1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
#define BOOST_TEST_MODULE population_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <cmath>
#include <initializer_list>
#include <iostream>
#include <limits>
#include <sstream>
#include <stdexcept>
#include <string>
#include <type_traits>
#include <boost/lexical_cast.hpp>
#include <pagmo/batch_evaluators/thread_bfe.hpp>
#include <pagmo/bfe.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problem.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/inventory.hpp>
#include <pagmo/problems/null_problem.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/s11n.hpp>
#include <pagmo/types.hpp>
using namespace pagmo;
static inline std::string pop_to_string(const population &pop)
{
std::stringstream ss;
ss << pop;
return ss.str();
}
BOOST_AUTO_TEST_CASE(population_construction_test)
{
unsigned seed = 123;
population pop1{};
population pop2{problem{zdt{1, 5}}, 2, seed};
population pop3{problem{zdt{2, 5}}, 2, seed};
// We check that the number of individuals is as expected
BOOST_CHECK(pop1.size() == 0u);
BOOST_CHECK(pop2.size() == 2u);
BOOST_CHECK(pop3.size() == 2u);
// We check population's individual chromosomes and IDs are the same
// as the random seed was (and the problem dimension), while
// fitness vectors were different as the problem is
BOOST_CHECK(pop2.get_ID() == pop3.get_ID());
BOOST_CHECK(pop2.get_x() == pop3.get_x());
BOOST_CHECK(pop2.get_f() != pop3.get_f());
// We check that the seed has been set correctly
BOOST_CHECK(pop2.get_seed() == seed);
// We test the generic constructor
population pop4{zdt{2, 5}, 2, seed};
BOOST_CHECK(pop4.get_ID() == pop3.get_ID());
BOOST_CHECK(pop4.get_x() == pop3.get_x());
BOOST_CHECK(pop4.get_f() == pop3.get_f());
population pop5{zdt{1, 5}, 2, seed};
BOOST_CHECK(pop2.get_ID() == pop5.get_ID());
BOOST_CHECK(pop2.get_x() == pop5.get_x());
BOOST_CHECK(pop2.get_f() == pop5.get_f());
// Check copy/move semantics.
population pop_a{problem{zdt{2, 5}}, 2, 20};
population pop_b{pop_a};
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));
population pop_c;
pop_c = pop_b;
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_c));
population pop_d{std::move(pop_c)};
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_d));
population pop_e;
pop_e = std::move(pop_b);
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_e));
// Try to revive moved-from objects.
pop_c = pop_e;
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_c));
pop_b = std::move(pop_e);
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));
// Self assignments.
pop_a = pop_b;
pop_a = *&pop_a;
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));
#if !defined(__clang__)
pop_a = std::move(pop_a);
BOOST_CHECK_EQUAL(pop_to_string(pop_a), pop_to_string(pop_b));
#endif
// Check constructability.
