1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906
|
#include "Global.h"
#include "Rat.h"
#define MAX_BAD_EQ (POLY_Dmax>5) /* previously 6; needed for nef !? */
#define SHOW_NEW_CEq (POLY_Dmax>12)
#ifndef CEQ_Nmax
#define CEQ_Nmax EQUA_Nmax
#endif
typedef struct {int ne; Equation e[CEQ_Nmax];} CEqList;
/* ====================================================================== */
/* ========== ========== */
/* ========== I N C I D E N C E S (as bit patterns) ========== */
/* ========== ========== */
/* ====================================================================== */
#if (VERT_Nmax > LONG_LONG_Nbits)
INCI INCI_AND(INCI x, INCI y){
INCI z; int i; for (i=0;i<I_NUI;i++) z.ui[i]=(x.ui[i])&(y.ui[i]); return z;}
INCI INCI_OR(INCI x, INCI y){
INCI z; int i; for (i=0;i<I_NUI;i++) z.ui[i]=(x.ui[i])|(y.ui[i]); return z;}
INCI INCI_XOR(INCI x, INCI y){
INCI z; int i; for (i=0;i<I_NUI;i++) z.ui[i]=(x.ui[i])^(y.ui[i]); return z;}
int INCI_EQ(INCI x, INCI y){
int i; for (i=0;i<I_NUI;i++) if ((x.ui[i])!=(y.ui[i])) return 0; return 1;}
int INCI_EQ_0(INCI x){
int i; for (i=0;i<I_NUI;i++) if (x.ui[i]) return 0; return 1;}
int INCI_LE(INCI x, INCI y){
int i;
/* for (i=0;i<I_NUI;i++) if ((x.ui[i]|y.ui[i])!=(y.ui[i])) return 0; */
unsigned int *X=x.ui, *Y=y.ui;
for (i=0;i<I_NUI;i++) if ((X[i]|Y[i])!=(Y[i])) return 0;
return 1;}
INCI INCI_0(){
INCI z; int i; for (i=0;i<I_NUI;i++) z.ui[i]=0; return z;}
INCI INCI_1(){
INCI z; int i; z.ui[0]=1; for (i=1;i<I_NUI;i++) z.ui[i]=0; return z;}
INCI INCI_PN(INCI x, Long y){
INCI z; int i;
z.ui[0]=(x.ui[0]<<1)|(!y);
for (i=1;i<I_NUI;i++) z.ui[i]=(x.ui[i]<<1)|(x.ui[i-1]>>(INT_Nbits-1));
return z;}
INCI INCI_D2(INCI x){
INCI z; int i;
for (i=0;i<I_NUI-1;i++) z.ui[i]=(x.ui[i]>>1)|(x.ui[i+1]<<(INT_Nbits-1));
z.ui[I_NUI-1]=x.ui[I_NUI-1]>>1;
return z;}
int INCI_lex_GT(INCI *x, INCI *y){
int i=I_NUI; while(i--) if(x->ui[i]>y->ui[i]) return 1;
else if(x->ui[i]<y->ui[i]) return 0; return 0; }
int INCI_LmR(INCI *x, INCI *y){ puts("Implement INCI_LmR"); exit(0); }
#else
int INCI_lex_GT(INCI *x, INCI *y){ return (*x > *y) ? 1 : 0 ; }
int INCI_LmR(INCI *x, INCI *y){ return (*x>*y) ? 1 : (*x<*y) ? -1 : 0; }
/* int Lead_Vert(INCI x){int i=0; while(!(x%2)) {i++; x/=2;} return i;} */
#endif
int INCI_abs(INCI X){
int abs=0; while(!INCI_EQ_0(X)) {abs+=INCI_M2(X); X=INCI_D2(X);} return abs;
}
INCI Eq_To_INCI(Equation *_Eq, PolyPointList *_P, VertexNumList *_V){
int j; INCI X=INCI_0();
for (j=0;j<_V->nv;j++) X=INCI_PN(X,Eval_Eq_on_V(_Eq,_P->x[_V->v[j]],_P->n));
return X;
}
int Print_INCI(INCI X) {
int i=0;
while(!INCI_EQ_0(X)) {printf("%d", (int) INCI_M2(X)); X=INCI_D2(X); i++;}
return i; /* number of printed bits */
}
void Print_FaceInfo(int M,FaceInfo *_I){
int i,j, k, l;
M--;
printf("Incidences as binary numbers [F-vector=(%d",_I->nf[0]);
for(i=1;i<=M;i++)printf(" %d",_I->nf[i]); puts(")]:");
puts("v[d][i]: sum_j Incidence(i'th dim-d-face, j-th vertex) x 2^j");
for(i=0;i<=M;i++) {
printf("v[%d]: ",i);
for(j=0;j<_I->nf[i];j++){
k=Print_INCI(_I->v[i][j]);
for (l=k;l<_I->nf[0];l++) printf("0");
printf(" ");}
puts(""); }
puts("f[d][i]: sum_j Incidence(i'th dim-d-face, j-th facet) x 2^j");
for(i=0;i<=M;i++) {
printf("f[%d]: ",i);
for(j=0;j<_I->nf[i];j++){
k=Print_INCI(_I->f[i][j]);
for (l=k;l<_I->nf[M];l++) printf("0");
printf(" ");}
puts(""); }
}
void Make_CD2Faces(PolyPointList *_P, VertexNumList *_V, EqList *_E,
FaceInfo *_I);
void Make_Incidence(PolyPointList *_P, VertexNumList *_V, EqList *_E,
FaceInfo *_I)
/* The incidence relations for faces are stored on the structure FaceInfo:
*
* int nf[d] == #faces(dim.=d) == #dual faces[dim.=n-d-1]
* INCI v[d][i] :: vertices on i-th dim=d face
* INCI f[d][i] :: dual vertices on face dual to i-th dim=n-d-1 face
* Long nip[d][i] :: #(IPs of i-th dim=d face)
* Long dip[d][i] :: #(IPs of i-th dim=n-d-1 face on dual)
*
