File: pso_gen.cpp

package info (click to toggle)
pagmo 2.19.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 85,228 kB
  • sloc: cpp: 1,753,592; makefile: 223; sh: 121; python: 46
file content (336 lines) | stat: -rw-r--r-- 13,268 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* Copyright 2017-2021 PaGMO development team

This file is part of the PaGMO library.

The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 3 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library.  If not,
see https://www.gnu.org/licenses/. */

#define BOOST_TEST_MODULE pso_gen_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>

#include <iostream>
#include <limits> //  std::numeric_limits<double>::infinity();
#include <numeric>
#include <string>

#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>

#include <pagmo/algorithm.hpp>
#include <pagmo/algorithms/pso_gen.hpp>
#include <pagmo/population.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/rosenbrock.hpp>
#include <pagmo/problems/zdt.hpp>
#include <pagmo/rng.hpp>

using namespace pagmo;

struct my_sto_prob {

    my_sto_prob(unsigned dim = 2u, unsigned sample_size = 10u, unsigned seed = pagmo::random_device::next())
        : m_dim(dim), m_sample_size(sample_size), m_e(seed), m_seed(seed)
    {
    }

    /// Sets the seed
    /**
     * @param seed the random number generator seed
     */
    void set_seed(unsigned seed)
    {
        m_seed = seed;
    }

    vector_double fitness(const vector_double &x) const
    {
        // We seed the random engine
        m_e.seed(m_seed);
        // We construct a uniform distribution from 0 to 1.
        auto drng = std::normal_distribution<double>(0., 1.0);
        auto x_copy = x;

        std::transform(x.begin(), x.end(), x_copy.begin(), [](const double &el) { return std::pow(el, 2.); });
        double retval = 0;

        for (auto i = 0u; i < m_sample_size; ++i) {
            auto noise = drng(m_e);
            retval += noise;
        }
        double spam = std::pow(std::accumulate(x_copy.begin(), x_copy.end(), 0.0), 1. / 5.);
        retval = (retval / m_sample_size) + spam;
        return {retval};
    }

    /// Box-bounds
    /**
     *
     * It returns the box-bounds for this UDP.
     *
     * @return the lower and upper bounds for each of the decision vector components
     */
    std::pair<vector_double, vector_double> get_bounds() const
    {
        vector_double lb(m_dim, -100.);
        vector_double ub(m_dim, 100.);
        return {lb, ub};
    }

    // problem dimension
    unsigned m_dim = 2u;
    // sample size
    unsigned m_sample_size = 10u;
    // Random engine
    mutable detail::random_engine_type m_e;
    // Seed
    unsigned m_seed;
};

BOOST_AUTO_TEST_CASE(construction)
{
    BOOST_CHECK_NO_THROW(pso_gen{});
    pso_gen user_algo{100, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
    BOOST_CHECK(user_algo.get_verbosity() == 0u);
    BOOST_CHECK(user_algo.get_seed() == 23u);
    BOOST_CHECK((user_algo.get_log() == pso_gen::log_type{}));

    BOOST_CHECK_NO_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}));

    BOOST_CHECK_THROW((pso_gen{100, -0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
    BOOST_CHECK_THROW((pso_gen{100, 2.3, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);

    BOOST_CHECK_THROW((pso_gen{100, 0.79, -1., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., -1., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
    BOOST_CHECK_THROW((pso_gen{100, 0.79, 5., 2., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 5., 0.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);

    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., -2.3, 5u, 2u, 4u, false, 23u}), std::invalid_argument);
    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 1.1, 5u, 2u, 4u, false, 23u}), std::invalid_argument);

    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 8u, 2u, 4u, false, 23u}), std::invalid_argument);
    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 0u, 2u, 4u, false, 23u}), std::invalid_argument);

    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 6u, 4u, false, 23u}), std::invalid_argument);
    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 0u, 4u, false, 23u}), std::invalid_argument);