BOOST_CHECK((!std::is_constructible<population, int>::value));
BOOST_CHECK((!std::is_constructible<population, int &>::value));
BOOST_CHECK((!std::is_constructible<population, const int &>::value));
BOOST_CHECK((!std::is_constructible<population, std::string>::value));
BOOST_CHECK((std::is_constructible<population, null_problem>::value));
BOOST_CHECK((std::is_constructible<population, null_problem &>::value));
BOOST_CHECK((std::is_constructible<population, null_problem &&>::value));
BOOST_CHECK((std::is_constructible<population, const null_problem &>::value));
BOOST_CHECK((std::is_constructible<population, const null_problem>::value));
BOOST_CHECK((std::is_constructible<population, problem>::value));
BOOST_CHECK((std::is_constructible<population, problem &>::value));
BOOST_CHECK((std::is_constructible<population, problem &&>::value));
BOOST_CHECK((std::is_constructible<population, const problem &>::value));
BOOST_CHECK((std::is_constructible<population, const problem>::value));
}
BOOST_AUTO_TEST_CASE(population_copy_constructor_test)
{
population pop1{problem{rosenbrock{5}}, 10u};
population pop2(pop1);
BOOST_CHECK(pop2.get_ID() == pop1.get_ID());
BOOST_CHECK(pop2.get_x() == pop1.get_x());
BOOST_CHECK(pop2.get_f() == pop1.get_f());
}
struct malformed {
vector_double fitness(const vector_double &) const
{
return {0.5};
}
vector_double::size_type get_nobj() const
{
return 2u;
}
std::pair<vector_double, vector_double> get_bounds() const
{
return {{0.}, {1.}};
}
};
BOOST_AUTO_TEST_CASE(population_push_back_test)
{
// Create an empty population
population pop{problem{zdt{1u, 30u}}};
// We fill it with a few individuals and check the size growth
for (unsigned i = 0u; i < 5u; ++i) {
BOOST_CHECK(pop.size() == i);
BOOST_CHECK(pop.get_f().size() == i);
BOOST_CHECK(pop.get_x().size() == i);
BOOST_CHECK(pop.get_ID().size() == i);
pop.push_back(vector_double(30u, 0.5));
}
// We check the fitness counter
BOOST_CHECK(pop.get_problem().get_fevals() == 5u);
// We check important undefined throws
// 1 - Cannot push back the wrong decision vector dimension
BOOST_CHECK_THROW(pop.push_back(vector_double(28u, 0.5)), std::invalid_argument);
// 2 - Malformed problem. The user declares 2 objectives but returns something else
population pop2{problem{malformed{}}};
BOOST_CHECK_THROW(pop2.push_back({1.}), std::invalid_argument);
// 3 - Consistency checks on the second push_back() overload.
population pop3{problem{zdt{1u, 30u}}};
BOOST_CHECK_THROW(pop3.push_back({}, {}), std::invalid_argument);
BOOST_CHECK_THROW(pop3.push_back(vector_double(30u, 0.5), {}), std::invalid_argument);
BOOST_CHECK_THROW(pop3.push_back(vector_double(30u, 0.5), {0.}), std::invalid_argument);
BOOST_CHECK_THROW(pop3.push_back(vector_double(30u, 0.5), {0., 0., 0.}), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(population_random_decision_vector_test)
{
// Create an empty population
population pop{problem{}};
auto bounds = pop.get_problem().get_bounds();
// Generate a random decision_vector
auto x = pop.random_decision_vector();
// Check that the decision_vector is indeed within bounds
for (decltype(x.size()) i = 0u; i < x.size(); ++i) {
BOOST_CHECK(x[i] < bounds.second[i]);
BOOST_CHECK(x[i] >= bounds.first[i]);
}
}
BOOST_AUTO_TEST_CASE(population_best_worst_test)
{
// Test throw
{
population pop{problem{zdt{}}, 2};
population pop2{problem{}, 0u};
BOOST_CHECK_THROW(pop.best_idx(), std::invalid_argument);
BOOST_CHECK_THROW(pop.worst_idx(), std::invalid_argument);
BOOST_CHECK_THROW(pop2.best_idx(), std::invalid_argument);
BOOST_CHECK_THROW(pop2.worst_idx(), std::invalid_argument);
}
// Test on single objective
{
population pop{problem{rosenbrock{2}}};
pop.push_back({0.5, 0.5});
pop.push_back(pop.get_problem().extract<rosenbrock>()->best_known());
BOOST_CHECK(pop.worst_idx() == 0u);
BOOST_CHECK(pop.best_idx() == 1u);
}
// Test on constrained
{
population pop{problem{hock_schittkowski_71{}}};
pop.push_back({1.5, 1.5, 1.5, 1.5});
pop.push_back(pop.get_problem().extract<hock_schittkowski_71>()->best_known());
BOOST_CHECK(pop.worst_idx(1e-5) == 0u); // tolerance matter here!!!