* .v: compute vertices on facets; make intersections `&' of faces with facets
* while keeping only maximal intersections;
* .f: take analogous union; if same intersection again make union `|' of f's
*/
{ int i, j, M=_P->n-1, d=M, D;
assert(_E->ne<=VERT_Nmax);
_I->nf[M]=_E->ne;
for(i=0;i<_E->ne;i++)_I->v[M][i]=Eq_To_INCI(&_E->e[i],_P,_V); /* init .v*/
_I->f[M][--i]=INCI_1();
while(i--) _I->f[M][i]=INCI_PN(_I->f[M][i+1],1); /* init .f */
while((D=d--))
{ int *n=&_I->nf[d]; *n=0; /* #(d-faces) */
for(i=0; i<_I->nf[D]; i++) for(j=0; j<_I->nf[M]; j++)
{ int k; INCI x=INCI_AND(_I->v[D][i],_I->v[M][j]); /* x=candidate */
INCI u=INCI_OR(_I->f[D][i],_I->f[M][j]);
if( (!INCI_EQ(x,_I->v[D][i]))&&(INCI_abs(x)>d) )/* x!=vD & |x|>d */
{ for(k=0;k<*n;k++)
{ INCI *y=&_I->v[d][k],*v=&_I->f[d][k]; /* (*y)==v[d][k] */
if(INCI_LE(*y,x))
{ if(INCI_EQ(x,*y))
{ *v=INCI_OR(*v,u); break; /* x=y :: .f&=... */
}
else {int l=k; *y=x; _I->f[d][k]=u;/* x>y :: y=x;f= */
while((++l) < (*n))
if(INCI_LE(_I->v[d][l],x)) {(*n)--;
if(l<(*n)){_I->v[d][l]=_I->v[d][*n]; _I->f[d][l]=_I->f[d][*n];}}
else assert(!INCI_LE(x,_I->v[d][l]));
/* for(k++;k<*n;k++) if(!INCI_LE(x,_I->v[d][k])&&!INCI_LE(_I->v[d][k],x))
{Print_PPL(_P,"FACE_Info trouble");assert(0);} */
break;}
}
else if(INCI_LE(x,*y)) break; /* x<y :: break */
}
if(*n==k) /* non-comparable => new face */
{ assert(k<FACE_Nmax); _I->v[d][k]=x; _I->f[d][k]=u; (*n)++;
}
}
}
} d=_P->n; M=0; for(i=0;i<d;i++) M += _I->nf[i] * (1-2*(i%2));
if(M!=2*(d%2)){for(i=0;i<d;i++)printf("%3d",_I->nf[i]);puts("=F-vector");
Print_PPL(_P,"PPL for incidence error");Print_FaceInfo(_P->n,_I);
printf("d=%d euler=%d\n",d,M); assert(M==2*(d%2));}
}
/* ====================================================================== */
/* ========== ========== */
/* ========== G E N E R A L P U R P O S E R O U T I N E S ========== */
/* ========== ========== */
/* ====================================================================== */
void swap(int* i,int* j) {register int k; k=*i; *i=*j; *j=k;}
int diff(const void *a, const void *b){return *((int *) a) - *((int *) b);}
void Sort_VL(VertexNumList *_V){qsort(_V->v, _V->nv, sizeof(int), &diff);}
void Make_VEPM(PolyPointList *_P, VertexNumList *_V, EqList *_E,
PairMat PM){
int i, j;
for (i=0;i<_E->ne;i++) for (j=0;j<_V->nv;j++)
PM[i][j]=Eval_Eq_on_V(&_E->e[i],_P->x[_V->v[j]],_P->n);
}
int Transpose_PM(PairMat PM, PairMat DPM, int nv, int ne){
int i, j;
if((nv>EQUA_Nmax)||(ne>VERT_Nmax)) return 0;
for (i=0;i<ne;i++) for (j=0;j<nv;j++) DPM[j][i]=PM[i][j];
return 1;
}
int VNL_to_DEL(PolyPointList *_P, VertexNumList *_V, EqList *_DE){
int i, j;
if (_V->nv>EQUA_Nmax) return 0;
_DE->ne=_V->nv;
for (i=0;i<_V->nv;i++){
for (j=0;j<_P->n;j++) _DE->e[i].a[j]=_P->x[_V->v[i]][j];
_DE->e[i].c=1; }
return 1;
}
#define LLong_EEV (1) /* 1 @ [4662 4 20 333 422 1554 2329] */
#define TEST_EEV (0) /* compare Long to LLong EEV */
Equation EEV_To_Equation(Equation *_E1, Equation *_E2, Long *_V, int n){
/* Calculate the equation spanned by _V and the intersection of _E1, _E2 */
int i; Long l, m, g; Equation Eq;
l=Eval_Eq_on_V(_E2,_V,n);
m=Eval_Eq_on_V(_E1,_V,n);
g=NNgcd(l,m); assert(g); l/=g; m/=g;
#if ((!(LLong_EEV))||(TEST_EEV)) /* Long version */
for(i=0;i<n;i++) Eq.a[i]=l*_E1->a[i]-m*_E2->a[i];
{ int gcd=Eq.c=l*_E1->c-m*_E2->c;
for(i=0;i<n;i++) gcd=NNgcd(gcd,Eq.a[i]); assert(gcd);
if (gcd!=1) { for(i=0;i<n;i++) Eq.a[i]/=gcd; Eq.c/=gcd;}}
#endif
#if ((LLong_EEV)||(TEST_EEV)) /* LLong version */
{ LLong A[POLY_Dmax], C, G; for(i=0;i<n;i++)
A[i]=((LLong) l)*((LLong)_E1->a[i])-((LLong)m)*((LLong)_E2->a[i]);
G=C=((LLong) l)*((LLong)_E1->c)-((LLong)m)*((LLong)_E2->c);
for(i=0;i<n;i++) G=LNNgcd(G,A[i]); assert(G);
if(G!=1) {C/=G; for(i=0;i<n;i++) A[i]/=G;}
#if (TEST_EEV) /* Compare */
{ int e=(Eq.c!=C); for(i=0;i<n;i++) if(Eq.a[i]!=A[i]) e=1;
if(e) { printf("Error in EEV: l=%d m=%d g=%d\n",l,m,g);