    BOOST_CHECK_THROW((pso_gen{100, 0.79, 2., 2., 0.1, 5u, 2u, 0u, false, 23u}), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(evolve_test)
{
    // We then check that the evolve throws if called on unsuitable problems
    BOOST_CHECK_THROW(pso_gen{10u}.evolve(population{problem{rosenbrock{}}}), std::invalid_argument);
    BOOST_CHECK_THROW(pso_gen{10u}.evolve(population{problem{zdt{}}, 15u}), std::invalid_argument);
    BOOST_CHECK_THROW(pso_gen{10u}.evolve(population{problem{hock_schittkowski_71{}}, 15u}), std::invalid_argument);
    // And a clean exit for 0 generations
    population pop{rosenbrock{2u}, 20u};
    BOOST_CHECK(pso_gen{0u}.evolve(pop).get_x()[0] == pop.get_x()[0]);

    // We check that evolution is deterministic if the
    // seed is controlled and for all algorithmic variants
    // 1) for deterministic optimization
    for (unsigned variant = 1u; variant <= 6u; ++variant) {
        for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
            problem prob{rosenbrock{10u}};
            population pop1{prob, 5u, 23u};
            pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
            user_algo1.set_verbosity(1u);
            pop1 = user_algo1.evolve(pop1);

            population pop2{prob, 5u, 23u};
            pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
            user_algo2.set_verbosity(1u);
            pop2 = user_algo2.evolve(pop2);
            BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());

            population pop3{prob, 5u, 23u};
            user_algo2.set_seed(23u);
            pop3 = user_algo2.evolve(pop3);
            BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
        }
    }
    // And with active memory
    for (unsigned variant = 1u; variant <= 6u; ++variant) {
        for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
            problem prob{rosenbrock{10u}};
            population pop1{prob, 5u, 23u};
            pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
            user_algo1.set_verbosity(1u);
            pop1 = user_algo1.evolve(pop1);

            population pop2{prob, 5u, 23u};
            pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
            user_algo2.set_verbosity(1u);
            pop2 = user_algo2.evolve(pop2);
            BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());

            population pop3{prob, 5u, 23u};
            pso_gen user_algo3{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 0u};
            user_algo3.set_verbosity(1u);
            user_algo3.set_seed(23u);
            pop3 = user_algo3.evolve(pop3);
            BOOST_CHECK(user_algo1.get_log() == user_algo3.get_log());
        }
    }
    // 2) for stochastic optimization
    for (unsigned variant = 1u; variant <= 6u; ++variant) {
        for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
            problem prob{my_sto_prob{10u}};
            population pop1{prob, 5u, 23u};
            pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
            user_algo1.set_verbosity(1u);
            pop1 = user_algo1.evolve(pop1);

            population pop2{prob, 5u, 23u};
            pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, false, 23u};
            user_algo2.set_verbosity(1u);
            pop2 = user_algo2.evolve(pop2);
            BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());

            population pop3{prob, 5u, 23u};
            user_algo2.set_seed(23u);
            pop3 = user_algo2.evolve(pop3);
            BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());
        }
    }
    // And with active memory
    for (unsigned variant = 1u; variant <= 6u; ++variant) {
        for (unsigned neighb_type = 1u; neighb_type <= 4u; ++neighb_type) {
            problem prob{my_sto_prob{10u}};
            population pop1{prob, 5u, 23u};
            pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
            user_algo1.set_verbosity(1u);
            pop1 = user_algo1.evolve(pop1);

            population pop2{prob, 5u, 23u};
            pso_gen user_algo2{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 23u};
            user_algo2.set_verbosity(1u);
            pop2 = user_algo2.evolve(pop2);
            BOOST_CHECK(user_algo1.get_log() == user_algo2.get_log());

            population pop3{prob, 5u, 23u};
            pso_gen user_algo3{10u, 0.79, 2., 2., 0.1, variant, neighb_type, 4u, true, 0u};
            user_algo3.set_verbosity(1u);
            user_algo3.set_seed(23u);
            pop3 = user_algo3.evolve(pop3);
            BOOST_CHECK(user_algo1.get_log() == user_algo3.get_log());
        }
    }
}
BOOST_AUTO_TEST_CASE(setters_getters_test)
{
    pso_gen user_algo{5000u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
    user_algo.set_verbosity(200u);
    BOOST_CHECK(user_algo.get_verbosity() == 200u);
    user_algo.set_seed(23u);
    BOOST_CHECK(user_algo.get_seed() == 23u);
    BOOST_CHECK(user_algo.get_name().find("Particle Swarm") != std::string::npos);
    BOOST_CHECK(user_algo.get_name().find("GPSO") != std::string::npos);
    BOOST_CHECK(user_algo.get_extra_info().find("Verbosity") != std::string::npos);
    BOOST_CHECK_NO_THROW(user_algo.get_log());
}