BOOST_CHECK(pop.best_idx(1e-5) == 1u);
}
}
BOOST_AUTO_TEST_CASE(population_setters_test)
{
population pop{problem{}, 2};
// Test throw
BOOST_CHECK_THROW(pop.set_xf(2, {3}, {1, 2, 3}), std::invalid_argument); // index invalid
BOOST_CHECK_THROW(pop.set_xf(1, {3, 2}, {1}), std::invalid_argument); // chromosome invalid
BOOST_CHECK_THROW(pop.set_xf(1, {3}, {1, 2}), std::invalid_argument); // fitness invalid
// Test set_xf
pop.set_xf(0, {3}, {1});
BOOST_CHECK((pop.get_x()[0] == vector_double{3}));
BOOST_CHECK((pop.get_f()[0] == vector_double{1}));
// Test set_x
pop.set_x(0, {1.2});
BOOST_CHECK((pop.get_x()[0] == vector_double{1.2}));
BOOST_CHECK(pop.get_f()[0] == pop.get_problem().fitness({1.2})); // works as counters are marked mutable
}
BOOST_AUTO_TEST_CASE(population_getters_test)
{
population pop{problem{}, 1, 1234u};
pop.set_xf(0, {3}, {1});
// Test
BOOST_CHECK((pop.get_f()[0] == vector_double{1}));
BOOST_CHECK(pop.get_seed() == 1234u);
BOOST_CHECK_NO_THROW(pop.get_ID());
// Streaming operator is tested to contain the problem stream
auto pop_string = boost::lexical_cast<std::string>(pop);
auto prob_string = boost::lexical_cast<std::string>(pop.get_problem());
BOOST_CHECK(pop_string.find(prob_string) != std::string::npos);
}
BOOST_AUTO_TEST_CASE(population_champion_test)
{
// Unconstrained case
{
population pop{problem{rosenbrock{2u}}};
// Upon construction of an empty population the Champion is empty
BOOST_CHECK((pop.champion_x() == vector_double{}));
BOOST_CHECK((pop.champion_f() == vector_double{}));
// We push back the origin, in Rosenbrock this has a fitness of 1.
pop.push_back({0., 0.});
BOOST_CHECK((pop.champion_x() == vector_double{0., 0.}));
BOOST_CHECK((pop.champion_f() == vector_double{1.}));
// We push back .1,.1, in Rosenbrock this has a fitness of 1.62 and thus should not trigger the champion update
pop.push_back({0.1, 0.1});
BOOST_CHECK((pop.champion_x() == vector_double{0., 0.}));
BOOST_CHECK((pop.champion_f() == vector_double{1.}));
// We push back 0.01,0.01, in Rosenbrock this has a fitness of 0.989901 and thus should trigger the champion
// update
pop.push_back({0.01, 0.01});
BOOST_CHECK((pop.champion_x() == vector_double{0.01, 0.01}));
BOOST_CHECK_CLOSE(pop.champion_f()[0], 0.989901, 1e-6);
// We set the chromosome of this last individual to something worse, the champion does not change
pop.set_x(2u, {0.1, 0.1});
BOOST_CHECK((pop.champion_x() == vector_double{0.01, 0.01}));
BOOST_CHECK_CLOSE(pop.champion_f()[0], 0.989901, 1e-6);
// We set the chromosome of this last individual to something better, the champion does change
pop.set_xf(2u, {0.123, 0.123}, {0.12});
BOOST_CHECK((pop.champion_x() == vector_double{0.123, 0.123}));
BOOST_CHECK((pop.champion_f() == vector_double{0.12}));
}
// Constrained case
{
population pop{problem{hock_schittkowski_71{}}};
// Upon construction of an empty population the Champion is empty
BOOST_CHECK((pop.champion_x() == vector_double{}));
BOOST_CHECK((pop.champion_f() == vector_double{}));
// We push back 1.1,1.1,.. in hock_schittkowski_71 this has a fitness of [ 5.093, -35.16, 23.5359]
pop.push_back({1.1, 1.1, 1.1, 1.1});
auto ch = pop.champion_f();
BOOST_CHECK((pop.champion_x() == vector_double{1.1, 1.1, 1.1, 1.1}));
// We push back all ones, in hock_schittkowski_71 this has a fitness of [ 4., -36., 24.] and does not trigger a
