1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
#define BOOST_TEST_MODULE moead_gen_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <iostream>
#include <string>
#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/moead_gen.hpp>
#include <pagmo/io.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/s11n.hpp>
#include <pagmo/types.hpp>
using namespace pagmo;
BOOST_AUTO_TEST_CASE(moead_gen_algorithm_construction)
{
moead_gen uda{10u, "grid", "tchebycheff", 20u, 1., 0.5, 20., 0.9, 2u, true, 23u};
BOOST_CHECK(uda.get_verbosity() == 0u);
BOOST_CHECK(uda.get_seed() == 23u);
BOOST_CHECK((uda.get_log() == moead_gen::log_type{}));
// Check the throws
// Wrong weight generation type
BOOST_CHECK_THROW((moead_gen{10u, "typo", "tchebycheff", 20u, 1., 0.5, 20., 0.9, 2u, true, 23u}),
std::invalid_argument);
// Wrong decomposition method
BOOST_CHECK_THROW((moead_gen{10u, "grid", "typo", 20u, 1., 0.5, 20., 0.9, 2u, true, 23u}), std::invalid_argument);
// Wrong CR
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 20u, 1.1, 0.5, 20., 0.9, 2u, true, 23u}),
std::invalid_argument);
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 20u, -0.3, 0.5, 20., 0.9, 2u, true, 23u}),
std::invalid_argument);
// Wrong F
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 20u, 1., 1.1, 20., 0.9, 2u, true, 23u}),
std::invalid_argument);
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 20u, 1., -0.3, 20., 0.9, 2u, true, 23u}),
std::invalid_argument);
// Wrong eta_m
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 20u, 1., 0.5, -20., 0.9, 2u, true, 23u}),
std::invalid_argument);
// Wrong realb
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 20u, 1., 0.5, 20., 1.1, 2u, true, 23u}),
std::invalid_argument);
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 20u, 1., 0.5, 20., -0.34, 2u, true, 23u}),
std::invalid_argument);
// Wrong neighbours
BOOST_CHECK_THROW((moead_gen{10u, "grid", "tchebycheff", 1u, 1., 0.5, 20., 0.9, 2u, true, 23u}), std::invalid_argument);
}
struct mo_con {
/// Fitness
vector_double fitness(const vector_double &) const
{
return {0., 0., 0.};
}
vector_double::size_type get_nobj() const
{
return 2u;
}
vector_double::size_type get_nec() const
{
return 1u;
}
/// Problem bounds
std::pair<vector_double, vector_double> get_bounds() const
{
return {{0., 0.}, {1., 1.}};
}
};
struct mo_sto {
/// Fitness
vector_double fitness(const vector_double &) const
{
return {0., 0.};
}
vector_double::size_type get_nobj() const
{
return 2u;
}
/// Problem bounds
std::pair<vector_double, vector_double> get_bounds() const
{
return {{0., 0.}, {1., 1.}};
}
void set_seed(unsigned) {}
};
struct mo_many {
/// Fitness
vector_double fitness(const vector_double &) const
{
return {0., 0., 0., 0., 0., 0.};
}
vector_double::size_type get_nobj() const
{
return 6u;
}
/// Problem bounds
std::pair<vector_double, vector_double> get_bounds() const
{
return {{0., 0.}, {1., 1.}};
}
};
struct mo_equal_bounds {
/// Fitness
vector_double fitness(const vector_double &) const
{
return {0., 0.};
}
vector_double::size_type get_nobj() const
{
return 2u;
}
/// Problem bounds
std::pair<vector_double, vector_double> get_bounds() const
{
return {{0., 0.}, {1., 0.}};
}
};
BOOST_AUTO_TEST_CASE(moead_gen_evolve_test)
{
// Here we only test that evolution is deterministic if the
// seed is controlled
problem prob{zdt{1u, 30u}};
population pop1{prob, 40u, 23u};
population pop2{prob, 40u, 23u};
population pop3{prob, 40u, 23u};
moead_gen user_algo1{10u, "grid", "tchebycheff", 20u, 1., 0.5, 20., 0.9, 2u, true, 23u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
BOOST_CHECK(user_algo1.get_log().size() > 0u);
moead_gen user_algo2{10u, "grid", "tchebycheff", 20u, 1., 0.5, 20., 0.9, 2u, true, 23u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
user_algo2.set_seed(23u);
pop3 = user_algo2.evolve(pop3);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
// We then check that the method evolve fails when called on unsuitable problems (populations)
// Some bound is equal
BOOST_CHECK_THROW(moead_gen{10u}.evolve(population{problem{mo_equal_bounds{}}, 0u}), std::invalid_argument);
// Empty population.
