File: data_publish.cpp

package info (click to toggle)
paho.mqtt.cpp 1.5.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,672 kB
  • sloc: cpp: 13,068; ansic: 113; sh: 55; makefile: 22
file content (352 lines) | stat: -rw-r--r-- 11,498 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// data_publish.cpp
//
// This is a Paho MQTT C++ client, sample application.
//
// It's an example of how to collect and publish periodic data to MQTT, as
// an MQTT publisher using the C++ asynchronous client interface.
//
// The sample demonstrates:
//  - Connecting to an MQTT server/broker
//  - Publishing messages
//  - Using a topic object to repeatedly publish to the same topic.
//  - Automatic reconnects
//  - Off-line buffering
//  - User file-based persistence with simple encoding.
//
// This just uses the steady clock to run a periodic loop. Each time
// through, it generates a random number [0-100] as simulated data and
// creates a text, CSV payload in the form:
//  	<sample #>,<time stamp>,<data>
//
// Note that it uses the steady clock to pace the periodic timing, but then
// reads the system_clock to generate the timestamp for local calendar time.
//
// The sample number is just a counting integer to help test the off-line
// buffering to easily confirm that all the messages got across.
//

/*******************************************************************************
 * Copyright (c) 2013-2024 Frank Pagliughi <fpagliughi@mindspring.com>
 *
 * All rights reserved. This program and the accompanying materials
 * are made available under the terms of the Eclipse Public License v2.0
 * and Eclipse Distribution License v1.0 which accompany this distribution.
 *
 * The Eclipse Public License is available at
 *    http://www.eclipse.org/legal/epl-v20.html
 * and the Eclipse Distribution License is available at
 *   http://www.eclipse.org/org/documents/edl-v10.php.
 *
 * Contributors:
 *    Frank Pagliughi - initial implementation and documentation
 *******************************************************************************/

#include <algorithm>
#include <chrono>
#include <condition_variable>
#include <csignal>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <filesystem>
#include <fstream>
#include <iostream>
#include <mutex>
#include <random>
#include <string>
#include <thread>

#include "mqtt/async_client.h"

using namespace std;
using namespace std::chrono;
namespace fs = std::filesystem;

const std::string DFLT_SERVER_URI{"mqtt://localhost:1883"};
const std::string CLIENT_ID{"paho-cpp-data-publish"};

const string TOPIC{"data/rand"};
const int QOS = 1;

// How often we output a data point
const auto PERIOD = seconds(5);

// The number of out-bound messages we will buffer locally when disconnected.
const int MAX_BUFFERED_MSGS = 120;  // 120 * 5sec => 10min off-line buffering

// Top-level directory to keep persistence data
const fs::path PERSIST_DIR{"persist"};

// A key for encoding the persistence data
const string PERSIST_KEY{"elephant"};

// Class to pace timing and signal and exit without delay.
class quit_signal
{
    condition_variable cv_;
    mutex mtx_;
    bool quit_{false};

public:
    template <class Clock, class Duration>
    bool wait_until(const time_point<Clock, Duration>& abs_time)
    {
        unique_lock lk(mtx_);
        return cv_.wait_until(lk, abs_time, [this] { return quit_; });
    }

    void signal()
    {
        unique_lock<mutex> lk(mtx_);
        quit_ = true;
        lk.unlock();
        cv_.notify_one();
    }
};

// Variable to pace timing and signal exit
quit_signal quit;

/////////////////////////////////////////////////////////////////////////////

// Example of user-based file persistence with a simple XOR encoding scheme.
//
// Similar to the built-in file persistence, this just creates a
// subdirectory for the persistence data, then places each key into a
// separate file using the key as the file name.
//
// With user-defined persistence, you can transform the data in any way you
// like, such as with encryption/decryption, and you can store the data any
// place you want, such as here with disk files, or use a local DB like
// SQLite or a local key/value store like Redis.
class encoded_file_persistence : virtual public mqtt::iclient_persistence
{
    // The directory for the persistence store.
    fs::path dir_;

    // A key for encoding the data, as supplied by the user
    string encodeKey_;

    // Simple, in-place XOR encoding and decoding
    void encode(string& s) const
    {
        size_t n = encodeKey_.size();
        if (n == 0 || s.empty())
            return;

        for (size_t i = 0; i < s.size(); ++i) s[i] ^= encodeKey_[i % n];
    }

    // Gets the persistence file name for the supplied key.
    fs::path path_name(const string& key) const { return dir_ / key; }

public:
    // Create the persistence object with the specified encoding key
    encoded_file_persistence(const string& encodeKey) : encodeKey_(encodeKey) {}

    // "Open" the persistence store.
    // Create a directory for persistence files, using the client ID and
    // serverURI to make a unique directory name. Note that neither can be
    // empty. In particular, the app can't use an empty `clientID` if it
    // wants to use persistence. (This isn't an absolute rule for your own
    // persistence, but you do need a way to keep data from different apps
    // separate).
    void open(const string& clientId, const string& serverURI) override
    {
        if (clientId.empty() || serverURI.empty())
            throw mqtt::persistence_exception();