for(i=0;i<n;i++)printf("%d ",_E1->a[i]);printf(" %d = E1\n",_E1->c);
for(i=0;i<n;i++)printf("%d ",_E2->a[i]);printf(" %d = E2\n",_E2->c);
for(i=0;i<n;i++)printf("%d ",Eq.a[i]);printf(" %d = Eq\n",Eq.c);
for(i=0;i<n;i++)printf("%d ",A[i]);printf(" %d = LL_Eq\n",C);
exit(0); }
}
#else
Eq.c=C; for(i=0;i<n;i++) Eq.a[i]=A[i];
#endif
}
#endif
return Eq;
}
Long Eval_Eq_on_V(Equation *E, Long *V, int i){
Long p=E->c; while(i--) p+=V[i]*E->a[i]; return p;
}
Long DualBraP1(Long *X, Long *Y, int n){
Long p=1; while(n--) p+=X[n] * Y[n]; return (Long) p;
}
Long CompareEq(Equation *X, Equation *Y, int n) { /* return "X-Y"; */
Long d; while(n--) if((d=X->a[n]-Y->a[n])) return d; return X->c-Y->c;
}
int Vec_Greater_Than(Long *X, Long *Y, int i){ /* return 1 iff `X > Y' */
while(i--) {if(X[i]>Y[i]) return 1; if(X[i]<Y[i]) return 0;}
puts("Identical points in Vec_Greater_Than !!"); exit(0); return 0;
}
int Vec_is_zero(Long *X, int i){ /* return 1 iff `X == 0' */
while(i--) if(X[i]) return 0; return 1;
}
int Vec_Equal(Long *X, Long *Y, int i){ /* return 1 iff `X == Y' */
while(i--) if(X[i]!=Y[i]) return 0; return 1;
}
void Swap_Vecs(Long *X, Long *Y, int i){ /* `X <--> Y' */
Long z; while(i--) {z=X[i]; X[i]=Y[i]; Y[i]=z;}
}
int Ref_Equations(EqList *_F){
int i; for (i=0;i<_F->ne;i++) if (_F->e[i].c!=1) return 0; return 1;
}
int Span_Check(EqList *_F, EqList *H, int *n){
int i, j;
for(i=0;i<H->ne;i++){
for(j=0;j<_F->ne;j++) if (!CompareEq(&(H->e[i]),&(_F->e[j]),*n)) break;
if(j==_F->ne) return 0; } /* didn't find H[i] among the F's */
return 1;
}
int IsGoodCEq(Equation *_E, PolyPointList *_P, VertexNumList *_V){
int i=_V->nv;
Long s;
while(!(s=Eval_Eq_on_V(_E, _P->x[_V->v[--i]], _P->n)));
if(s < 0) { int j=_P->n; while(j--) _E->a[j]=-_E->a[j]; _E->c=-_E->c; }
while(i) if(Eval_Eq_on_V(_E, _P->x[_V->v[--i]], _P->n) < 0) return 0;
return 1;
}
int Search_New_Vertex(Equation *_E, PolyPointList *_P){
int i, v=0;
Long *X=_P->x[0], x=Eval_Eq_on_V(_E,X,(_P->n));
for(i=1;i<_P->np;i++) {
Long *Y=_P->x[i], y=Eval_Eq_on_V(_E,Y,(_P->n));
if(y>x) continue;
if(y==x) if(Vec_Greater_Than(X,Y,_P->n)) continue;
v=i; X=Y; x=y; }
return v;
}
void Sort_PPL(PolyPointList *_P, VertexNumList *_V){
/* Vertices first, IP last */
int i,j;
for (i=0;i<_V->nv;i++){
Swap_Vecs(_P->x[i], _P->x[_V->v[i]], _P->n);
for (j=i+1;j<_V->nv;j++) if (_V->v[j]==i) _V->v[j]=_V->v[i];
_V->v[i]=i;}
for (i=_V->nv;i<_P->np-1;i++) if(Vec_is_zero(_P->x[i], _P->n)){
Swap_Vecs(_P->x[i], _P->x[_P->np-1], _P->n);
return;}
}
int EL_to_PPL(EqList *_E, PolyPointList *_P, int *n){
int i,j;
for (i=0;i<_E->ne;i++){
if (_E->e[i].c!=1) {_P->np=0; return 0;}
for (j=0;j<*n;j++) _P->x[i][j]=_E->e[i].a[j];}
_P->np=_E->ne;
_P->n=*n;
return 1;
}
/* ====================================================================== */
/* ========== ========== */
/* ========== S T A R T -- S I M P L E X ========== */
/* ========== ========== */
/* ====================================================================== */
/* return 0 <=> max.dim., E.ne==P.n+1, made Simplex of Vertices of P; *
* return (P.n-E.ne) == codim. > 0 <=> E.ne defining equations on E; */
/* #define NEW_START_SIMPLEX (1) 1 @ [16644 1 38 439 2315 5548 8303] */
#define VERT_WITH_MAX_DISTANCE (0) /* 0 @ [1845 2 15 97 247 610 874] */
#define LONG_EQ_FIRST (0) /* 0 @ [3425 2 7 137 429 1141 1709] */
#define TEST_GLZ_EQ (0) /* trace StartSimplex EQs */
Long VZ_to_Base(Long *V,int *d,Long M[POLY_Dmax][POLY_Dmax]) /* 0 iff V=0 */
{ int p[POLY_Dmax], i, j, J=0; Long g=0, W[POLY_Dmax], *G[POLY_Dmax];
for(i=0;i<*d;i++) if(V[i]) {W[J]=V[i]; G[J]=M[i]; p[J++]=i;}
else for(j=0;j<*d;j++) M[i][j]=(i==j);
if(J) if(p[0]) { G[0]=M[0]; for(j=0;j<*d;j++) M[p[0]][j]=(j==0);}
if(J>1) g=W_to_GLZ(W,&J,G); else if(J){g=*W; M[0][0]=0; M[0][p[0]]=1;}
if(J>1)
{ for(i=0;i<J;i++) { int I=J;
