File: population.cpp

package info (click to toggle)
pagmo 2.19.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 85,228 kB
  • sloc: cpp: 1,753,592; makefile: 223; sh: 121; python: 46
file content (464 lines) | stat: -rw-r--r-- 19,034 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
/* Copyright 2017-2021 PaGMO development team

This file is part of the PaGMO library.

The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 3 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library.  If not,
see https://www.gnu.org/licenses/. */

#define BOOST_TEST_MODULE population_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>

#include <cmath>
#include <initializer_list>
#include <iostream>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <string>
#include <type_traits>

#include <boost/lexical_cast.hpp>

#include <pagmo/batch_evaluators/thread_bfe.hpp>
#include <pagmo/bfe.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problem.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/inventory.hpp>
#include <pagmo/problems/null_problem.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/s11n.hpp>
#include <pagmo/types.hpp>

using namespace pagmo;

static inline std::string pop_to_string(const population &pop)
{
    std::stringstream ss;
    ss << pop;
    return ss.str();
}

BOOST_AUTO_TEST_CASE(population_construction_test)
{
    unsigned seed = 123;
    population pop1{};
    population pop2{problem{zdt{1, 5}}, 2, seed};
    population pop3{problem{zdt{2, 5}}, 2, seed};

    // We check that the number of individuals is as expected
    BOOST_CHECK(pop1.size() == 0u);
    BOOST_CHECK(pop2.size() == 2u);
    BOOST_CHECK(pop3.size() == 2u);
    // We check population's individual chromosomes and IDs are the same
    // as the random seed was (and the problem dimension), while
    // fitness vectors were different as the problem is
    BOOST_CHECK(pop2.get_ID() == pop3.get_ID());
    BOOST_CHECK(pop2.get_x() == pop3.get_x());
    BOOST_CHECK(pop2.get_f() != pop3.get_f());
    // We check that the seed has been set correctly
    BOOST_CHECK(pop2.get_seed() == seed);

    // We test the generic constructor
    population pop4{zdt{2, 5}, 2, seed};
    BOOST_CHECK(pop4.get_ID() == pop3.get_ID());
    BOOST_CHECK(pop4.get_x() == pop3.get_x());
    BOOST_CHECK(pop4.get_f() == pop3.get_f());
    population pop5{zdt{1, 5}, 2, seed};
    BOOST_CHECK(pop2.get_ID() == pop5.get_ID());
    BOOST_CHECK(pop2.get_x() == pop5.get_x());
    BOOST_CHECK(pop2.get_f() == pop5.get_f());

    // Check copy/move semantics.
    population pop_a{problem{zdt{2, 5}}, 2, 20};
    population pop_b{pop_a};
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));
    population pop_c;
    pop_c = pop_b;
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_c));
    population pop_d{std::move(pop_c)};
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_d));
    population pop_e;
    pop_e = std::move(pop_b);
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_e));
    // Try to revive moved-from objects.
    pop_c = pop_e;
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_c));
    pop_b = std::move(pop_e);
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));

    // Self assignments.
    pop_a = pop_b;
    pop_a = *&pop_a;
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));
#if !defined(__clang__)
    pop_a = std::move(pop_a);
    BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));
#endif

    // Check constructability.
    BOOST_CHECK((!std::is_constructible<population, int>::value));
    BOOST_CHECK((!std::is_constructible<population, int &>::value));
    BOOST_CHECK((!std::is_constructible<population, const int &>::value));
    BOOST_CHECK((!std::is_constructible<population, std::string>::value));
    BOOST_CHECK((std::is_constructible<population, null_problem>::value));
    BOOST_CHECK((std::is_constructible<population, null_problem &>::value));
    BOOST_CHECK((std::is_constructible<population, null_problem &&>::value));
    BOOST_CHECK((std::is_constructible<population, const null_problem &>::value));
    BOOST_CHECK((std::is_constructible<population, const null_problem>::value));
    BOOST_CHECK((std::is_constructible<population, problem>::value));
    BOOST_CHECK((std::is_constructible<population, problem &>::value));
    BOOST_CHECK((std::is_constructible<population, problem &&>::value));
    BOOST_CHECK((std::is_constructible<population, const problem &>::value));
    BOOST_CHECK((std::is_constructible<population, const problem>::value));
}