// champion update
pop.push_back({1., 1., 1., 1.});
BOOST_CHECK((pop.champion_x() == vector_double{1.1, 1.1, 1.1, 1.1}));
BOOST_CHECK((pop.champion_f() == ch));
// We push back 2.1,2.1, in hock_schittkowski_71 this has a fitness of [29.883 ,-22.36, 5.5519] and triggers a
// champion update
pop.push_back({2.1, 2.1, 2.1, 2.1});
BOOST_CHECK((pop.champion_x() == vector_double{2.1, 2.1, 2.1, 2.1}));
BOOST_CHECK((pop.champion_f() != ch));
ch = pop.champion_f();
// We set the chromosome of this last individual to something worse, the champion does not change
pop.set_xf(2u, {1.2, 1.3, 1.4, 1.5}, {12., 45., 55.});
BOOST_CHECK((pop.champion_x() == vector_double{2.1, 2.1, 2.1, 2.1}));
BOOST_CHECK(pop.champion_f() == ch);
// We set the chromosome of this last individual to something better, the champion does change
pop.set_xf(2u, {1.2, 1.3, 1.4, 1.5}, {12., 5., -55.});
BOOST_CHECK((pop.champion_x() == vector_double{1.2, 1.3, 1.4, 1.5}));
BOOST_CHECK((pop.champion_f() == vector_double{12., 5., -55.}));
}
// We check that requests to the champion cannot be made if the population
// contains a problem with more than 1 objective or is stochastic
population pop_mo{problem{zdt{}}, 2u};
BOOST_CHECK_THROW(pop_mo.champion_f(), std::invalid_argument);
BOOST_CHECK_THROW(pop_mo.champion_x(), std::invalid_argument);
population pop_sto{problem{inventory{12u}}, 2u};
BOOST_CHECK_THROW(pop_sto.champion_f(), std::invalid_argument);
BOOST_CHECK_THROW(pop_sto.champion_x(), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(population_serialization_test)
{
population pop{problem{}, 30, 1234u};
// Store the string representation of p.
std::stringstream ss;
auto before = boost::lexical_cast<std::string>(pop);
// Now serialize, deserialize and compare the result.
{
boost::archive::binary_oarchive oarchive(ss);
oarchive << pop;
}
// Change the content of p before deserializing.
pop = population{problem{zdt{5, 20u}}, 30};
{
boost::archive::binary_iarchive iarchive(ss);
iarchive >> pop;
}
auto after = boost::lexical_cast<std::string>(pop);
BOOST_CHECK_EQUAL(before, after);
}
struct minlp {
minlp(vector_double::size_type nix = 0u)
{
m_nix = nix;
}
vector_double fitness(const vector_double &x) const
{
return {std::sin(x[0] * x[1] * x[2]), x[0] + x[1] + x[2], x[0] * x[1] + x[1] * x[2] - x[0] * x[2]};
}
vector_double::size_type get_nobj() const
{
return 3u;
}
vector_double::size_type get_nix() const
{
return m_nix;
}
std::pair<vector_double, vector_double> get_bounds() const
{
return {{1, -1, 1}, {2, 1, 2}};
}
vector_double::size_type m_nix;
};
BOOST_AUTO_TEST_CASE(population_minlp_test)
{
population pop{problem{minlp{2}}, 30, 1234u};
for (decltype(pop.size()) i = 0u; i < pop.size(); ++i) {
BOOST_CHECK(pop.get_x()[i][2] == std::floor(pop.get_x()[i][2]));
BOOST_CHECK(pop.get_x()[i][1] == std::floor(pop.get_x()[i][1]));
}
}
BOOST_AUTO_TEST_CASE(population_cout_test)
{
population pop{problem{rosenbrock{2u}}};
population pop_sto{problem{inventory{12u}}, 3u};
population pop_mo{problem{zdt{}}, 3u};
BOOST_CHECK_NO_THROW(std::cout << pop);
BOOST_CHECK_NO_THROW(std::cout << pop_sto);
BOOST_CHECK_NO_THROW(std::cout << pop_mo);
}
BOOST_AUTO_TEST_CASE(population_bfe_ctor_test)
{
// Empty pop test. Use rosenbrock as we know
// it's fully thread-safe.
