1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
#define BOOST_TEST_MODULE pso_gen_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>
#include <iostream>
#include <limits> // std::numeric_limits<double>::infinity();
#include <numeric>
#include <string>
#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/pso_gen.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/rng.hpp>
using namespace pagmo;
struct my_sto_prob {
my_sto_prob(unsigned dim = 2u, unsigned sample_size = 10u, unsigned seed = pagmo::random_device::next())
: m_dim(dim), m_sample_size(sample_size), m_e(seed), m_seed(seed)
{
}
/// Sets the seed
/**
* @param seed the random number generator seed
*/
void set_seed(unsigned seed)
{
m_seed = seed;
}
vector_double fitness(const vector_double &x) const
{
// We seed the random engine
m_e.seed(m_seed);
// We construct a uniform distribution from 0 to 1.
auto drng = std::normal_distribution<double>(0., 1.0);
auto x_copy = x;
std::transform(x.begin(), x.end(), x_copy.begin(), [](const double &el) { return std::pow(el, 2.); });
double retval = 0;
for (auto i = 0u; i < m_sample_size; ++i) {
auto noise = drng(m_e);
retval += noise;
}
double spam = std::pow(std::accumulate(x_copy.begin(), x_copy.end(), 0.0), 1. / 5.);
retval = (retval / m_sample_size) + spam;
return {retval};
}
/// Box-bounds
/**
*
* It returns the box-bounds for this UDP.
*
* @return the lower and upper bounds for each of the decision vector components
*/
std::pair<vector_double, vector_double> get_bounds() const
{
vector_double lb(m_dim, -100.);
vector_double ub(m_dim, 100.);
return {lb, ub};
}
// problem dimension
unsigned m_dim = 2u;
// sample size
unsigned m_sample_size = 10u;
// Random engine
mutable detail::random_engine_type m_e;
// Seed
unsigned m_seed;
};
BOOST_AUTO_TEST_CASE(construction)
{
BOOST_CHECK_NO_THROW(pso_gen{});
pso_gen user_algo{100, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
BOOST_CHECK(user_algo.get_verbosity() == 0u);
BOOST_CHECK(user_algo.get_seed() == 23u);
BOOST_CHECK((user_algo.get_log() == pso_gen::log_type{}));
BOOST_CHECK_NO_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}));
BOOST_CHECK_THROW((pso_gen{100, -0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 2.3, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, -1., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., -1., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 5., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 5., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., -2.3, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 1.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 8u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 0u, 2u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 6u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 0u, 4u, false, 23u}), std::invalid_argument);
BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 2u, 0u, false, 23u}), std::invalid_argument);
}
BOOST_AUTO_TEST_CASE(evolve_test)
{
// We then check that the evolve throws if called on unsuitable problems
BOOST_CHECK_THROW(pso_gen{10u}.evolve(population{problem{rosenbrock{}}}), std::invalid_argument);
BOOST_CHECK_THROW(pso_gen{10u}.evolve(population{problem{zdt{}}, 15u}), std::invalid_argument);
BOOST_CHECK_THROW(pso_gen{10u}.evolve(population{problem{hock_schittkowski_71{}}, 15u}), std::invalid_argument);
// And a clean exit for 0 generations
population pop{rosenbrock{2u}, 20u};
BOOST_CHECK(pso_gen{0u}.evolve(pop).get_x()[0] == pop.get_x()[0]);
// We check that evolution is deterministic if the
// seed is controlled and for all algorithmic variants
// 1) for deterministic optimization
for (unsigned variant = 1u; variant <= 6u; ++variant) {
for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
problem prob{rosenbrock{10u}};
population pop1{prob, 5u, 23u};
pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
population pop2{prob, 5u, 23u};
pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
population pop3{prob, 5u, 23u};
user_algo2.set_seed(23u);
pop3 = user_algo2.evolve(pop3);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
}
}
// And with active memory
for (unsigned variant = 1u; variant <= 6u; ++variant) {
for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
problem prob{rosenbrock{10u}};
population pop1{prob, 5u, 23u};
pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
population pop2{prob, 5u, 23u};
pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
population pop3{prob, 5u, 23u};
pso_gen user_algo3{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 0u};
user_algo3.set_verbosity(1u);