BOOST_AUTO_TEST_CASE(population_copy_constructor_test)
{
    population pop1{problem{rosenbrock{5}}, 10u};
    population pop2(pop1);
    BOOST_CHECK(pop2.get_ID() == pop1.get_ID());
    BOOST_CHECK(pop2.get_x() == pop1.get_x());
    BOOST_CHECK(pop2.get_f() == pop1.get_f());
}

struct malformed {
    vector_double fitness(const vector_double &) const
    {
        return {0.5};
    }
    vector_double::size_type get_nobj() const
    {
        return 2u;
    }
    std::pair<vector_double, vector_double> get_bounds() const
    {
        return {{0.}, {1.}};
    }
};

BOOST_AUTO_TEST_CASE(population_push_back_test)
{
    // Create an empty population
    population pop{problem{zdt{1u, 30u}}};
    // We fill it with a few individuals and check the size growth
    for (unsigned i = 0u; i < 5u; ++i) {
        BOOST_CHECK(pop.size() == i);
        BOOST_CHECK(pop.get_f().size() == i);
        BOOST_CHECK(pop.get_x().size() == i);
        BOOST_CHECK(pop.get_ID().size() == i);
        pop.push_back(vector_double(30u, 0.5));
    }
    // We check the fitness counter
    BOOST_CHECK(pop.get_problem().get_fevals() == 5u);
    // We check important undefined throws
    // 1 - Cannot push back the wrong decision vector dimension
    BOOST_CHECK_THROW(pop.push_back(vector_double(28u, 0.5)), std::invalid_argument);
    // 2 - Malformed problem. The user declares 2 objectives but returns something else
    population pop2{problem{malformed{}}};
    BOOST_CHECK_THROW(pop2.push_back({1.}), std::invalid_argument);
    // 3 - Consistency checks on the second push_back() overload.
    population pop3{problem{zdt{1u, 30u}}};
    BOOST_CHECK_THROW(pop3.push_back({}, {}), std::invalid_argument);
    BOOST_CHECK_THROW(pop3.push_back(vector_double(30u, 0.5), {}), std::invalid_argument);
    BOOST_CHECK_THROW(pop3.push_back(vector_double(30u, 0.5), {0.}), std::invalid_argument);
    BOOST_CHECK_THROW(pop3.push_back(vector_double(30u, 0.5), {0., 0., 0.}), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(population_random_decision_vector_test)
{
    // Create an empty population
    population pop{problem{}};
    auto bounds = pop.get_problem().get_bounds();
    // Generate a random decision_vector
    auto x = pop.random_decision_vector();
    // Check that the decision_vector is indeed within bounds
    for (decltype(x.size()) i = 0u; i < x.size(); ++i) {
        BOOST_CHECK(x[i] < bounds.second[i]);
        BOOST_CHECK(x[i] >= bounds.first[i]);
    }
}

BOOST_AUTO_TEST_CASE(population_best_worst_test)
{
    // Test throw
    {
        population pop{problem{zdt{}}, 2};
        population pop2{problem{}, 0u};
        BOOST_CHECK_THROW(pop.best_idx(), std::invalid_argument);
        BOOST_CHECK_THROW(pop.worst_idx(), std::invalid_argument);
        BOOST_CHECK_THROW(pop2.best_idx(), std::invalid_argument);
        BOOST_CHECK_THROW(pop2.worst_idx(), std::invalid_argument);
    }
    // Test on single objective
    {
        population pop{problem{rosenbrock{2}}};
        pop.push_back({0.5, 0.5});
        pop.push_back(pop.get_problem().extract<rosenbrock>()->best_known());
        BOOST_CHECK(pop.worst_idx() == 0u);
        BOOST_CHECK(pop.best_idx() == 1u);
    }
    // Test on constrained
    {
        population pop{problem{hock_schittkowski_71{}}};
        pop.push_back({1.5, 1.5, 1.5, 1.5});
        pop.push_back(pop.get_problem().extract<hock_schittkowski_71>()->best_known());
        BOOST_CHECK(pop.worst_idx(1e-5) == 0u); // tolerance matter here!!!
        BOOST_CHECK(pop.best_idx(1e-5) == 1u);
    }
}