for(j=*d-1;j>=0;j--) G[i][j] = (V[j]) ? G[i][--I] : 0; assert(I==0);}
} return g;
}
int OrthBase_red_by_V(Long *V, int *d, Long A[][POLY_Dmax], int *r,
Long B[][POLY_Dmax])
{ int i, j, k; Long W[POLY_Dmax], G[POLY_Dmax][POLY_Dmax];
for(i=0;i<*r;i++) {int j; W[i]=0; for(j=0;j<*d;j++) W[i]+=A[i][j]*V[j];}
assert( VZ_to_Base(W,r,G) );
for(i=0;i<*r-1;i++) for(k=0;k<*d;k++)
{ B[i][k]=0; for(j=0;j<*r;j++) B[i][k]+=G[i+1][j]*A[j][k];
}
#if (TEST_GLZ_EQ)
printf("A -> B ... V = "); for(k=0;k<*d;k++) printf(" %5d",V[k]);
printf(" W=");for(k=0;k<*r;k++)printf(" %5d",W[k]);puts(""); {int
a,b; for(a=0;a<*r-1;a++){for(b=0;b<*d;b++)printf(" %5d",A[a][b]);
printf(" =A B= ");for(b=0;b<*d;b++)printf(" %5d",B[a][b]);
puts("");}for(b=0;b<*d;b++)printf(" %5d",A[a][b]);printf(" =A\n");}
#endif
return (*r)--;
}
int New_Start_Vertex(Long *V0,Long *Ea, PolyPointList *P,int *v) /* P.x[v] */
{ Equation E; int i, n=0, p=0; Long d, dn=0, dp=0, *Xn=P->x[0], *Xp=Xn;
for(i=0;i<P->n;i++) E.a[i]=Ea[i]; E.c=0; E.c=-Eval_Eq_on_V(&E,V0,P->n);
d=Eval_Eq_on_V(&E,P->x[0],P->n); if(d>0) dp=d; if(d<0) dn=d;
for(i=1;i<P->np;i++)
{ d=Eval_Eq_on_V(&E,P->x[i],P->n); if(d==0) continue;
if(d==dp) if(Vec_Greater_Than(P->x[i],Xp,P->n)) Xp=P->x[p=i];
if(d>dp) {dp=d; Xp=P->x[p=i];}
if(d==dn) if(Vec_Greater_Than(P->x[i],Xn,P->n)) Xn=P->x[n=i];
if(d<dn) {dn=d; Xn=P->x[n=i];}
}
if(dp) if(dn) /* points on both sides */
#if (VERT_WITH_MAX_DISTANCE)
{if(dp+dn>0) *v=p; else *v=n;}
#else
{if(dp+dn>0) *v=n; else *v=p;}
#endif
else *v=p; /* d >=0 */
else if(dn) *v=n; /* d <=0 */
else return 0;
/* for(i=0;i<P->n;i++) printf(" %d ",Xp[i]); printf(" = Xp Xn =");
for(i=0;i<P->n;i++) printf(" %d ",Xn[i]); printf(" \n");
*/
return 1;
}
/* ========= GLZ_Start_Simplex() => return codimension ======= */
int GLZ_Start_Simplex(PolyPointList *_P, VertexNumList *_V, CEqList *_C)
{ int i, x=0, y=0, *VN=_V->v, *d=&_P->n, r=*d, b[POLY_Dmax];
Long *X=_P->x[x], *Y=_P->x[y], XX=0, YY=0,
B[(POLY_Dmax*(POLY_Dmax+1))/2][POLY_Dmax], W[POLY_Dmax]; if(_P->np<2)
{ for(x=0;x<_P->n;x++) for(y=0;y<_P->n;y++) _C->e[x].a[y]=(x==y);
assert(_P->np>0); for(x=0;x<_P->n;x++) _C->e[x].c=-_P->x[0][x];
return _C->ne=_P->n;
}
for(i=1; i<_P->np; i++)
{ Long *Z=_P->x[i];
if(Vec_Greater_Than(X,Z,_P->n)) X=_P->x[x=i]; /* (x_n)-max: VN[0] */
if(Vec_Greater_Than(Z,Y,_P->n)) Y=_P->x[y=i]; /* (x_n)-min: VN[1] */
} assert(x!=y); /* at this point I need two different vertices */
for(i=0;i<*d;i++) { Long Xi=(X[i]>0) ? X[i]: -X[i],
Yi=(Y[i]>0) ? Y[i]: -Y[i]; if(Xi>XX)XX=Xi; if(Yi>YY)YY=Yi;}
if(YY<XX) {VN[0]=y;VN[1]=x;} else {VN[0]=x;VN[1]=y;} _V->nv=2; y=VN[1];
X=_P->x[VN[0]];Y=_P->x[VN[1]]; for(i=0;i<*d;i++) b[i]=(i*(2*(*d)-i+1))/2;
for(x=0;x<*d;x++) for(i=0;i<*d;i++) B[x][i]=(x==i); /* b[i+1]-b[i]=d-i */
for(x=1;x<*d;x++)
{ for(i=0;i<*d;i++) W[i]=_P->x[y][i]-X[i];
OrthBase_red_by_V(W,d,&B[b[x-1]],&r,&B[b[x]]); for(i=0;i<r;i++)
#if (LONG_EQ_FIRST)
if(New_Start_Vertex(X,B[b[x]+r-i-1],_P,&y)) break;
#else
if(New_Start_Vertex(X,B[b[x]+i],_P,&y)) break;
#endif
if(i==r) break; _V->v[_V->nv++]=y; /* x = dim(span) < d */
}
if(x<*d)
{ for(y=0;y<r;y++)
{ Equation *E=&_C->e[y]; Long *Z=B[b[x]+y];
E->c=0; for(i=0;i<*d;i++) E->a[i]=Z[i];
E->c=-Eval_Eq_on_V(E,X,_P->n);
} return _C->ne=r;
}
else
{ Equation *E=_C->e; Long *Z=B[b[*d-1]]; E->c=0; _C->ne=2;
for(i=0;i<*d;i++)E->a[i]=Z[i]; E->c=-Eval_Eq_on_V(E,X,_P->n);
if(Eval_Eq_on_V(E,_P->x[_V->v[*d]],_P->n)<0) {
for(i=0;i<*d;i++)E->a[i]=-Z[i]; E->c*=-1;}
X=_P->x[_V->v[r=*d]];
for(x=1;x<*d;x++) /* now the 2nd equation */
{ Y=_P->x[_V->v[x-1]]; for(i=0;i<*d;i++) W[i]=X[i]-Y[i];
OrthBase_red_by_V(W,d,&B[b[x-1]],&r,&B[b[x]]);
}
E=&_C->e[1]; E->c=0;
for(i=0;i<*d;i++)E->a[i]=Z[i]; E->c=-Eval_Eq_on_V(E,X,_P->n);
assert(XX=Eval_Eq_on_V(E,_P->x[_V->v[*d-1]],_P->n));
if(XX<0) {for(i=0;i<*d;i++)E->a[i]=-Z[i]; E->c*=-1;}
for(x=*d-2;x>=0;x--) /* omit vertex #x */
{ r=*d-x; for(y=x+1;y<*d;y++)