        // Create a name for the persistence subdirectory for this client
        string name = serverURI + "-" + clientId;
        std::replace(name.begin(), name.end(), ':', '-');

        dir_ = PERSIST_DIR;
        dir_ /= name;

        fs::create_directories(dir_);
    }

    // Close the persistent store that was previously opened.
    // Remove the persistence directory, if it's empty.
    void close() override
    {
        fs::remove(dir_);
        fs::remove(dir_.parent_path());
    }

    // Clears persistence, so that it no longer contains any persisted data.
    // Just remove all the files from the persistence directory.
    void clear() override
    {
        // We could iterate through and remove each file,
        // but this does the same thing in fewer steps.
        if (!fs::is_empty(dir_)) {
            fs::remove_all(dir_);
            fs::create_directories(dir_);
        }
    }

    // Returns whether or not data is persisted using the specified key.
    // We just look for a file in the store directory with the same name as
    // the key.
    bool contains_key(const string& key) override
    {
        if (fs::exists(dir_)) {
            for (const auto& entry : fs::directory_iterator(dir_)) {
                if (entry.path().filename() == key)
                    return true;
            }
        }
        return false;
    }

    // Returns the keys in this persistent data store.
    // We just make a collection of the file names in the store directory.
    mqtt::string_collection keys() const override
    {
        mqtt::string_collection ks;

        if (fs::exists(dir_)) {
            for (const auto& entry : fs::directory_iterator(dir_)) {
                ks.push_back(entry.path().filename().string());
            }
        }
        return ks;
    }

    // Puts the specified data into the persistent store.
    // We just encode the data and write it to a file using the key as the
    // name of the file. The multiple buffers given here need to be written
    // in order - and a scatter/gather like writev() would be fine. But...
    // the data will be read back as a single buffer, so here we first
    // concat a string so that the encoding key lines up with the data the
    // same way it will on the read-back.
    void put(const string& key, const std::vector<mqtt::string_view>& bufs) override
    {
        auto path = path_name(key);

        ofstream os(path, ios_base::binary);
        if (!os)
            throw mqtt::persistence_exception();

        string s;
        for (const auto& b : bufs) s.append(b.data(), b.size());

        encode(s);
        os.write(s.data(), s.size());
    }

    // Gets the specified data out of the persistent store.
    // We look for a file with the name of the key, read the contents,
    // decode, and return it.
    string get(const string& key) const override
    {
        auto path = path_name(key);

        ifstream is(path, ios_base::ate | ios_base::binary);
        if (!is)
            throw mqtt::persistence_exception();

        // Read the whole file into a string
        streamsize sz = is.tellg();
        if (sz == 0)
            return string();

        is.seekg(0);
        string s(sz, '\0');
        is.read(&s[0], sz);
        if (is.gcount() < sz)
            s.resize(is.gcount());

        encode(s);
        return s;
    }

    // Remove the data for the specified key.
    // Just remove the file with the same name as the key, if found.
    void remove(const string& key) override
    {
        auto path = path_name(key);
        fs::remove(path);
    }
};

/////////////////////////////////////////////////////////////////////////////

// Handler for ^C (SIGINT)
void ctrlc_handler(int) { quit.signal(); }

// --------------------------------------------------------------------------

int main(int argc, char* argv[])
{
    string serverURI = (argc > 1) ? string{argv[1]} : DFLT_SERVER_URI;

    // Create a persistence object
    encoded_file_persistence persist{PERSIST_KEY};

    // Create a client to use the persistence.
    mqtt::async_client cli(serverURI, CLIENT_ID, MAX_BUFFERED_MSGS, &persist);

    auto connOpts = mqtt::connect_options_builder()
                        .keep_alive_interval(MAX_BUFFERED_MSGS * PERIOD)
                        .clean_session(false)
                        .automatic_reconnect(true)
                        .finalize();

    // Create a topic object. This is a conventience since we will
    // repeatedly publish messages with the same parameters.
    mqtt::topic top(cli, TOPIC, QOS, true);

    // Random number generator [0 - 100]
    random_device rnd;
    mt19937 gen(rnd());
    uniform_int_distribution<> dis(0, 100);

    try {
        // Connect to the MQTT broker
        cout << "Connecting to server '" << serverURI << "'..." << flush;
        cli.connect(connOpts)->wait();
        cout << "OK\n" << endl;

        char tmbuf[32];
        unsigned nsample = 0;

        // Install a ^C handler for user to signal when to exit
        signal(SIGINT, ctrlc_handler);

        // The steady time at which to read the next sample
        auto tm = steady_clock::now() + 250ms;

        // Pace the sampling by letting the condition variable time out
        // periodically. When 'quit' is signaled, it's time to quit.
        while (!quit.wait_until(tm)) {
            // Get a timestamp and format as a string
            time_t t = system_clock::to_time_t(system_clock::now());
            strftime(tmbuf, sizeof(tmbuf), "%F %T", localtime(&t));

            // Simulate reading some data
            int x = dis(gen);

            // Create the payload as a text CSV string
            string payload = to_string(++nsample) + "," + tmbuf + "," + to_string(x);
            cout << payload << endl;

            // Publish to the topic
            top.publish(std::move(payload));

            tm += PERIOD;
        }

        // Disconnect
        cout << "\nDisconnecting..." << flush;
        cli.disconnect()->wait();
        cout << "OK" << endl;
    }
    catch (const mqtt::exception& exc) {
        cerr << exc.what() << endl;
        return 1;
    }

    return 0;
}