1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
/* Copyright 2017-2021 PaGMO development team
This file is part of the PaGMO library.
The PaGMO library is free software; you can redistribute it and/or modify
it under the terms of either:
* the GNU Lesser General Public License as published by the Free
Software Foundation; either version 3 of the License, or (at your
option) any later version.
or
* the GNU General Public License as published by the Free Software
Foundation; either version 3 of the License, or (at your option) any
later version.
or both in parallel, as here.
The PaGMO library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received copies of the GNU General Public License and the
GNU Lesser General Public License along with the PaGMO library. If not,
see https://www.gnu.org/licenses/. */
// In this tutorial we implement the simple problem of minimizing
// f = x1^2 + x2^2 + x3^2 + x4^2 in the bounds:
// -10 <= xi <= 10
// All we need to do is to implement a struct (or class) having the
// following mandatory methods:
//
// fitness_vector fitness(const decision_vector &) const
// std::pair<decision_vector, decision_vector> get_bounds() const
#include <string>
#include <pagmo/io.hpp>
#include <pagmo/problem.hpp>
#include <pagmo/types.hpp>
using namespace pagmo;
struct problem_basic {
// Mandatory, computes ... well ... the fitness
vector_double fitness(const vector_double &x) const
{
return {x[0] * x[0] + x[1] * x[1] + x[2] * x[2] + x[3] * x[3]};
}
// Mandatory, returns the box-bounds
std::pair<vector_double, vector_double> get_bounds() const
{
return {{-10, -10, -10, -10}, {10, 10, 10, 10}};
}
// Optional, provides a name for the problem overriding the default name
std::string get_name() const
{
return "My Problem";
}
// Optional, provides extra information that will be appended after
// the default stream operator
std::string get_extra_info() const
{
return "This is a simple toy stochastic problem with one objective, no constraints and a fixed dimension of 4.";
}
// Optional methods-data can also be accessed later via
// the problem::extract() method
vector_double best_known() const
{
return {0., 0., 0., 0.};
}
};
int main()
{
// Constructing a problem
problem p0{problem_basic{}};
// Streaming to screen the problem
std::cout << p0 << '\n';
// Getting its dimensions
std::cout << "Calling the dimension getter: " << p0.get_nx() << '\n';
std::cout << "Calling the fitness dimension getter: " << p0.get_nobj() << '\n';
// Getting the bounds via the pagmo::print eating also std containers
pagmo::print("Calling the bounds getter: ", p0.get_bounds(), "\n");
// As soon as a problem its created its function evaluation counter
// is set to zero. Checking its value is easy
pagmo::print("fevals: ", p0.get_fevals(), "\n");
// Computing one fitness
pagmo::print("calling fitness in x=[2,2,2,2]: ", p0.fitness({2, 2, 2, 2}), "\n");
// The evaluation counter is now ... well ... 1
pagmo::print("fevals: ", p0.get_fevals(), "\n");
// The evaluation counter is now ... well ... 1
pagmo::print("fevals: ", p0.get_fevals(), "\n");
// While our problem_basic struct is now hidden inside the pagmo::problem
// we can still access its methods / data via the extract interface
pagmo::print("Accessing best_known: ", p0.extract<problem_basic>()->best_known(), "\n");
}
|