{ Y=_P->x[_V->v[y]]; for(i=0;i<*d;i++) W[i]=X[i]-Y[i];
OrthBase_red_by_V(W,d,&B[b[y-1]],&r,&B[b[y]]);
}
E=&_C->e[(_C->ne)++]; E->c=0;
for(i=0;i<*d;i++)E->a[i]=Z[i]; E->c=-Eval_Eq_on_V(E,X,_P->n);
assert(XX=Eval_Eq_on_V(E,_P->x[_V->v[x]],_P->n));
if(XX<0) {for(i=0;i<*d;i++)E->a[i]=-Z[i]; E->c*=-1;}
}
}
assert(*d+1==_C->ne); for(x=0;x<_C->ne;x++) for(i=0;i<=*d;i++)
assert((x==i)==(0!=Eval_Eq_on_V(&_C->e[x],_P->x[_V->v[*d-i]],_P->n)));
return 0;
}
/* ====================================================================== */
/* ========== ========== */
/* ========== P O L Y H E D R O N A N A L Y S I S ========== */
/* ========== ========== */
/* ====================================================================== */
void Make_New_CEqs(PolyPointList *_P, VertexNumList *_V, CEqList *_C,
EqList *_F, INCI *CEq_I, INCI *F_I){
int i,j, Old_C_ne=_C->ne;
static CEqList Bad_C;
static INCI Bad_C_I[CEQ_Nmax];
#if (SHOW_NEW_CEq)
static int init; static clock_t CLOCK1; static time_t DATE1;
if(!init){init=1; CLOCK1=clock(); DATE1=time(NULL);}
printf("V=%d F=%d: Ceq=%d",_V->nv,_F->ne,_C->ne);fflush(stdout);
#endif
Bad_C.ne=_C->ne=0;
for (i=0;i<Old_C_ne;i++){
Long dist = Eval_Eq_on_V(&_C->e[i],_P->x[_V->v[_V->nv-1]],_P->n);
CEq_I[i]=INCI_PN(CEq_I[i],dist);
if (dist<0) {Bad_C.e[Bad_C.ne]=_C->e[i]; Bad_C_I[Bad_C.ne++]=CEq_I[i];}
else {_C->e[_C->ne]=_C->e[i]; CEq_I[_C->ne++]=CEq_I[i];}}
#if (SHOW_NEW_CEq)
printf("=%dg+%db",_C->ne,Bad_C.ne);fflush(stdout);
#endif
Old_C_ne=_C->ne;
for (i=0;i<_F->ne;i++) F_I[i]=
INCI_PN(F_I[i],Eval_Eq_on_V(&_F->e[i],_P->x[_V->v[_V->nv-1]],_P->n));
for (j=0;j<_F->ne;j++) if (!INCI_M2(F_I[j]))
for (i=0;i<Bad_C.ne;i++){
INCI New_Face=INCI_AND(Bad_C_I[i],F_I[j]);
int k;
if (INCI_abs(New_Face)<_P->n-1) continue;
for (k=0;k<Bad_C.ne;k++) if (INCI_LE(New_Face,Bad_C_I[k]))
if (k!=i) break;
if (k!=Bad_C.ne) continue;
for (k=0;k<Old_C_ne;k++) if (INCI_LE(New_Face,CEq_I[k])) break;
if (k!=Old_C_ne) continue;
for (k=0;k<_F->ne;k++) if (INCI_LE(New_Face,F_I[k])) if (k!=j) break;
if (k!=_F->ne) continue;
assert(_C->ne<CEQ_Nmax);
CEq_I[_C->ne]=INCI_PN(INCI_D2(New_Face),0);
_C->e[_C->ne]=EEV_To_Equation(&(Bad_C.e[i]),&(_F->e[j]),
_P->x[_V->v[_V->nv-1]],_P->n);
assert(IsGoodCEq(&(_C->e[_C->ne++]),_P,_V));}
for (j=0;j<Old_C_ne;j++) if (!INCI_M2(CEq_I[j]))
for (i=Bad_C.ne-1;i>=0;i--){
INCI New_Face=INCI_AND(Bad_C_I[i],CEq_I[j]);
int k;
if (INCI_abs(New_Face)<_P->n-1) continue;
for (k=0;k<Bad_C.ne;k++) if (INCI_LE(New_Face,Bad_C_I[k]))
if (k!=i) break;
if (k!=Bad_C.ne) continue;
for (k=0;k<Old_C_ne;k++) if (INCI_LE(New_Face,CEq_I[k]))
if (k!=j) break;
if (k!=Old_C_ne) continue;
for (k=0;k<_F->ne;k++) if (INCI_LE(New_Face,F_I[k])) break;
if (k!=_F->ne) continue;
assert(_C->ne<CEQ_Nmax);
CEq_I[_C->ne]=INCI_PN(INCI_D2(New_Face),0);
_C->e[_C->ne]=EEV_To_Equation(&(Bad_C.e[i]),&(_C->e[j]),
_P->x[_V->v[_V->nv-1]],_P->n);
assert(IsGoodCEq(&(_C->e[_C->ne++]),_P,_V));}
#if (SHOW_NEW_CEq)
{time_t DATE2=time(NULL); char sm[2]={'s',0};
int Rs= (int)difftime(DATE2,DATE1);if(Rs>999){Rs/=60; *sm='m';}
printf(" done: C.ne=%d %d%s\n",_C->ne,Rs,sm);fflush(0);}
#endif
}
#if MAX_BAD_EQ
int IP_Search_Bad_Eq(CEqList *_C, EqList *_F, INCI *CEq_I, INCI *F_I,
PolyPointList *_P, int *_IP){ /* return 0 :: no bad eq. */
while(_C->ne--) {
int j, M=_C->ne; /* INCI_LmR INCI_lex_GT */
for(j=0;j<_C->ne;j++) if(INCI_lex_GT(&CEq_I[j],&CEq_I[M])) M=j;
for(j=0;j<_P->np;j++)
if(Eval_Eq_on_V(&(_C->e[M]),_P->x[j],_P->n) < 0) {
INCI AI=CEq_I[M]; Equation AE=_C->e[M];
CEq_I[M]=CEq_I[_C->ne]; _C->e[M]=_C->e[_C->ne];
CEq_I[_C->ne]=AI; _C->e[_C->ne]=AE; return ++_C->ne;}
if(_C->e[M].c < 1) {*_IP=0; return 1;}
assert(_F->ne<EQUA_Nmax);
/* printf("#Feq=%d #Ceq=%d\n",_F->ne,_C->ne); fflush(stdout); */
_F->e[_F->ne]=_C->e[M]; F_I[_F->ne++]=CEq_I[M];
if(M<_C->ne) {_C->e[M]=_C->e[_C->ne]; CEq_I[M]=CEq_I[_C->ne];} }