problem prob{rosenbrock{2u}};
population pop0{prob, bfe{}};
BOOST_CHECK(pop0.size() == 0u);
BOOST_CHECK(pop0.get_problem().get_fevals() == 0u);
// Population with 100 individuals, verify that
// the fitnesses are computed correctly.
population pop100{rosenbrock{2u}, bfe{}, 100, 42};
population pop100a{rosenbrock{2u}, 100, 42};
BOOST_CHECK(pop100.size() == 100u);
BOOST_CHECK(pop100.get_problem().get_fevals() == 100u);
for (auto i = 0u; i < 100u; ++i) {
BOOST_CHECK(pop100.get_f()[i] == prob.fitness(pop100.get_x()[i]));
BOOST_CHECK(pop100.get_x()[i] == pop100a.get_x()[i]);
BOOST_CHECK(pop100.get_f()[i] == pop100a.get_f()[i]);
BOOST_CHECK(pop100.get_ID()[i] == pop100a.get_ID()[i]);
}
BOOST_CHECK(pop100.champion_x() == pop100a.champion_x());
BOOST_CHECK(pop100.champion_f() == pop100a.champion_f());
// Same with 1000 individuals.
population pop1000{rosenbrock{2u}, bfe{}, 1000, 42};
population pop1000a{rosenbrock{2u}, 1000, 42};
BOOST_CHECK(pop1000.size() == 1000u);
BOOST_CHECK(pop1000.get_problem().get_fevals() == 1000u);
for (auto i = 0u; i < 1000u; ++i) {
BOOST_CHECK(pop1000.get_f()[i] == prob.fitness(pop1000.get_x()[i]));
BOOST_CHECK(pop1000.get_x()[i] == pop1000a.get_x()[i]);
BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
}
BOOST_CHECK(pop1000.champion_x() == pop1000a.champion_x());
BOOST_CHECK(pop1000.champion_f() == pop1000a.champion_f());
// Do a test with a UDBFE.
pop1000 = population{rosenbrock{2u}, thread_bfe{}, 1000, 42};
BOOST_CHECK(pop1000.size() == 1000u);
BOOST_CHECK(pop1000.get_problem().get_fevals() == 1000u);
for (auto i = 0u; i < 1000u; ++i) {
BOOST_CHECK(pop1000.get_f()[i] == prob.fitness(pop1000.get_x()[i]));
BOOST_CHECK(pop1000.get_x()[i] == pop1000a.get_x()[i]);
BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
BOOST_CHECK(pop1000.get_f()[i] == pop1000a.get_f()[i]);
}
BOOST_CHECK(pop1000.champion_x() == pop1000a.champion_x());
BOOST_CHECK(pop1000.champion_f() == pop1000a.champion_f());
}
// Ensure that we use proper floating-point comparisons
// when updating the champion of a population.
BOOST_AUTO_TEST_CASE(population_nan_champion)
{
population pop0{rosenbrock{2u}};
pop0.push_back({std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()});
BOOST_CHECK(std::isnan(pop0.champion_f()[0]));
pop0.push_back({std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()});
BOOST_CHECK(std::isnan(pop0.champion_f()[0]));
pop0.push_back({1, 2});
BOOST_CHECK(!std::isnan(pop0.champion_f()[0]));
pop0.push_back({std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()});
BOOST_CHECK(!std::isnan(pop0.champion_f()[0]));
}
|