File: translate.cpp

package info (click to toggle)
pagmo 2.19.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 85,228 kB
  • sloc: cpp: 1,753,592; makefile: 223; sh: 121; python: 46
file content (258 lines) | stat: -rw-r--r-- 9,580 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
/* Copyright 2017-2021 PaGMO development team

This file is part of the PaGMO library.

The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:

  * the GNU Lesser General Public License as published by the Free
    Software Foundation; either version 3 of the License, or (at your
    option) any later version.

or

  * the GNU General Public License as published by the Free Software
    Foundation; either version 3 of the License, or (at your option) any
    later version.

or both in parallel, as here.

The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library.  If not,
see https://www.gnu.org/licenses/. */

#define BOOST_TEST_MODULE translate_test
#define BOOST_TEST_DYN_LINK
#include <boost/test/unit_test.hpp>

#include <boost/lexical_cast.hpp>
#include <boost/test/tools/floating_point_comparison.hpp>
#include <numeric>
#include <stdexcept>
#include <string>
#include <utility>

#include <pagmo/exceptions.hpp>
#include <pagmo/io.hpp>
#include <pagmo/problems/cec2006.hpp>
#include <pagmo/problems/cec2009.hpp>
#include <pagmo/problems/hock_schittkowski_71.hpp>
#include <pagmo/problems/inventory.hpp>
#include <pagmo/problems/null_problem.hpp>
#include <pagmo/problems/translate.hpp>
#include <pagmo/threading.hpp>
#include <pagmo/types.hpp>

using namespace pagmo;

BOOST_AUTO_TEST_CASE(translate_construction_test)
{
    // First we check directly the two constructors
    problem p0{translate{}};
    problem p1{translate{null_problem{}, {0.}}};

    auto p0_string = boost::lexical_cast<std::string>(p0);
    auto p1_string = boost::lexical_cast<std::string>(p1);

    // We check that the default constructor constructs a problem
    // which has an identical representation to the problem
    // built by the explicit constructor.
    BOOST_CHECK(p0_string == p1_string);

    // We check that wrong size for translation results in an invalid_argument
    // exception
    BOOST_CHECK_THROW((translate{null_problem{}, {1, 2}}), std::invalid_argument);
}

BOOST_AUTO_TEST_CASE(translate_functional_test)
{
    // Then we check that the hock_schittkowski_71 problem is actually translated
    {
        hock_schittkowski_71 hs;
        problem p0{hs};
        translate t1{hs, {0.1, -0.2, 0.3, 0.4}};
        problem p1{t1};
        problem p2{translate{t1, {-0.1, 0.2, -0.3, -0.4}}};
        vector_double x{3., 3., 3., 3.};
        // Fitness gradients and hessians are the same if the translation  is zero
        BOOST_CHECK(p0.fitness(x) == p2.fitness(x));
        BOOST_CHECK(p0.gradient(x) == p2.gradient(x));
        BOOST_CHECK(p0.hessians(x) == p2.hessians(x));
        // Bounds are unchanged if the translation is zero
        BOOST_CHECK(p0.get_bounds().first != p1.get_bounds().first);
        BOOST_CHECK(p0.get_bounds().first != p1.get_bounds().second);
        auto bounds0 = p0.get_bounds();
        auto bounds2 = p2.get_bounds();
        for (auto i = 0u; i < 4u; ++i) {
            BOOST_CHECK_CLOSE(bounds0.first[i], bounds2.first[i], 1e-13);
            BOOST_CHECK_CLOSE(bounds0.second[i], bounds2.second[i], 1e-13);
        }
        // We check that the problem's name has [translated] appended
        BOOST_CHECK(p1.get_name().find("[translated]") != std::string::npos);
        // We check that extra info has "Translation Vector:" somewhere"
        BOOST_CHECK(p1.get_extra_info().find("Translation Vector:") != std::string::npos);
        // We check we recover the translation vector
        auto translationvector = p1.extract<translate>()->get_translation();
        BOOST_CHECK((translationvector == vector_double{0.1, -0.2, 0.3, 0.4}));
    }
}

BOOST_AUTO_TEST_CASE(translate_serialization_test)
{
    // Do the checking with the full problem.
    hock_schittkowski_71 p0{};
    problem p{translate{p0, {0.1, -0.2, 0.3, 0.4}}};
    // Call objfun, grad and hess to increase
    // the internal counters.
    p.fitness({1., 1., 1., 1.});
    p.gradient({1., 1., 1., 1.});
    p.hessians({1., 1., 1., 1.});
    // Store the string representation of p.
    std::stringstream ss;
    auto before = boost::lexical_cast<std::string>(p);
    // Now serialize, deserialize and compare the result.
    {
        boost::archive::binary_oarchive oarchive(ss);
        oarchive << p;
    }
    // Change the content of p before deserializing.
    p = problem{};
    {
        boost::archive::binary_iarchive iarchive(ss);
        iarchive >> p;
    }
    auto after = boost::lexical_cast<std::string>(p);
    BOOST_CHECK_EQUAL(before, after);
}