BOOST_AUTO_TEST_CASE(population_setters_test)
{
    population pop{problem{}, 2};
    // Test throw
    BOOST_CHECK_THROW(pop.set_xf(2, {3}, {1, 2, 3}), std::invalid_argument); // index invalid
    BOOST_CHECK_THROW(pop.set_xf(1, {3, 2}, {1}), std::invalid_argument);    // chromosome invalid
    BOOST_CHECK_THROW(pop.set_xf(1, {3}, {1, 2}), std::invalid_argument);    // fitness invalid
    // Test set_xf
    pop.set_xf(0, {3}, {1});
    BOOST_CHECK((pop.get_x()[0] == vector_double{3}));
    BOOST_CHECK((pop.get_f()[0] == vector_double{1}));
    // Test set_x
    pop.set_x(0, {1.2});
    BOOST_CHECK((pop.get_x()[0] == vector_double{1.2}));
    BOOST_CHECK(pop.get_f()[0] == pop.get_problem().fitness({1.2})); // works as counters are marked mutable
}

BOOST_AUTO_TEST_CASE(population_getters_test)
{
    population pop{problem{}, 1, 1234u};
    pop.set_xf(0, {3}, {1});
    // Test
    BOOST_CHECK((pop.get_f()[0] == vector_double{1}));
    BOOST_CHECK(pop.get_seed() == 1234u);
    BOOST_CHECK_NO_THROW(pop.get_ID());
    // Streaming operator is tested to contain the problem stream
    auto pop_string = boost::lexical_cast<std::string>(pop);
    auto prob_string = boost::lexical_cast<std::string>(pop.get_problem());
    BOOST_CHECK(pop_string.find(prob_string) != std::string::npos);
}

