File: nspso.cpp

package info (click to toggle)
pagmo 2.19.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 85,228 kB
  • sloc: cpp: 1,753,592; makefile: 223; sh: 121; python: 46
file content (249 lines) | stat: -rw-r--r-- 9,633 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
/* Copyright 2017-2021 PaGMO development team

This file is part of the PaGMO library.

The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 3 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library.  If not,
see https://www.gnu.org/licenses/. */

#define BOOST_TEST_MODULE nspso_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>

#include <algorithm>
#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <iostream>
#include <string>

#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/nspso.hpp>
#include <pagmo/io.hpp>
#include <pagmo/problems/dtlz.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/inventory.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/wfg.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/s11n.hpp>
#include <pagmo/types.hpp>

using namespace pagmo;

BOOST_AUTO_TEST_CASE(nspso_algorithm_construction)
{
    nspso user_algo{1u, 0.9, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
    BOOST_CHECK_NO_THROW(nspso{});
    BOOST_CHECK(user_algo.get_verbosity() == 0u);
    BOOST_CHECK(user_algo.get_seed() == 24u);
    // Check the throws
    // Wrong omega
    BOOST_CHECK_THROW((nspso{1u, -10., 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    BOOST_CHECK_THROW((nspso{1u, 10., 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    // Wrong c1, c2 and chi
    BOOST_CHECK_THROW((nspso{1u, 0.95, -0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, -0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, -0.5, 0.5, 2u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    // Wrong v_coeff
    BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, -0.5, 2u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, 1.5, 2u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    // Wrong leader_selection_range
    BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, 0.5, 101u, "crowding distance", false, 24u}),
                      std::invalid_argument);
    // Wrong eta_m
    BOOST_CHECK_THROW((nspso{1u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "something else", false, 24u}), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(nspso_evolve_test)
{
    // We check that the problem is checked to be suitable
    // stochastic
    BOOST_CHECK_THROW((nspso{}.evolve(population{inventory{}, 5u, 23u})), std::invalid_argument);
    // constrained prob
    BOOST_CHECK_THROW((nspso{}.evolve(population{hock_schittkowski_71{}, 5u, 23u})), std::invalid_argument);
    // single objective prob
    BOOST_CHECK_THROW((nspso{}.evolve(population{rosenbrock{}, 5u, 23u})), std::invalid_argument);
    // wrong pop size
    BOOST_CHECK_THROW((nspso{}.evolve(population{zdt{}, 1u, 23u})), std::invalid_argument);
    // and a clean exit for 0 generation
    population pop{zdt{2u}, 10u};
    BOOST_CHECK(nspso{0u}.evolve(pop).get_x()[0] == pop.get_x()[0]);
    // We check for deterministic behaviour if the seed is controlled
    // we treat the last three components of the decision vector as integers
    // to trigger all cases
    dtlz udp{1u, 10u, 3u};
    population pop1{udp, 50u, 23u};
    population pop2{udp, 50u, 23u};
    population pop3{udp, 50u, 23u};

    nspso user_algo1{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
    user_algo1.set_verbosity(1u);
    pop1 = user_algo1.evolve(pop1);

    BOOST_CHECK(user_algo1.get_log().size() > 0u);

    nspso user_algo2{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
    user_algo2.set_verbosity(1u);
    pop2 = user_algo2.evolve(pop2);
    BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());

    user_algo2.set_seed(24u);
    pop3 = user_algo2.evolve(pop3);

    BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());

    // We evolve for many-objectives
    wfg udp_2{4u, 16u, 15u, 14u};
    population pop4{udp_2, 52u, 23u};
    pop4 = user_algo2.evolve(pop4);

    // The following evolutions are for coverage tests purposes
    // Two individuals only for making the pareto front size = 1 for some iterations
    wfg udp_3{4u, 2u, 2u, 1u};
    population pop5{udp_3, 2u, 23u};
    pop5 = user_algo2.evolve(pop5);
    // Same as above, but with niche count as diversity mechanism
    nspso user_algo3{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "niche count", false, 24u};
    wfg udp_4{4u, 2u, 2u, 1u};
    population pop6{udp_4, 2u, 23u};
    pop6 = user_algo3.evolve(pop6);
    // Niche count diversity mechanism with 3 objectives
    wfg udp_5{4u, 3u, 3u, 2u};
    population pop7{udp_5, 2u, 23u};
    user_algo3.set_verbosity(1);
    pop7 = user_algo3.evolve(pop7);
    // Niche count method with >3 objectives
    wfg udp_6{4u, 16u, 15u, 14u};
    population pop8{udp_6, 2u, 23u};
    pop8 = user_algo3.evolve(pop8);
    // Also for max min as diversity mechanism, I make sure that pareto front size = 1 for some iteration
    nspso user_algo4{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "max min", false, 24u};
    wfg udp_7{4u, 2u, 2u, 1u};
    population pop9{udp_7, 2u, 23u};
    pop9 = user_algo4.evolve(pop9);
}