BOOST_AUTO_TEST_CASE(translate_stochastic_test)
{
    hock_schittkowski_71 p0{};
    problem p{translate{p0, {0.1, -0.2, 0.3, 0.4}}};
    BOOST_CHECK(!p.is_stochastic());
}

struct ts2 {
    vector_double fitness(const vector_double &) const
    {
        return {2};
    }
    std::pair<vector_double, vector_double> get_bounds() const
    {
        return {{0}, {1}};
    }
    thread_safety get_thread_safety() const
    {
        return thread_safety::none;
    }
};

BOOST_AUTO_TEST_CASE(translate_thread_safety_test)
{
    hock_schittkowski_71 p0{};
    translate t{p0, {0.1, -0.2, 0.3, 0.4}};
    BOOST_CHECK(t.get_thread_safety() == thread_safety::basic);
    BOOST_CHECK((translate{ts2{}, {1}}.get_thread_safety() == thread_safety::none));
}

template <typename T>
void check_inheritance(T udp, const vector_double &t)
{
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).get_nobj(), problem(udp).get_nobj());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).get_nec(), problem(udp).get_nec());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).get_nic(), problem(udp).get_nic());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).get_nix(), problem(udp).get_nix());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).has_gradient(), problem(udp).has_gradient());
    BOOST_CHECK(translate(udp, t).gradient_sparsity() == problem(udp).gradient_sparsity());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).has_gradient_sparsity(), problem(udp).has_gradient_sparsity());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).has_hessians(), problem(udp).has_hessians());
    BOOST_CHECK(problem(translate(udp, t)).hessians_sparsity() == problem(udp).hessians_sparsity());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).has_hessians_sparsity(), problem(udp).has_hessians_sparsity());
    BOOST_CHECK_EQUAL(problem(translate(udp, t)).has_set_seed(), problem(udp).has_set_seed());
}

BOOST_AUTO_TEST_CASE(translate_inheritance_test)
{
    check_inheritance(hock_schittkowski_71{}, vector_double(4, 0.5));
    check_inheritance(cec2006{1}, vector_double(13, 0.5));
    check_inheritance(cec2009{1}, vector_double(30, 0.5));
    // We check the forwarding of the integer dimension. The translation needs to be integer too as to
    // not create a non integer bound.
    check_inheritance(null_problem{2, 2, 3, 1}, vector_double(1, 1));
    check_inheritance(null_problem{2, 2, 3, 0}, vector_double(1, 1));

    // We check if set_seed is working
    problem p{translate{inventory{10u, 10u, 1234567u}, vector_double(10, 1.)}};
    std::ostringstream ss1, ss2;
    ss1 << p;
    BOOST_CHECK(ss1.str().find(std::to_string(1234567u)) != std::string::npos);
    p.set_seed(5672543u);
    ss2 << p;
    BOOST_CHECK(ss2.str().find(std::to_string(5672543u)) != std::string::npos);
}

BOOST_AUTO_TEST_CASE(translate_inner_algo_get_test)
{
    // We check that the correct overload is called according to (*this) being const or not
    {
        const translate udp(hock_schittkowski_71{}, vector_double(4, 0.5));
        BOOST_CHECK(std::is_const<decltype(udp)>::value);
        BOOST_CHECK(std::is_const<std::remove_reference<decltype(udp.get_inner_problem())>::type>::value);
    }
    {
        translate udp(hock_schittkowski_71{}, vector_double(4, 0.5));
        BOOST_CHECK(!std::is_const<decltype(udp)>::value);
        BOOST_CHECK(!std::is_const<std::remove_reference<decltype(udp.get_inner_problem())>::type>::value);
    }
}

struct udp_with_bfe {
    vector_double fitness(const vector_double &) const
    {
        return {2};
    }
    vector_double batch_fitness(const vector_double &xs) const
    {
        vector_double fvs(xs.size() / 2u);

        for (decltype(xs.size()) i = 0; i < xs.size() / 2u; ++i) {
            fvs[i] = 10. * (xs[i] + xs[i + 1u]);
        }

        return fvs;
    }
    std::pair<vector_double, vector_double> get_bounds() const
    {
        return {{0, 0}, {1, 1}};
    }
};

BOOST_AUTO_TEST_CASE(translate_batch_fitness_test)
{
    problem p0{udp_with_bfe{}};
    problem p1{translate{udp_with_bfe{}, {1, 1}}};
    problem p2{translate{translate{udp_with_bfe{}, {1, 1}}, {-1, -1}}};

    BOOST_CHECK(p0.has_batch_fitness());
    BOOST_CHECK(p1.has_batch_fitness());
    BOOST_CHECK(p2.has_batch_fitness());

    vector_double dvs(10000u * 2u);
    std::iota(dvs.begin(), dvs.end(), 0.);

    auto fvs0 = p0.batch_fitness(dvs);
    auto fvs1 = p1.batch_fitness(dvs);
    auto fvs2 = p2.batch_fitness(dvs);

    BOOST_CHECK(fvs0 != fvs1);
    BOOST_CHECK(fvs0 == fvs2);

    auto no_bfe = problem{translate{hock_schittkowski_71{}, {0.1, -0.2, 0.3, 0.4}}};
    BOOST_CHECK(!no_bfe.has_batch_fitness());
    BOOST_CHECK_THROW(no_bfe.batch_fitness({3., 3., 3., 3.}), not_implemented_error);
}