return 0;
}
int FE_Search_Bad_Eq(CEqList *_C, EqList *_F, INCI *CEq_I, INCI *F_I,
PolyPointList *_P, int *_IP){ /* return 0 :: no bad eq. */
while(_C->ne--) {
int j, M=_C->ne; /* INCI_LmR INCI_lex_GT */
for(j=0;j<_C->ne;j++) if(INCI_lex_GT(&CEq_I[j],&CEq_I[M])) M=j;
for(j=0;j<_P->np;j++)
if(Eval_Eq_on_V(&(_C->e[M]),_P->x[j],_P->n) < 0) {
INCI AI=CEq_I[M]; Equation AE=_C->e[M];
CEq_I[M]=CEq_I[_C->ne]; _C->e[M]=_C->e[_C->ne];
CEq_I[_C->ne]=AI; _C->e[_C->ne]=AE; return ++_C->ne;}
if(_C->e[M].c < 1) *_IP=0;
assert(_F->ne<EQUA_Nmax);
/* printf("#Feq=%d #Ceq=%d\n",_F->ne,_C->ne); fflush(stdout); */
_F->e[_F->ne]=_C->e[M]; F_I[_F->ne++]=CEq_I[M];
if(M<_C->ne) {_C->e[M]=_C->e[_C->ne]; CEq_I[M]=CEq_I[_C->ne];}
}
return 0;
}
#else
int IP_Search_Bad_Eq(CEqList *_C, EqList *_F, INCI *CEq_I, INCI *F_I,
PolyPointList *_P, int *_IP){ /* return 0 :: no bad eq. */
while(_C->ne--) {
int j;
for(j=0;j<_P->np;j++)
if(Eval_Eq_on_V(&(_C->e[_C->ne]),_P->x[j],_P->n) < 0) return ++_C->ne;
if(_C->e[_C->ne].c < 1) { *_IP=0; return 1;}
assert(_F->ne<EQUA_Nmax);
_F->e[_F->ne]=_C->e[_C->ne];
F_I[_F->ne++]=CEq_I[_C->ne];}
return 0;
}
int FE_Search_Bad_Eq(CEqList *_C, EqList *_F, INCI *CEq_I, INCI *F_I,
PolyPointList *_P, int *_IP){ /* return 0 :: no bad eq. */
while(_C->ne--) {
int j;
for(j=0;j<_P->np;j++)
if(Eval_Eq_on_V(&(_C->e[_C->ne]),_P->x[j],_P->n) < 0) return ++_C->ne;
if(_C->e[_C->ne].c < 1) *_IP=0;
assert(_F->ne<EQUA_Nmax);
_F->e[_F->ne]=_C->e[_C->ne];
F_I[_F->ne++]=CEq_I[_C->ne];}
return 0;
}
#endif
int REF_Search_Bad_Eq(CEqList *_C, EqList *_F, INCI *CEq_I, INCI *F_I,
PolyPointList *_P, int *_REF){ /* return 0 :: no bad eq. */
while(_C->ne--) {
int j;
for(j=0;j<_P->np;j++)
if(Eval_Eq_on_V(&(_C->e[_C->ne]),_P->x[j],_P->n) < 0) return ++_C->ne;
if(_C->e[_C->ne].c != 1) { *_REF=0; return 1;}
assert(_F->ne<EQUA_Nmax);
_F->e[_F->ne]=_C->e[_C->ne];
F_I[_F->ne++]=CEq_I[_C->ne];}
return 0;
}
int Finish_Find_Equations(PolyPointList *_P, VertexNumList *_V,
EqList *_F, CEqList *_CEq, INCI *F_I, INCI *CEq_I){
int IP=1;
while(0<=_CEq->ne) if (FE_Search_Bad_Eq(_CEq,_F,CEq_I,F_I,_P,&IP)){
assert(_V->nv<VERT_Nmax);
_V->v[_V->nv++]=Search_New_Vertex(&(_CEq->e[_CEq->ne-1]),_P);
Make_New_CEqs(_P,_V,_CEq,_F,CEq_I,F_I); }
return IP;
}
int Find_Equations(PolyPointList *_P, VertexNumList *_V, EqList *_F){
/* return: IP, finds Vertices and Equations for _P even if not IP */
int i;
CEqList *CEq = (CEqList *) malloc(sizeof(CEqList));
INCI *CEq_I = (INCI *) malloc(sizeof(INCI)*CEQ_Nmax);
INCI *F_I = (INCI *) malloc(sizeof(INCI)*EQUA_Nmax);
CEq->ne=0;
if((CEq==NULL)||(CEq_I==NULL)||(F_I==NULL)) {
printf("Allocation failure in Find_Equations\n"); exit(0);}
if (GLZ_Start_Simplex(_P, _V, CEq)) {
_F->ne=CEq->ne;
for(i=0;i<_F->ne;i++) _F->e[i]=CEq->e[i];
free(CEq); free(CEq_I); free(F_I);
return 0;}
_F->ne=0;
for (i=0;i<CEq->ne;i++)
if(INCI_abs(CEq_I[i]=Eq_To_INCI(&(CEq->e[i]),_P,_V))<_P->n)
{fprintf(outFILE,"Bad CEq in Find_Equations"); exit(0);}
i=Finish_Find_Equations(_P, _V, _F, CEq, F_I, CEq_I);
free(CEq); free(CEq_I); free(F_I);
return i;
}
int Finish_IP_Check(PolyPointList *_P, VertexNumList *_V, EqList *_F,
CEqList *_CEq, INCI *F_I, INCI *CEq_I){
int IP=1;
while(0<=_CEq->ne) if (IP_Search_Bad_Eq(_CEq,_F,CEq_I,F_I,_P,&IP)){
if(!IP) return 0; /* found d<=0 */
assert(_V->nv<VERT_Nmax);
_V->v[_V->nv++]=Search_New_Vertex(&(_CEq->e[_CEq->ne-1]),_P);
Make_New_CEqs(_P,_V,_CEq,_F,CEq_I,F_I); }
return 1;
}
int IP_Check(PolyPointList *_P, VertexNumList *_V, EqList *_F){
int i;
CEqList *CEq = (CEqList *) malloc(sizeof(CEqList));
INCI *CEq_I = (INCI *) malloc(sizeof(INCI)*CEQ_Nmax);
INCI *F_I = (INCI *) malloc(sizeof(INCI)*EQUA_Nmax);
if((CEq==NULL)||(CEq_I==NULL)||(F_I==NULL)) {
printf("Allocation failure in IP_Check\n"); exit(0);}
if (GLZ_Start_Simplex(_P, _V, CEq)) {
free(CEq); free(CEq_I); free(F_I); return 0;}
for (i=0;i<CEq->ne;i++)