BOOST_AUTO_TEST_CASE(nspso_setters_getters_test)
{
    nspso user_algo{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
    user_algo.set_verbosity(200u);
    BOOST_CHECK(user_algo.get_verbosity() == 200u);
    user_algo.set_seed(23456u);
    BOOST_CHECK(user_algo.get_seed() == 23456u);
    BOOST_CHECK(user_algo.get_name().find("NSPSO") != std::string::npos);
    BOOST_CHECK(user_algo.get_extra_info().find("Verbosity") != std::string::npos);
}

BOOST_AUTO_TEST_CASE(nspso_serialization_test)
{
    // Make one evolution
    problem prob{zdt{1u, 30u}};
    population pop{prob, 40u, 23u};
    algorithm algo{nspso{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "niche count", false, 24u}};
    algo.set_verbosity(1u);
    pop = algo.evolve(pop);
    // Store the string representation of p.
    std::stringstream ss;
    auto before_text = boost::lexical_cast<std::string>(algo);
    auto before_log = algo.extract<nspso>()->get_log();
    // Now serialize, deserialize and compare the result.
    {
        boost::archive::binary_oarchive oarchive(ss);
        oarchive << algo;
    }
    // Change the content of p before deserializing.
    algo = algorithm{};
    {
        boost::archive::binary_iarchive iarchive(ss);
        iarchive >> algo;
    }
    auto after_text = boost::lexical_cast<std::string>(algo);
    auto after_log = algo.extract<nspso>()->get_log();
    BOOST_CHECK_EQUAL(before_text, after_text);
    BOOST_CHECK(before_log == after_log);
    // so we implement a close check
    BOOST_CHECK(before_log.size() > 0u);
    for (auto i = 0u; i < before_log.size(); ++i) {
        BOOST_CHECK_EQUAL(std::get<0>(before_log[i]), std::get<0>(after_log[i]));
        BOOST_CHECK_EQUAL(std::get<1>(before_log[i]), std::get<1>(after_log[i]));
        for (auto j = 0u; j < 2u; ++j) {
            BOOST_CHECK_CLOSE(std::get<2>(before_log[i])[j], std::get<2>(after_log[i])[j], 1e-8);
        }
    }
}

BOOST_AUTO_TEST_CASE(bfe_usage_test)
{
    // 1 - Algorithm with bfe disabled
    problem prob{wfg(5u, 16u, 15u, 14u)};
    nspso uda1{nspso{10}};
    uda1.set_verbosity(1u);
    uda1.set_seed(23u);
    // 2 - Instantiate
    algorithm algo1{uda1};

    // 3 - Instantiate populations
    population pop{prob, 24};
    population pop1{prob, 24};
    population pop2{prob, 24};

    // 4 - Evolve the population
    pop1 = algo1.evolve(pop);

    // 5 new algorithm that is bfe enabled
    nspso uda2{nspso{10}};
    uda2.set_verbosity(1u);
    uda2.set_seed(23u);
    uda2.set_bfe(bfe{}); // This will use the default bfe.
    // 6 - Instantiate a pagmo algorithm
    algorithm algo2{uda2};

    // 7 - Evolve the population
    pop2 = algo2.evolve(pop);
    BOOST_CHECK(algo1.extract<nspso>()->get_log() == algo2.extract<nspso>()->get_log());
}

BOOST_AUTO_TEST_CASE(memory_test)
{
    nspso uda{1u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", true, 24u};
    nspso uda_2{10u, 0.95, 0.01, 0.5, 0.5, 0.5, 2u, "crowding distance", false, 24u};
    uda.set_seed(23u);
    uda_2.set_seed(23u);
    uda.set_verbosity(1u);
    uda_2.set_verbosity(1u);
    problem prob{wfg{5u, 16u, 15u, 14u}};
    population pop_1{prob, 20u, 23u};
    population pop_2{prob, 20u, 23u};
    for (int iter = 0u; iter < 10; ++iter) {
        pop_1 = uda.evolve(pop_1);
    }
    pop_2 = uda_2.evolve(pop_2);
    BOOST_CHECK(pop_1.get_f() == pop_2.get_f());
}