1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
#define BOOST_TEST_MODULE nspso_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <algorithm>
#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <iostream>
#include <string>
#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/nspso.hpp>
#include <pagmo/io.hpp>
#include <pagmo/problems/dtlz.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/inventory.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/wfg.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/s11n.hpp>
#include <pagmo/types.hpp>
using namespace pagmo;
BOOST_AUTO_TEST_CASE(nspso_algorithm_construction)
{
nspso user_algo{1u, 0.9, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
BOOST_CHECK_NO_THROW(nspso{});
BOOST_CHECK(user_algo.get_verbosity() == 0u);
BOOST_CHECK(user_algo.get_seed() == 24u);
// Check the throws
// Wrong omega
BOOST_CHECK_THROW((nspso{1u, -10., 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
std::invalid_argument);
BOOST_CHECK_THROW((nspso{1u, 10., 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
std::invalid_argument);
// Wrong c1, c2 and chi
BOOST_CHECK_THROW((nspso{1u, 0.95, -0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
std::invalid_argument);
BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, -0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
std::invalid_argument);
BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, -0.5, 0.5, 2u, "crowding distance", false, 24u}),
std::invalid_argument);
// Wrong v_coeff
BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, -0.5, 2u, "crowding distance", false, 24u}),
std::invalid_argument);
BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, 1.5, 2u, "crowding distance", false, 24u}),
std::invalid_argument);
// Wrong leader_selection_range
BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, 0.5, 101u, "crowding distance", false, 24u}),
std::invalid_argument);
// Wrong eta_m
BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "something else", false, 24u}), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(nspso_evolve_test)
{
// We check that the problem is checked to be suitable
// stochastic
BOOST_CHECK_THROW((nspso{}.evolve(population{inventory{}, 5u, 23u})), std::invalid_argument);
// constrained prob
BOOST_CHECK_THROW((nspso{}.evolve(population{hock_schittkowski_71{}, 5u, 23u})), std::invalid_argument);
// single objective prob
BOOST_CHECK_THROW((nspso{}.evolve(population{rosenbrock{}, 5u, 23u})), std::invalid_argument);
// wrong pop size
BOOST_CHECK_THROW((nspso{}.evolve(population{zdt{}, 1u, 23u})), std::invalid_argument);
// and a clean exit for 0 generation
population pop{zdt{2u}, 10u};
BOOST_CHECK(nspso{0u}.evolve(pop).get_x()[0] == pop.get_x()[0]);
// We check for deterministic behaviour if the seed is controlled
// we treat the last three components of the decision vector as integers
// to trigger all cases
dtlz udp{1u, 10u, 3u};
population pop1{udp, 50u, 23u};
population pop2{udp, 50u, 23u};
population pop3{udp, 50u, 23u};
nspso user_algo1{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
BOOST_CHECK(user_algo1.get_log().size() > 0u);
nspso user_algo2{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
user_algo2.set_seed(24u);
pop3 = user_algo2.evolve(pop3);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
// We evolve for many-objectives
wfg udp_2{4u, 16u, 15u, 14u};
population pop4{udp_2, 52u, 23u};
pop4 = user_algo2.evolve(pop4);
// The following evolutions are for coverage tests purposes
// Two individuals only for making the pareto front size = 1 for some iterations
wfg udp_3{4u, 2u, 2u, 1u};
population pop5{udp_3, 2u, 23u};
pop5 = user_algo2.evolve(pop5);
// Same as above, but with niche count as diversity mechanism
nspso user_algo3{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "niche count", false, 24u};
wfg udp_4{4u, 2u, 2u, 1u};
population pop6{udp_4, 2u, 23u};
pop6 = user_algo3.evolve(pop6);
// Niche count diversity mechanism with 3 objectives
wfg udp_5{4u, 3u, 3u, 2u};
population pop7{udp_5, 2u, 23u};
user_algo3.set_verbosity(1);
pop7 = user_algo3.evolve(pop7);
// Niche count method with >3 objectives
wfg udp_6{4u, 16u, 15u, 14u};
population pop8{udp_6, 2u, 23u};
pop8 = user_algo3.evolve(pop8);
// Also for max min as diversity mechanism, I make sure that pareto front size = 1 for some iteration
nspso user_algo4{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "max min", false, 24u};
wfg udp_7{4u, 2u, 2u, 1u};
population pop9{udp_7, 2u, 23u};
pop9 = user_algo4.evolve(pop9);
}
BOOST_AUTO_TEST_CASE(nspso_setters_getters_test)
{
nspso user_algo{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
user_algo.set_verbosity(200u);
BOOST_CHECK(user_algo.get_verbosity() == 200u);
user_algo.set_seed(23456u);
BOOST_CHECK(user_algo.get_seed() == 23456u);
BOOST_CHECK(user_algo.get_name().find("NSPSO") != std::string::npos);
BOOST_CHECK(user_algo.get_extra_info().find("Verbosity") != std::string::npos);
}
BOOST_AUTO_TEST_CASE(nspso_serialization_test)
{
// Make one evolution
problem prob{zdt{1u, 30u}};
population pop{prob, 40u, 23u};
algorithm algo{nspso{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "niche count", false, 24u}};
algo.set_verbosity(1u);
pop = algo.evolve(pop);
// Store the string representation of p.