user_algo3.set_seed(23u);
pop3 = user_algo3.evolve(pop3);
BOOST_CHECK(user_algo1.get_log() == user_algo3.get_log());
}
}
// 2) for stochastic optimization
for (unsigned variant = 1u; variant <= 6u; ++variant) {
for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
problem prob{my_sto_prob{10u}};
population pop1{prob, 5u, 23u};
pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
population pop2{prob, 5u, 23u};
pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
population pop3{prob, 5u, 23u};
user_algo2.set_seed(23u);
pop3 = user_algo2.evolve(pop3);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
}
}
// And with active memory
for (unsigned variant = 1u; variant <= 6u; ++variant) {
for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
problem prob{my_sto_prob{10u}};
population pop1{prob, 5u, 23u};
pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
population pop2{prob, 5u, 23u};
pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
user_algo2.set_verbosity(1u);
pop2 = user_algo2.evolve(pop2);
BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
population pop3{prob, 5u, 23u};
pso_gen user_algo3{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 0u};
user_algo3.set_verbosity(1u);
user_algo3.set_seed(23u);
pop3 = user_algo3.evolve(pop3);
BOOST_CHECK(user_algo1.get_log() == user_algo3.get_log());
}
}
}
BOOST_AUTO_TEST_CASE(setters_getters_test)
{
pso_gen user_algo{5000u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
user_algo.set_verbosity(200u);
BOOST_CHECK(user_algo.get_verbosity() == 200u);
user_algo.set_seed(23u);
BOOST_CHECK(user_algo.get_seed() == 23u);
BOOST_CHECK(user_algo.get_name().find("Particle Swarm") != std::string::npos);
BOOST_CHECK(user_algo.get_name().find("GPSO") != std::string::npos);
BOOST_CHECK(user_algo.get_extra_info().find("Verbosity") != std::string::npos);
BOOST_CHECK_NO_THROW(user_algo.get_log());
}
BOOST_AUTO_TEST_CASE(serialization_test)
{
// Make one evolution
problem prob{my_sto_prob{25u}};
population pop{prob, 5u, 23u};
algorithm algo{pso_gen{500u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}};
algo.set_verbosity(23u);
pop = algo.evolve(pop);
// Store the string representation of p.
std::stringstream ss;
auto before_text = boost::lexical_cast<std::string>(algo);
auto before_log = algo.extract<pso_gen>()->get_log();
// Now serialize, deserialize and compare the result.
{
boost::archive::binary_oarchive oarchive(ss);
oarchive << algo;
}
// Change the content of p before deserializing.
algo = algorithm{};
{
boost::archive::binary_iarchive iarchive(ss);
iarchive >> algo;
}
auto after_text = boost::lexical_cast<std::string>(algo);
auto after_log = algo.extract<pso_gen>()->get_log();
BOOST_CHECK_EQUAL(before_text, after_text);
BOOST_CHECK(before_log == after_log);
for (auto i = 0u; i < before_log.size(); ++i) {
BOOST_CHECK_EQUAL(std::get<0>(before_log[i]), std::get<0>(after_log[i]));
BOOST_CHECK_EQUAL(std::get<1>(before_log[i]), std::get<1>(after_log[i]));
BOOST_CHECK_CLOSE(std::get<2>(before_log[i]), std::get<2>(after_log[i]), 1e-8);
BOOST_CHECK_CLOSE(std::get<3>(before_log[i]), std::get<3>(after_log[i]), 1e-8);
BOOST_CHECK_CLOSE(std::get<4>(before_log[i]), std::get<4>(after_log[i]), 1e-8);
BOOST_CHECK_CLOSE(std::get<5>(before_log[i]), std::get<5>(after_log[i]), 1e-8);
}
}
BOOST_AUTO_TEST_CASE(bug)
{
problem prob{rosenbrock{10u}};
population pop1{prob, 11u, 23u};
pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, 1u, 1u, 4u, false, 23u};
user_algo1.set_verbosity(1u);
pop1 = user_algo1.evolve(pop1);
}
BOOST_AUTO_TEST_CASE(bfe_usage_test_not_stoch)
{
population pop{rosenbrock{10u}, 30u, 23u};
pso_gen uda{40u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
uda.set_verbosity(1u);
uda.set_seed(23u);
uda.set_bfe(bfe{}); // This will use the default bfe.
pop = uda.evolve(pop);
population pop_2{rosenbrock{10u}, 30u, 23u};
pso_gen uda_2{40u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
uda_2.set_verbosity(1u);
uda_2.set_seed(23u);
pop_2 = uda_2.evolve(pop_2);
BOOST_CHECK(pop.get_f() == pop_2.get_f());
}
BOOST_AUTO_TEST_CASE(bfe_usage_test_stoch)
{
population pop{my_sto_prob{25u, 10, 5}, 30u, 23u};
pso_gen uda{45u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
uda.set_verbosity(1u);
uda.set_seed(23u);
uda.set_bfe(bfe{}); // This will use the default bfe.
pop = uda.evolve(pop);
population pop_2{my_sto_prob{25u, 10, 5}, 30u, 23u};
pso_gen uda_2{45u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
uda_2.set_verbosity(1u);
uda_2.set_seed(23u);
pop_2 = uda_2.evolve(pop_2);
BOOST_CHECK(pop.get_f() == pop_2.get_f());
}
|