if(INCI_abs(CEq_I[i]=Eq_To_INCI(&(CEq->e[i]),_P,_V))<_P->n)
{fprintf(outFILE,"Bad CEq in IP_Check"); exit(0);}
_F->ne=0;
i=Finish_IP_Check(_P, _V, _F, CEq, F_I, CEq_I);
free(CEq); free(CEq_I); free(F_I);
return i;
}
int Finish_REF_Check(PolyPointList *_P, VertexNumList *_V, EqList *_F,
CEqList *_CEq, INCI *F_I, INCI *CEq_I){
int REF=1;
while(0<=_CEq->ne) if(REF_Search_Bad_Eq(_CEq,_F,CEq_I,F_I,_P,&REF)){
if(!REF) return 0; /* found d!=1 */
assert(_V->nv<VERT_Nmax);
_V->v[_V->nv++]=Search_New_Vertex(&(_CEq->e[_CEq->ne-1]),_P);
Make_New_CEqs(_P,_V,_CEq,_F,CEq_I,F_I); }
return 1;
}
int Ref_Check(PolyPointList *_P, VertexNumList *_V, EqList *_F){
int i;
CEqList *CEq = (CEqList *) malloc(sizeof(CEqList));
INCI *CEq_I = (INCI *) malloc(sizeof(INCI)*CEQ_Nmax);
INCI *F_I = (INCI *) malloc(sizeof(INCI)*EQUA_Nmax);
if((CEq==NULL)||(CEq_I==NULL)||(F_I==NULL)) {
printf("Allocation failure in Ref_Check\n"); exit(0);}
if (GLZ_Start_Simplex(_P, _V, CEq)) {
free(CEq); free(CEq_I); free(F_I); return 0;}
for (i=0;i<CEq->ne;i++) CEq_I[i]=Eq_To_INCI(&(CEq->e[i]),_P,_V);
_F->ne=0;
i=Finish_REF_Check(_P, _V, _F, CEq, F_I, CEq_I);
free(CEq); free(CEq_I); free(F_I);
return i;
}
/* ====================================================================== */
/* ========== ========== */
/* ========== D U A L P O L Y & C O M P L E T I O N ========== */
/* ========== ========== */
/* ====================================================================== */
void Make_Dual_Poly(PolyPointList *_P, VertexNumList *_V, EqList *_E,
PolyPointList *_DP){
EqList DE;
PairMat PM, DPM;
Make_VEPM(_P,_V,_E,PM);
Transpose_PM(PM, DPM, _V->nv, _E->ne);
VNL_to_DEL(_P,_V,&DE);
_DP->n=_P->n;
_DP->np=0;
Complete_Poly(DPM, &DE, _E->ne, _DP);
}
void add_for_completion(Long *yDen, Long Den,
EqList *_E, PolyPointList *_CP, int *old_np){
int i,n=_CP->n;
Long yold[POLY_Dmax];
if(Den>1) for(i=0;i<n;i++) {
if(yDen[i]%Den) return;
yold[i]=yDen[i]/Den;}
else for(i=0;i<n;i++) yold[i]=yDen[i];
for (i=0;i<_E->ne;i++) if (Eval_Eq_on_V(&(_E->e[i]), yold, n) < 0) return;
for (i=0;i<*old_np;i++) if (Vec_Equal(_CP->x[i],yold,n)) return;
assert(_CP->np<POINT_Nmax);
for(i=0;i<n;i++) _CP->x[_CP->np][i]=yold[i];
_CP->np++;
}
void Complete_Poly(PairMat VPM, EqList *_E, int nv,
PolyPointList *_CP){
int i,j,k,l,InsPoint,rank=0,n=_CP->n,old_np=_CP->np;
Long MaxDist[EQUA_Nmax], InvMat[POLY_Dmax][POLY_Dmax], Den=1;
Long yDen[POLY_Dmax];
int OrdFac[VERT_Nmax],
BasFac[POLY_Dmax], one[POLY_Dmax], position[POLY_Dmax];
LRat ind[POLY_Dmax][POLY_Dmax], x[POLY_Dmax], y[POLY_Dmax], f,
PInvMat[POLY_Dmax][POLY_Dmax];
/*_CP->np=0;*/
/* Calculate maximal distances from facets of Delta^* (Vertices of Delta) */
for (i=0;i<_E->ne;i++) {
MaxDist[i]=0;
for (j=0;j<nv;j++)
if (MaxDist[i]<VPM[i][j]) MaxDist[i]=VPM[i][j];}
/* Order facets of Delta^* (Vertices of Delta) w.r.t. MaxDist */
OrdFac[0]=0;
for (i=1;i<_E->ne;i++){
InsPoint=i;
while (InsPoint&&(MaxDist[i]<MaxDist[OrdFac[InsPoint-1]])) InsPoint--;
for (j=i;j>InsPoint;j--) OrdFac[j]=OrdFac[j-1];
OrdFac[InsPoint]=i; }
/* Find first POLY_Dmax linearly independent facets + Inverse Matrix */
for (i=0;i<n;i++) for (j=0;j<n;j++) PInvMat[i][j]=LrI(0);
for (i=0;i<n;i++) PInvMat[i][i]=LrI(1);
i=0;
while (rank<n){
for (j=0;j<n;j++) x[j]=LrI(_E->e[OrdFac[i]].a[j]);
for (j=0;j<n;j++) y[j]=LrI(0);
y[rank]=LrI(1);
for (j=0;j<rank;j++) {
f=x[one[j]];
for (k=0;k<n;k++) {
x[k]=LrD(x[k],LrP(f,ind[j][k]));
y[k]=LrD(y[k],LrP(f,PInvMat[j][k])); } }
one[rank]=-1;
for (l=0;(l<n)&&(one[rank]==-1);l++) if (x[l].N) one[rank]=l;
if(one[rank]>-1){
for (k=0;k<n;k++) {
ind[rank][k]=LrQ(x[k],x[one[rank]]);
PInvMat[rank][k]=LrQ(y[k],x[one[rank]]); }
for (j=0;j<rank;j++) {
f=ind[j][one[rank]];
for (k=0;k<n;k++) {
ind[j][k]=LrD(ind[j][k],LrP(ind[rank][k],f));
PInvMat[j][k]=LrD(PInvMat[j][k],LrP(PInvMat[rank][k],f)); } }
BasFac[rank]=OrdFac[i];