BOOST_AUTO_TEST_CASE(population_champion_test)
{
    // Unconstrained case
    {
        population pop{problem{rosenbrock{2u}}};
        // Upon construction of an empty population the Champion is empty
        BOOST_CHECK((pop.champion_x() == vector_double{}));
        BOOST_CHECK((pop.champion_f() == vector_double{}));
        // We push back the origin, in Rosenbrock this has a fitness of 1.
        pop.push_back({0., 0.});
        BOOST_CHECK((pop.champion_x() == vector_double{0., 0.}));
        BOOST_CHECK((pop.champion_f() == vector_double{1.}));
        // We push back .1,.1, in Rosenbrock this has a fitness of 1.62 and thus should not trigger the champion update
        pop.push_back({0.1, 0.1});
        BOOST_CHECK((pop.champion_x() == vector_double{0., 0.}));
        BOOST_CHECK((pop.champion_f() == vector_double{1.}));
        // We push back 0.01,0.01, in Rosenbrock this has a fitness of 0.989901 and thus should trigger the champion
        // update
        pop.push_back({0.01, 0.01});
        BOOST_CHECK((pop.champion_x() == vector_double{0.01, 0.01}));
        BOOST_CHECK_CLOSE(pop.champion_f()[0], 0.989901, 1e-6);
        // We set the chromosome of this last individual to something worse, the champion does not change
        pop.set_x(2u, {0.1, 0.1});
        BOOST_CHECK((pop.champion_x() == vector_double{0.01, 0.01}));
        BOOST_CHECK_CLOSE(pop.champion_f()[0], 0.989901, 1e-6);
        // We set the chromosome of this last individual to something better, the champion does change
        pop.set_xf(2u, {0.123, 0.123}, {0.12});
        BOOST_CHECK((pop.champion_x() == vector_double{0.123, 0.123}));
        BOOST_CHECK((pop.champion_f() == vector_double{0.12}));
    }
    // Constrained case
    {
        population pop{problem{hock_schittkowski_71{}}};
        // Upon construction of an empty population the Champion is empty
        BOOST_CHECK((pop.champion_x() == vector_double{}));
        BOOST_CHECK((pop.champion_f() == vector_double{}));
        // We push back 1.1,1.1,.. in hock_schittkowski_71 this has a fitness of [  5.093, -35.16, 23.5359]
        pop.push_back({1.1, 1.1, 1.1, 1.1});
        auto ch = pop.champion_f();
        BOOST_CHECK((pop.champion_x() == vector_double{1.1, 1.1, 1.1, 1.1}));
        // We push back all ones, in hock_schittkowski_71 this has a fitness of [ 4., -36., 24.] and does not trigger a
        // champion update
        pop.push_back({1., 1., 1., 1.});
        BOOST_CHECK((pop.champion_x() == vector_double{1.1, 1.1, 1.1, 1.1}));
        BOOST_CHECK((pop.champion_f() == ch));
        // We push back 2.1,2.1, in hock_schittkowski_71 this has a fitness of [29.883 ,-22.36, 5.5519] and triggers a
        // champion update
        pop.push_back({2.1, 2.1, 2.1, 2.1});
        BOOST_CHECK((pop.champion_x() == vector_double{2.1, 2.1, 2.1, 2.1}));
        BOOST_CHECK((pop.champion_f() != ch));
        ch = pop.champion_f();
        // We set the chromosome of this last individual to something worse, the champion does not change
        pop.set_xf(2u, {1.2, 1.3, 1.4, 1.5}, {12., 45., 55.});
        BOOST_CHECK((pop.champion_x() == vector_double{2.1, 2.1, 2.1, 2.1}));
        BOOST_CHECK(pop.champion_f() == ch);
        // We set the chromosome of this last individual to something better, the champion does change
        pop.set_xf(2u, {1.2, 1.3, 1.4, 1.5}, {12., 5., -55.});
        BOOST_CHECK((pop.champion_x() == vector_double{1.2, 1.3, 1.4, 1.5}));
        BOOST_CHECK((pop.champion_f() == vector_double{12., 5., -55.}));
    }
    // We check that requests to the champion cannot be made if the population
    // contains a problem with more than 1 objective or is stochastic
    population pop_mo{problem{zdt{}}, 2u};
    BOOST_CHECK_THROW(pop_mo.champion_f(), std::invalid_argument);
    BOOST_CHECK_THROW(pop_mo.champion_x(), std::invalid_argument);
    population pop_sto{problem{inventory{12u}}, 2u};
    BOOST_CHECK_THROW(pop_sto.champion_f(), std::invalid_argument);
    BOOST_CHECK_THROW(pop_sto.champion_x(), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(population_serialization_test)
{
    population pop{problem{}, 30, 1234u};
    // Store the string representation of p.
    std::stringstream ss;
    auto before = boost::lexical_cast<std::string>(pop);
    // Now serialize, deserialize and compare the result.
    {
        boost::archive::binary_oarchive oarchive(ss);
        oarchive << pop;
    }
    // Change the content of p before deserializing.
    pop = population{problem{zdt{5, 20u}}, 30};
    {
        boost::archive::binary_iarchive iarchive(ss);
        iarchive >> pop;
    }
    auto after = boost::lexical_cast<std::string>(pop);
    BOOST_CHECK_EQUAL(before, after);
}

struct minlp {
    minlp(vector_double::size_type nix = 0u)
    {
        m_nix = nix;
    }
    vector_double fitness(const vector_double &x) const
    {
        return {std::sin(x[0] * x[1] * x[2]), x[0] + x[1] + x[2], x[0] * x[1] + x[1] * x[2] - x[0] * x[2]};
    }
    vector_double::size_type get_nobj() const
    {
        return 3u;
    }
    vector_double::size_type get_nix() const
    {
        return m_nix;
    }
    std::pair<vector_double, vector_double> get_bounds() const
    {
        return {{1, -1, 1}, {2, 1, 2}};
    }
    vector_double::size_type m_nix;
};

BOOST_AUTO_TEST_CASE(population_minlp_test)
{
    population pop{problem{minlp{2}}, 30, 1234u};
    for (decltype(pop.size()) i = 0u; i < pop.size(); ++i) {
        BOOST_CHECK(pop.get_x()[i][2] == std::floor(pop.get_x()[i][2]));
        BOOST_CHECK(pop.get_x()[i][1] == std::floor(pop.get_x()[i][1]));
    }
}