std::stringstream ss;
auto before_text = boost::lexical_cast<std::string>(algo);
auto before_log = algo.extract<nspso>()->get_log();
// Now serialize, deserialize and compare the result.
{
boost::archive::binary_oarchive oarchive(ss);
oarchive << algo;
}
// Change the content of p before deserializing.
algo = algorithm{};
{
boost::archive::binary_iarchive iarchive(ss);
iarchive >> algo;
}
auto after_text = boost::lexical_cast<std::string>(algo);
auto after_log = algo.extract<nspso>()->get_log();
BOOST_CHECK_EQUAL(before_text, after_text);
BOOST_CHECK(before_log == after_log);
// so we implement a close check
BOOST_CHECK(before_log.size() > 0u);
for (auto i = 0u; i < before_log.size(); ++i) {
BOOST_CHECK_EQUAL(std::get<0>(before_log[i]), std::get<0>(after_log[i]));
BOOST_CHECK_EQUAL(std::get<1>(before_log[i]), std::get<1>(after_log[i]));
for (auto j = 0u; j < 2u; ++j) {
BOOST_CHECK_CLOSE(std::get<2>(before_log[i])[j], std::get<2>(after_log[i])[j], 1e-8);
}
}
}
BOOST_AUTO_TEST_CASE(bfe_usage_test)
{
// 1 - Algorithm with bfe disabled
problem prob{wfg(5u, 16u, 15u, 14u)};
nspso uda1{nspso{10}};
uda1.set_verbosity(1u);
uda1.set_seed(23u);
// 2 - Instantiate
algorithm algo1{uda1};
// 3 - Instantiate populations
population pop{prob, 24};
population pop1{prob, 24};
population pop2{prob, 24};
// 4 - Evolve the population
pop1 = algo1.evolve(pop);
// 5 new algorithm that is bfe enabled
nspso uda2{nspso{10}};
uda2.set_verbosity(1u);
uda2.set_seed(23u);
uda2.set_bfe(bfe{}); // This will use the default bfe.
// 6 - Instantiate a pagmo algorithm
algorithm algo2{uda2};
// 7 - Evolve the population
pop2 = algo2.evolve(pop);
BOOST_CHECK(algo1.extract<nspso>()->get_log() == algo2.extract<nspso>()->get_log());
}
BOOST_AUTO_TEST_CASE(memory_test)
{
nspso uda{1u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", true, 24u};
nspso uda_2{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
uda.set_seed(23u);
uda_2.set_seed(23u);
uda.set_verbosity(1u);
uda_2.set_verbosity(1u);
problem prob{wfg{5u, 16u, 15u, 14u}};
population pop_1{prob, 20u, 23u};
population pop_2{prob, 20u, 23u};
for (int iter = 0u; iter < 10; ++iter) {
pop_1 = uda.evolve(pop_1);
}
pop_2 = uda_2.evolve(pop_2);
BOOST_CHECK(pop_1.get_f() == pop_2.get_f());
}
|