BOOST_CHECK_THROW(moead_gen{10u}.evolve(population{problem{rosenbrock{}}, 0u}), std::invalid_argument);
// Single objective problem
BOOST_CHECK_THROW(moead_gen{10u}.evolve(population{problem{rosenbrock{}}, 20u}), std::invalid_argument);
// Multi-objective problem with constraints
BOOST_CHECK_THROW(moead_gen{10u}.evolve(population{problem{mo_con{}}, 20u}), std::invalid_argument);
// Stochastic problem
BOOST_CHECK_THROW(moead_gen{10u}.evolve(population{problem{mo_sto{}}, 15u}), std::invalid_argument);
// Population size is too small for the neighbourhood specified
BOOST_CHECK_THROW(moead_gen(10u, "grid", "tchebycheff", 20u).evolve(population{problem{zdt{}}, 15u}),
std::invalid_argument);
// And a clean exit for 0 generations
population pop{zdt{}, 40u};
BOOST_CHECK(moead_gen{0u}.evolve(pop).get_x()[0] == pop.get_x()[0]);
// We test a call on many objectives (>5) to trigger the relative lines cropping the screen output
population pop4{problem{mo_many{}}, 56u, 23u};
user_algo1.evolve(pop4);
BOOST_CHECK(std::get<3>(user_algo1.get_log()[0]).size() == 6u);
}
BOOST_AUTO_TEST_CASE(moead_gen_setters_getters_test)
{
moead_gen user_algo{10u, "grid", "tchebycheff", 20u, 1., 0.5, 20., 0.9, 2u, true, 23u};
user_algo.set_verbosity(23u);
BOOST_CHECK(user_algo.get_verbosity() == 23u);
user_algo.set_seed(15u);
BOOST_CHECK(user_algo.get_seed() == 15u);
BOOST_CHECK(user_algo.get_name().find("MOEA/D") != std::string::npos);
BOOST_CHECK(user_algo.get_extra_info().find("Distribution index") != std::string::npos);
BOOST_CHECK_NO_THROW(user_algo.get_log());
}
BOOST_AUTO_TEST_CASE(moead_gen_serialization_test)
{
// Make one evolution
problem prob{zdt{1u, 30u}};
population pop{prob, 40u, 23u};
algorithm algo{moead_gen{10u, "grid", "tchebycheff", 10u, 0.9, 0.5, 20., 0.9, 2u, true, 23u}};
algo.set_verbosity(1u);
pop = algo.evolve(pop);
// Store the string representation of p.
std::stringstream ss;
auto before_text = boost::lexical_cast<std::string>(algo);
auto before_log = algo.extract<moead_gen>()->get_log();
// Now serialize, deserialize and compare the result.
{
boost::archive::binary_oarchive oarchive(ss);
oarchive << algo;
}
// Change the content of p before deserializing.
algo = algorithm{};
{
boost::archive::binary_iarchive iarchive(ss);
iarchive >> algo;
}
auto after_text = boost::lexical_cast<std::string>(algo);
auto after_log = algo.extract<moead_gen>()->get_log();
BOOST_CHECK_EQUAL(before_text, after_text);
BOOST_CHECK(before_log == after_log);
// so we implement a close check
BOOST_CHECK(before_log.size() > 0u);
for (auto i = 0u; i < before_log.size(); ++i) {
BOOST_CHECK_EQUAL(std::get<0>(before_log[i]), std::get<0>(after_log[i]));
BOOST_CHECK_EQUAL(std::get<1>(before_log[i]), std::get<1>(after_log[i]));
BOOST_CHECK_CLOSE(std::get<2>(before_log[i]), std::get<2>(after_log[i]), 1e-8);
for (decltype(2u) j = 0u; j < 2u; ++j) {
BOOST_CHECK_CLOSE(std::get<3>(before_log[i])[j], std::get<3>(after_log[i])[j], 1e-8);
}
}
}
BOOST_AUTO_TEST_CASE(bfe_usage_test)
{
// 1 - Algorithm with bfe disabled
problem prob{zdt{1u, 30u}};
moead_gen uda1{moead_gen{10u, "grid", "tchebycheff", 10u, 0.9, 0.5, 20., 0.9, 2u, true, 23u}};
uda1.set_verbosity(1u);
uda1.set_seed(23u);
// 2 - Instantiate
algorithm algo1{uda1};
// 3 - Instantiate populations
population pop{prob, 24, 32u};
population pop1{prob, 24, 456u};
population pop2{prob, 24, 67345u};
// 4 - Evolve the population
pop1 = algo1.evolve(pop);
// 5 - new algorithm that is bfe enabled
moead_gen uda2{moead_gen{10u, "grid", "tchebycheff", 10u, 0.9, 0.5, 20., 0.9, 2u, true, 23u}};
uda2.set_verbosity(1u);
uda2.set_seed(23u);
uda2.set_bfe(bfe{}); // This will use the default bfe.
// 6 - Instantiate a pagmo algorithm
algorithm algo2{uda2};
// 7 - Evolve the population
pop2 = algo2.evolve(pop);
BOOST_CHECK(algo1.extract<moead_gen>()->get_log() == algo2.extract<moead_gen>()->get_log());
}
|