BOOST_AUTO_TEST_CASE(population_cout_test)
{
    population pop{problem{rosenbrock{2u}}};
    population pop_sto{problem{inventory{12u}}, 3u};
    population pop_mo{problem{zdt{}}, 3u};
    BOOST_CHECK_NO_THROW(std::cout << pop);
    BOOST_CHECK_NO_THROW(std::cout << pop_sto);
    BOOST_CHECK_NO_THROW(std::cout << pop_mo);
}

BOOST_AUTO_TEST_CASE(population_bfe_ctor_test)
{
    // Empty pop test. Use rosenbrock as we know
    // it's fully thread-safe.
    problem prob{rosenbrock{2u}};
    population pop0{prob, bfe{}};
    BOOST_CHECK(pop0.size() == 0u);
    BOOST_CHECK(pop0.get_problem().get_fevals() == 0u);

    // Population with 100 individuals, verify that
    // the fitnesses are computed correctly.
    population pop100{rosenbrock{2u}, bfe{}, 100, 42};
    population pop100a{rosenbrock{2u}, 100, 42};
    BOOST_CHECK(pop100.size() == 100u);
    BOOST_CHECK(pop100.get_problem().get_fevals() == 100u);
    for (auto i = 0u; i < 100u; ++i) {
        BOOST_CHECK(pop100.get_f()[i] == prob.fitness(pop100.get_x()[i]));
        BOOST_CHECK(pop100.get_x()[i] == pop100a.get_x()[i]);
        BOOST_CHECK(pop100.get_f()[i] == pop100a.get_f()[i]);
        BOOST_CHECK(pop100.get_ID()[i] == pop100a.get_ID()[i]);
    }
    BOOST_CHECK(pop100.champion_x() == pop100a.champion_x());
    BOOST_CHECK(pop100.champion_f() == pop100a.champion_f());

    // Same with 1000 individuals.
    population pop1000{rosenbrock{2u}, bfe{}, 1000, 42};
    population pop1000a{rosenbrock{2u}, 1000, 42};
    BOOST_CHECK(pop1000.size() == 1000u);
    BOOST_CHECK(pop1000.get_problem().get_fevals() == 1000u);
    for (auto i = 0u; i < 1000u; ++i) {
        BOOST_CHECK(pop1000.get_f()[i] == prob.fitness(pop1000.get_x()[i]));
        BOOST_CHECK(pop1000.get_x()[i] == pop1000a.get_x()[i]);
        BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
        BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
    }
    BOOST_CHECK(pop1000.champion_x() == pop1000a.champion_x());
    BOOST_CHECK(pop1000.champion_f() == pop1000a.champion_f());

    // Do a test with a UDBFE.
    pop1000 = population{rosenbrock{2u}, thread_bfe{}, 1000, 42};
    BOOST_CHECK(pop1000.size() == 1000u);
    BOOST_CHECK(pop1000.get_problem().get_fevals() == 1000u);
    for (auto i = 0u; i < 1000u; ++i) {
        BOOST_CHECK(pop1000.get_f()[i] == prob.fitness(pop1000.get_x()[i]));
        BOOST_CHECK(pop1000.get_x()[i] == pop1000a.get_x()[i]);
        BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
        BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
    }
    BOOST_CHECK(pop1000.champion_x() == pop1000a.champion_x());
    BOOST_CHECK(pop1000.champion_f() == pop1000a.champion_f());
}

// Ensure that we use proper floating-point comparisons
// when updating the champion of a population.
BOOST_AUTO_TEST_CASE(population_nan_champion)
{
    population pop0{rosenbrock{2u}};
    pop0.push_back({std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()});
    BOOST_CHECK(std::isnan(pop0.champion_f()[0]));
    pop0.push_back({std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()});
    BOOST_CHECK(std::isnan(pop0.champion_f()[0]));
    pop0.push_back({1, 2});
    BOOST_CHECK(!std::isnan(pop0.champion_f()[0]));
    pop0.push_back({std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()});
    BOOST_CHECK(!std::isnan(pop0.champion_f()[0]));
}