rank++; }
i++; }
for (i=0;i<n;i++) for (j=0;j<n;j++)
Den=(Den/LFgcd(Den,PInvMat[i][j].D))*PInvMat[i][j].D;
for (i=0;i<n;i++) for (j=0;j<n;j++)
InvMat[one[i]][j]=(Den/PInvMat[i][j].D)*PInvMat[i][j].N;
for (i=0;i<n;i++){
for (j=0;j<n;j++) {
long long s=0;
for(k=0;k<n;k++) s+=((long long) (InvMat[k][i]))*
((long long) (_E->e[BasFac[j]].a[k]));
if (s!=Den*(i==j)) {
puts("something wrong in Make_Dual_Poly");
exit(0);}}}
/* Examine all integer points of parallelogram: */
/* The basic structure of the algorithm is:
for (k=0;k<n-1;k++) position[k]=-1; / * sets k=n-1; important! *
position[n-1]=-2; / * starting point just outside the parallelogram *
while(k>=0){
position[k]++;
DO AT position;
for(k=n-1;((position[k]==MaxDist[BasFac[k]]-1)&&(k>=0));k--)
position[k]=-1; }
/ * sets k to the highest value where pos.[k] wasn't the max value;
resets the following max values to min values */
/* Quantities linear in position can be changed with every change of
position (here: yDen) */
for(i=0;i<n;i++) yDen[i]=0;
for (k=0;k<n-1;k++) { /* sets k=n-1; important! */
position[k]=-_E->e[BasFac[k]].c;
for(i=0;i<n;i++) yDen[i]-=_E->e[BasFac[k]].c*InvMat[i][k]; }
position[n-1]=-_E->e[BasFac[n-1]].c-1;
for(i=0;i<n;i++) yDen[i]-=(_E->e[BasFac[k]].c+1)*InvMat[i][n-1];
while(k>=0){
position[k]++;
for(i=0;i<n;i++) yDen[i]+=InvMat[i][k];
add_for_completion(yDen, Den, _E, _CP, &old_np);
for(k=n-1;(k>=0);k--){
if (position[k]!=MaxDist[BasFac[k]]-_E->e[BasFac[k]].c) break;
position[k]=-_E->e[BasFac[k]].c;
for (i=0;i<n;i++) yDen[i]-=MaxDist[BasFac[k]]*InvMat[i][k]; }}
}
/* ====================================================================== */
/* ========== ========== */
/* ========== B A T Y R E V ' S F O R M U L A S ========== */
/* ========== ========== */
/* ====================================================================== */
void Make_FaceIPs(PolyPointList *_P, VertexNumList *_V, EqList *_E,
PolyPointList *_DP, FaceInfo *_I){
/* compute IP's of faces by computing Incidences for all points and
* comparing with Incidences of dual faces */
int i, j, k;
INCI x;
for(i=0;i<_P->n;i++) for(j=0;j<_I->nf[i];j++) {
_I->nip[i][j]=0;
_I->dip[i][j]=0; }
for(k=0;k<_P->np;k++){
x=INCI_0();
for(i=0;i<_E->ne;i++)
x=INCI_PN(x,Eval_Eq_on_V(&(_E->e[i]),_P->x[k],_P->n));
for(i=0;i<_P->n;i++) for(j=0;j<_I->nf[i];j++)
if(INCI_EQ(x,_I->f[i][j])) _I->nip[i][j]++; }
for (k=0;k<_DP->np;k++){
x=INCI_0();
for(i=0;i<_V->nv;i++)
x=INCI_PN(x,DualBraP1(_P->x[_V->v[i]],_DP->x[k],_P->n));
for(i=0;i<_P->n;i++) for(j=0;j<_I->nf[i];j++)
if(INCI_EQ(x,_I->v[i][j])) _I->dip[i][j]++;}
}
void PrintFaceIPs(PolyPointList *_P,FaceInfo *_I){
int i,j, M=_P->n-1;
for(i=0;i<=M;i++) {
printf("ip[%d]:",i);
for(j=0;j<_I->nf[i];j++) printf(" %ld",(long) _I->nip[i][j]);
puts(""); }
for(i=0;i<=M;i++) {
printf("dip[%d]:",i);
for(j=0;j<_I->nf[i];j++)printf(" %ld",(long) _I->dip[i][j]);
puts(""); }
}
void Eval_BaHo(FaceInfo *_I, BaHo *_BH){
/* Calculate Hodge/Picard numbers from FaceInfo */
int i,j, n=_BH->n;
int *h1;
_BH->cor=0;
h1=_BH->h1;
for(i=0;i<n-1;i++) h1[i]=0;
h1[1]+=_BH->np-n-1;
for (i=0;i<_I->nf[0];i++) h1[1]-=_I->dip[0][i];
for (j=1;j<n-1;j++) for (i=0;i<_I->nf[j];i++) {
h1[j]+=_I->dip[j][i]*_I->nip[j][i];
_BH->cor+=_I->dip[j][i]*_I->nip[j][i];}
if (n==3) _BH->pic=h1[1];
for (i=0;i<_I->nf[n-1];i++) h1[n-2]-=_I->nip[n-1][i];
h1[n-2]+=_BH->mp-n-1;
if (n==5) _BH->h22=44+4*h1[1]+4*h1[3]-2*h1[2];
}
void RC_Calc_BaHo(PolyPointList *_P, VertexNumList *_V, EqList *_E,
PolyPointList *_DP, BaHo *_BH){
/* Needs reflexive and complete _P and _DP */
FaceInfo *_FI=(FaceInfo *) malloc(sizeof(FaceInfo));
if(_FI==NULL) {printf("RC_Calc_BaHo: Unable to allocate _FI\n"); exit(0);}
_BH->mp=_P->np; _BH->mv=_V->nv; _BH->nv=_E->ne; _BH->np=_DP->np;
_BH->n=_P->n;
Make_Incidence(_P, _V, _E, _FI);
Make_FaceIPs(_P, _V, _E, _DP, _FI);
Eval_BaHo(_FI, _BH);
free(_FI);
}
|