    // Change the content of p before deserializing.
    hv = hypervolume({{23., 11.}, {-12., -23}}, true);
    hv.set_copy_points(true);
    {
        boost::archive::binary_iarchive iarchive(ss);
        iarchive >> hv;
    }
    auto after = hv.compute({4., 4.});
    BOOST_CHECK_EQUAL(before, after);
    BOOST_CHECK_EQUAL(hv.get_copy_points(), false);
    BOOST_CHECK_EQUAL(hv.get_verify(), false);
}

BOOST_AUTO_TEST_CASE(hypervolume_construction_test)
{
    population pop_empty(zdt(1u, 10u));
    population pop_ok(zdt(1u, 10u), 10u);
    population pop_wrong1(hock_schittkowski_71{}, 10u);
    population pop_wrong2(rosenbrock{10u}, 10u);
    BOOST_CHECK_THROW((hypervolume{pop_empty, true}), std::invalid_argument);
    BOOST_CHECK_THROW((hypervolume{pop_wrong1, true}), std::invalid_argument);
    BOOST_CHECK_THROW((hypervolume{pop_wrong2, true}), std::invalid_argument);
    BOOST_CHECK_NO_THROW((hypervolume{pop_ok, true}));
    auto points = pop_ok.get_f();
    auto hv = hypervolume{pop_ok, true};
    BOOST_CHECK(points == hv.get_points());
    BOOST_CHECK_THROW((hypervolume(std::vector<vector_double>{}, true)), std::invalid_argument);
    BOOST_CHECK_THROW((hypervolume{{{1.}, {2.}}, true}), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(hypervolume_cmp_test)
{
    // expected_hv_operations
    BOOST_CHECK_CLOSE(detail::expected_hv_operations(10u, 1u), 10. * std::log(10), 1e-12);
    BOOST_CHECK_CLOSE(detail::expected_hv_operations(10u, 4u), 4. * 100., 1e-12);
    BOOST_CHECK_CLOSE(detail::expected_hv_operations(10u, 5u), 0.0005 * 5. * std::pow(10, 5. * 0.5), 1e-12);
    // dom_cmp
    vector_double a, b;
    a = {1, 2};
    b = {1, 2};
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 3);
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 3);
    a = {1, 2};
    b = {2, 1};
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 4);
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 4);
    a = {2, 1};
    b = {1, 2};
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 4);
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 4);
    a = {1, 1};
    b = {2, 2};
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 2);
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 2);
    a = {3, 3};
    b = {2, 2};
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 0u) == 1);
    BOOST_CHECK(hv_fake_algo::accessible_cmp(a, b, 2u) == 1);
}

BOOST_AUTO_TEST_CASE(hypervolume_name_getters_test)
{
    hv_fake_algo al;
    BOOST_CHECK(al.get_name().find("hv_fake") != std::string::npos);
    hv2d al1;
    BOOST_CHECK(al1.get_name().find("hv2d") != std::string::npos);
    hv3d al2;
    BOOST_CHECK(al2.get_name().find("hv3d") != std::string::npos);
    hvwfg al3;
    BOOST_CHECK(al3.get_name().find("WFG") != std::string::npos);
    bf_approx al4;
    BOOST_CHECK(al4.get_name().find("Bringmann-Friedrich") != std::string::npos);
    bf_fpras al5;
    BOOST_CHECK(al5.get_name().find("bf_fpras") != std::string::npos);
}

BOOST_AUTO_TEST_CASE(hypervolume_bf_approx_test)
{
    bf_approx al;
    std::vector<vector_double> points;
    vector_double ref;
    BOOST_CHECK_THROW(al.compute(points, ref), std::invalid_argument);
    auto al_clone = al.clone();
    BOOST_CHECK(al_clone->get_name().find("Bringmann-Friedrich") != std::string::npos);
}

BOOST_AUTO_TEST_CASE(hypervolume_bf_pras_test)
{
    bf_fpras al;
    std::vector<vector_double> points;
    vector_double ref;
    BOOST_CHECK_THROW(al.exclusive(0u, points, ref), std::invalid_argument);
    BOOST_CHECK_THROW(al.least_contributor(points, ref), std::invalid_argument);
    BOOST_CHECK_THROW(al.greatest_contributor(points, ref), std::invalid_argument);
    BOOST_CHECK_THROW(al.contributions(points, ref), std::invalid_argument);
    auto al_clone = al.clone();
    BOOST_CHECK(al_clone->get_name().find("bf_fpras") != std::string::npos);
}