BOOST_AUTO_TEST_CASE(serialization_test)
{
    // Make one evolution
    problem prob{my_sto_prob{25u}};
    population pop{prob, 5u, 23u};
    algorithm algo{pso_gen{500u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u}};
    algo.set_verbosity(23u);
    pop = algo.evolve(pop);

    // Store the string representation of p.
    std::stringstream ss;
    auto before_text = boost::lexical_cast<std::string>(algo);
    auto before_log = algo.extract<pso_gen>()->get_log();
    // Now serialize, deserialize and compare the result.
    {
        boost::archive::binary_oarchive oarchive(ss);
        oarchive << algo;
    }
    // Change the content of p before deserializing.
    algo = algorithm{};
    {
        boost::archive::binary_iarchive iarchive(ss);
        iarchive >> algo;
    }
    auto after_text = boost::lexical_cast<std::string>(algo);
    auto after_log = algo.extract<pso_gen>()->get_log();
    BOOST_CHECK_EQUAL(before_text, after_text);
    BOOST_CHECK(before_log == after_log);
    for (auto i = 0u; i < before_log.size(); ++i) {
        BOOST_CHECK_EQUAL(std::get<0>(before_log[i]), std::get<0>(after_log[i]));
        BOOST_CHECK_EQUAL(std::get<1>(before_log[i]), std::get<1>(after_log[i]));
        BOOST_CHECK_CLOSE(std::get<2>(before_log[i]), std::get<2>(after_log[i]), 1e-8);
        BOOST_CHECK_CLOSE(std::get<3>(before_log[i]), std::get<3>(after_log[i]), 1e-8);
        BOOST_CHECK_CLOSE(std::get<4>(before_log[i]), std::get<4>(after_log[i]), 1e-8);
        BOOST_CHECK_CLOSE(std::get<5>(before_log[i]), std::get<5>(after_log[i]), 1e-8);
    }
}

BOOST_AUTO_TEST_CASE(bug)
{
    problem prob{rosenbrock{10u}};
    population pop1{prob, 11u, 23u};
    pso_gen user_algo1{10u, 0.79, 2., 2., 0.1, 1u, 1u, 4u, false, 23u};
    user_algo1.set_verbosity(1u);
    pop1 = user_algo1.evolve(pop1);
}

BOOST_AUTO_TEST_CASE(bfe_usage_test_not_stoch)
{
    population pop{rosenbrock{10u}, 30u, 23u};
    pso_gen uda{40u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
    uda.set_verbosity(1u);
    uda.set_seed(23u);
    uda.set_bfe(bfe{}); // This will use the default bfe.
    pop = uda.evolve(pop);

    population pop_2{rosenbrock{10u}, 30u, 23u};
    pso_gen uda_2{40u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
    uda_2.set_verbosity(1u);
    uda_2.set_seed(23u);
    pop_2 = uda_2.evolve(pop_2);

    BOOST_CHECK(pop.get_f() == pop_2.get_f());
}

BOOST_AUTO_TEST_CASE(bfe_usage_test_stoch)
{
    population pop{my_sto_prob{25u, 10, 5}, 30u, 23u};
    pso_gen uda{45u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
    uda.set_verbosity(1u);
    uda.set_seed(23u);
    uda.set_bfe(bfe{}); // This will use the default bfe.
    pop = uda.evolve(pop);

    population pop_2{my_sto_prob{25u, 10, 5}, 30u, 23u};
    pso_gen uda_2{45u, 0.79, 2., 2., 0.1, 5u, 2u, 4u, false, 23u};
    uda_2.set_verbosity(1u);
    uda_2.set_seed(23u);
    pop_2 = uda_2.evolve(pop_2);

    BOOST_CHECK(pop.get_f() == pop_2.get_f());
}